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Research Summary

Proposed System: ParaKram

* A Runtime system to manage the multiprocessor program’s execution
* Performs out-of-order superscalar processor-like execution on multicores
» Uses data dependences to perform dataflow execution
» Supports program-wide precise exceptions (overall order)
» Speculates when dependences are unknown, but keeps ordered semantics

Multiprocessors are ubiquitous, but programming them continues to be challenging.

Our Goal: Simplify multiprocessor programming without compromising performance

Conventional Wisdom Our Approach

Order in programs obstructs parallelism  Order can help to expose parallelism!
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* Performance at par or better (5% to 288%) than conventional methods .
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