
Semantically Sequential, Parallel Execution of Programs on Multiprocessors

Gagan Gupta
Department of Computer Sciences, University of Wisconsin-Madison

Email: gagang@cs.wisc.edu. Address: 6083 Viroqua Drive, #D, Fitchburg, WI 53719.

Advisor: Gurindar S. Sohi; ACM Membership # 3813893.
Category: Graduate.

A program’s execution consistent with the user-specified
program order simplifies many aspects of computer de-
sign, e.g., programming and resource management. This has
greatly benefited uniprocessor system adoption. Parallel sys-
tems do not enforce an ordered program execution, compli-
cating system design. Hence, I ask, can parallel execution of
programs on multiprocessors be made program-order con-
sistent? I explore one approach to do so, and its impact on
performance and system design. Preliminary work shows
that the approach is promising.

Emerging Challenges
Due to evolving technology trends, a program’s auto-

matic performance scaling or its completion is no longer
assured. Today, hardware comprises multiple computational
resources, is more unreliable, and is energy constrained. The
onus is on programmers to develop parallel programs and
achieve their efficient execution on such platforms.

To conserve energy and scale performance further, new
techniques are emerging, such as hardware energy man-
agement [21, 22, 41], dynamic resource management [1,
8], and approximate computing [4, 28, 38]. Unfortunately
these techniques give rise to discretionary exceptions: user-
permitted events that can interrupt a program’s execution.
Such exceptions can arise from computation scheduling,
hardware emergencies and erroneous computations.

These trends will likely make parallel programs and fre-
quent exceptions during their execution the norm in the fu-
ture. Parallel programming, “a gigantic challenge facing the
computer science community” [32], is already onerous. Han-
dling frequent exceptions complicates it further.

Current Approaches
Designers today program multiprocessors using the decades-

old nondeterministic parallel programming model, which
was originally developed for supercomputers. Although the
model’s shortcomings are well documented [27, 40], practi-
tioners believe that it maximizes parallelism [10, 24, 31].
Hence, to surmount the emerging parallel programming
challenges, most current proposals embrace nondetermin-
ism, but mitigate its shortcomings.

Some proposals simplify nondeterministic program ex-
pression, without addressing nondeterminism itself [10, 14,
23, 24, 34, 36]. Others overcome nondeterminism by mak-

ing the execution deterministic at run-time, but penalize per-
formance, and may hamper portability [3, 5, 6, 15, 16, 25,
29, 31, 33]. A few past proposals have explored determinis-
tic parallel programs, but they limit the amount of exposed
parallelism [2, 7, 9, 18, 35, 37].

To handle exceptions in nondeterministic parallel pro-
grams, designers use checkpoint-and-recovery (CPR) [11,
12, 17, 30]. My analysis shows that due to the overheads
arising from nondeterminism, CPR may not scale to handle
the expected frequent discretionary exceptions [20].

In summary, present approaches cure the symptoms, but
do not cure nondeterminism itself. Hence an efficient and
practical approach to parallel programming remains elusive.

Proposed Research
I seek a fresh and holistic view of the parallel program-

ming challenges. I draw inspiration from successful con-
cepts over the history of computing, specifically, sequen-
tial programs and superscalar processors. I envision that de-
velopers will design parallel algorithms, but express them
as statically sequential programs. A parallel system will
exploit the algorithmic parallelism using globally precise-
restartable, dataflow execution of the tasks therein, while
maintaining the program’s sequential semantics, analogous
to precise-interruptible, instruction-level parallel execution
in superscalar processors. Sequential semantics simplifies
programming and enables efficient exception handling.

I explore the approach’s impact on performance and sys-
tem design. Initial results, followed by future directions are
presented here.
Programming and Execution Model. As a first step, I have
developed a model based on statically-sequential, object-
oriented C++ imperative programs [19]. The model lever-
ages programmers’ domain expertise to develop parallel al-
gorithms but eases the burden of explicitly orchestrating, and
hence, reasoning about their correct parallel execution. The
algorithm’s parallelism is exploited using the dataflow prin-
ciple since it naturally exposes concurrency.

Analogous to superscalar processors, a runtime imple-
mentation of the model sequences through the program, and
attempts to execute user-designated tasks concurrently. It dy-
namically establishes data dependences between the tasks.
Independent tasks are executed concurrently, while depen-

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

*",-./" #(",-./" %$",-./"

!"
##
$%

"&

'()*+,#-&

,-01/02-034"

53637-8"

Figure 1. Harmonic mean of speedups achieved for stan-
dard parallel programs on an 8-core, a 16-core and a 32-core
machine using conventional (Pthreads) and dataflow model.
Dataflow achieves similar or better speedups.

dent tasks are serialized. The resulting execution is naturally
deterministic. Despite the sequential semantics, the model
exploits the available parallelism. Dataflow execution can
look deep into the program for parallelism, which conven-
tional user-orchestrated execution cannot without consider-
able efforts. On popular parallel benchmarks the runtime’s
performance is comparable to the conventional method (Fig-
ure 1).
Exception Handling. Implicit ordering of a program’s task
can also simplify exception handling.

Recently I have shown that if a parallel programs execu-
tion is made deterministic, the program can be made glob-
ally precise-restartable, analogous to precise-interruptible
sequential programs [20]. This approach is scalable, unlike
conventional CPR. I am extending this work to the above
execution model, which is already deterministic.

Briefly, the runtime system tracks (i) the order of the
program’s currently executing tasks, (ii) the objects they may
modify and (iii) the state of those objects before they are
modified. When a task excepts, objects modified by it and by
those “younger” to it can be restored to their pre-modified
state, causing the program state to reflect precise, ordered
execution up to the exception. The program may restart
using this state, and is hence globally precise-restartable.

Dataflow execution can be exploited to selectively re-
execute only the excepted task, without impacting the rest
of the program, since only independent computations exe-
cute concurrently. This selective restart makes the approach
scalable (Figure 2), making it well-suited for the highly
exception-prone future systems. I expect similar benefits for
ordered programs. More signficantly, it can potentially en-
able new capabilities, as described next.

Future Work
Although the approach shows promise, it is unclear how

well it performs for programs with irregular parallelism. I
propose to study the model’s applicability to programs from

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" '" (" $%" $)" %!" %'"

!"
#$
%&

'(
)*
+,
$)
-%
$.
)/$

#0
)

1234$.)'5)6'(,$",/)

*+,-.,/+,01"*23"

4.1.5/-."3.67087"

Figure 2. Exception resiliency of conventional CPR and
selective restart for the nondeterministic implementation of
the Pbzip2 program running on a 24-context machine [20].
Selective restart can handle more exceptions as the system
size grows, whereas conventional CPR does not.

the STAMP [13] and Lonestar [26] suites. Initial analysis
shows that computations in these programs spend time iden-
tifying the data to be computed. This can hamper dataflow
execution due to unknown depdendences, limiting the par-
allelism if sequential semantics is to be maintained. To
overcome this limitation, I propose to execute computa-
tions speculatively. If the sequential semantics is violated,
it can be treated as an exception and handled using global
precise-restartability. This approach is similar to misspecu-
lation handling in out-of-order superscalar processors [39].
My work will study its utility in parallel systems.

In addition to speculation, I propose to apply precise
restart to fault tolerance in ordered parallel programs. This
study will explore the benefits of ordered execution as com-
pared with nondeterminsitic and deterministic execution of
conventional parallel programs.

Conclusion
I have explored program-order consistent execution of a

parallel program on multiprocessors. Doing so imparts se-
quential semantics to the execution, without sacrifycing per-
formance. The approach potentially simplifies several as-
pects of parallel system design, such as programming, re-
source management, fault tolerance, security, etc. I am ex-
ploring ways to broaden the approach’s applicability to a
wider range of programs and applications.

If successful, I believe that the approach will take a signif-
icant stride in meeting the grand challenges of parallel com-
puting.

References
[1] Amazon EC2 spot instances. 2009.

[2] M. D. Allen, S. Sridharan, and G. S. Sohi. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’09, pages 85–96,
New York, NY, USA, 2009. ACM.

[3] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–16, Berkeley, CA, USA,
2010. USENIX Association.

[4] W. Baek and T. M. Chilimbi. Green: A framework for support-
ing energy-conscious programming using controlled approxi-
mation. In Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. Coredet: A compiler and runtime system for determinis-
tic multithreaded execution. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XV, pages
53–64, New York, NY, USA, 2010. ACM.

[6] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dos. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’10, pages 1–16, Berkeley, CA, USA, 2010. USENIX
Association.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe mul-
tithreaded programming for c/c++. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’09, pages
81–96, New York, NY, USA, 2009. ACM.

[8] F. Blagojevic, C. Iancu, K. Yelick, M. Curtis-Maury, D. S.
Nikolopoulos, and B. Rose. Scheduling dynamic parallelism
on accelerators. In Proceedings of the 6th ACM Conference
on Computing Frontiers, CF ’09, pages 161–170, New York,
NY, USA, 2009. ACM.

[9] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system for deter-
ministic parallel java. In Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 97–116,
New York, NY, USA, 2009. ACM.

[10] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve,
V. S. Adve, A. Welc, and T. Shpeisman. Safe nondeterminism
in a deterministic-by-default parallel language. In Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages
535–548, New York, NY, USA, 2011. ACM.

[11] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and
P. Stodghill. Recent advances in checkpoint/recovery systems.
In IPDPS. IEEE, 2006.

[12] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and
M. Schulz. Application-level checkpointing for shared mem-
ory programs. In Proceedings of the 11th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XI, pages 235–247, New
York, NY, USA, 2004. ACM.

[13] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE Interna-
tional Symposium on Workload Characterization, September
2008.

[14] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java:
The new adventures of old x10. In Proceedings of the 9th
International Conference on Principles and Practice of Pro-
gramming in Java, PPPJ ’11, pages 51–61, New York, NY,
USA, 2011. ACM.

[15] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deter-
ministic shared memory multiprocessing. In Proceedings of
the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASP-
LOS XIV, pages 85–96, New York, NY, USA, 2009. ACM.

[16] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: A relaxed consistency deterministic computer. In Pro-
ceedings of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 67–78, New York, NY, USA,
2011. ACM.

[17] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34(3):375–408, Sept. 2002.

[18] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Lan-
guage Design and Implementation, PLDI ’98, pages 212–223,
New York, NY, USA, 1998. ACM.

[19] G. Gupta and G. S. Sohi. Dataflow execution of sequential im-
perative programs on multicore architectures. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-44, pages 59–70, New York, NY,
USA, 2011. ACM.

[20] G. Gupta, S. Sridharan, and G. S. Sohi. Globally precise-
restartable execution of parallel programs. To appear in PLDI,
2014.

[21] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and
D. M. Brooks. DeCoR: A delayed commit and rollback
mechanism for handling inductive noise in processors. In
HPCA, pages 381–392. IEEE Computer Society, 2008.

[22] M. S. Gupta, J. A. Rivers, P. Bose, G.-Y. Wei, and D. Brooks.
Tribeca: Design for pvt variations with local recovery and
fine-grained adaptation. In Proceedings of the 42Nd An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 42, pages 435–446, New York, NY, USA, 2009.
ACM.

[23] T. Harris, J. Larus, and R. Rajwar. Transactional memory, 2nd
edition. Synthesis Lectures on Computer Architecture, 5(1):1–
263, 2010.

[24] S. T. Heumann, V. S. Adve, and S. Wang. The tasks with
effects model for safe concurrency. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, pages 239–250, New
York, NY, USA, 2013. ACM.

[25] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
Deterministic or not? free will to choose. In Proceedings
of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA ’11, pages 333–
334, Washington, DC, USA, 2011. IEEE Computer Society.

[26] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. Lon-
estar: A suite of parallel irregular programs. In ISPASS ’09:
IEEE International Symposium on Performance Analysis of
Systems and Software, 2009.

[27] E. A. Lee. The problem with threads. Computer, 39(5):33–42,
May 2006.

[28] X. Li and D. Yeung. Exploiting application-level correctness
for low-cost fault tolerance. J. Instruction-Level Parallelism,
10, 2008.

[29] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Effi-
cient deterministic multithreading. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 327–336, New York, NY, USA, 2011.
ACM.

[30] D. Marques, G. Bronevetsky, R. Fernandes, K. Pingali, and
P. Stodghil. Optimizing checkpoint sizes in the c3 system.
In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Workshop
10 - Volume 11, IPDPS ’05, pages 226.1–, Washington, DC,
USA, 2005. IEEE Computer Society.

[31] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic galois:
On-demand, portable and parameterless. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’14, pages 499–512, New York, NY, USA, 2014. ACM.

[32] C. O’Hanlon. A conversation with john hennessy and david
patterson. Queue, 4(10):14–22, Dec. 2006.

[33] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Effi-
cient deterministic multithreading in software. In Proceedings
of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASP-
LOS XIV, pages 97–108, New York, NY, USA, 2009. ACM.

[34] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of paral-
lelism in algorithms. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI ’11, pages 12–25, 2011.

[35] J. M. Prez, R. M. Badia, and J. Labarta. A dependency-
aware task-based programming environment for multi-core
architectures. In CLUSTER, pages 142–151. IEEE, 2008.

[36] J. Reinders. Intel Threading Building Blocks. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, first edition, 2007.

[37] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of jade. ACM Trans. Program. Lang. Syst.,
20(3):483–545, May 1998.

[38] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data types for
safe and general low-power computation. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages 164–174,
New York, NY, USA, 2011. ACM.

[39] J. E. Smith and G. S. Sohi. The microarchitecture of super-
scalar processors. Proceedings of the IEEE, 83(12):1609–
1624, Dec. 1995.

[40] H. Sutter and J. Larus. Software and the concurrency revolu-
tion. Queue, 3(7):54–62, Sept. 2005.

[41] G. Yan, X. Liang, Y. Han, and X. Li. Leveraging the core-
level complementary effects of PVT variations to reduce tim-
ing emergencies in multi-core processors. In Proceedings of
the 37th Annual International Symposium on Computer Ar-
chitecture, ISCA ’10, pages 485–496, New York, NY, USA,
2010. ACM.

