

Gradients as Features for Deep Representation Learning

Fangzhou Mu, Yingyu Liang, Yin Li

University of Wisconsin-Madison ICLR 2020 (poster)

Code repository
Project webpage

https://github.com/fmu2/gradfeat20

http://pages.cs.wisc.edu/~fmu/gradfeat20

Representation Learning

Phase 1: Learning Representations

Phase 1: Learning Representations

Phase 2: Learning Linear Classifier (Standard approach)

Phase 1: Learning Representations

Phase 2: Learning Linear Classifier (Proposed approach)

Our model subsumes the standard logistic classifier.

Theoretical Insight

Our model provides a local linear approximation to fine-tuning.

Key insight: Wide neural networks evolve as linear models under gradient descent. (*Lee et al.*, NeurIPS 2019)

(More details in Section 3.2 of our paper)

Scalable Implementation

Our model is fast at training and inference time.

Key insight: Embed the evaluation of Jacobian-vector product in forward pass.

(More details in Section 3.3 of our paper)

Results

(More details in Section 4 of our paper)

Summary

- A novel linear model that leverages both network activation and persample parameter gradients as features for representation learning.
- An interpretation of our method as linear approximation of fine-tuning.
- A scalable algorithm for training and inference of our method.
- Strong results of our method in various settings.

Thank you!

Code repository Project webpage https://github.com/fmu2/gradfeat20

http://pages.cs.wisc.edu/~fmu/gradfeat20