
Semantically Sequential, Parallel Execution of Programs on Multiprocessors
Gagan Gupta (Advisor: Gurindar S. Sohi)

Semantically Sequential, Parallel Execution of Programs on Multiprocessors
Gagan Gupta (Advisor: Gurindar S. Sohi)

• A Runtime system to manage the multiprocessor program’s execution
• Performs out-of-order superscalar processor-like execution on multicores
 Uses data dependences to perform dataflow execution
 Supports program-wide precise exceptions (overall order)
 Speculates when dependences are unknown, but keeps ordered semantics

• A Runtime system to manage the multiprocessor program’s execution
• Performs out-of-order superscalar processor-like execution on multicores
 Uses data dependences to perform dataflow execution
 Supports program-wide precise exceptions (overall order)
 Speculates when dependences are unknown, but keeps ordered semantics

Proposed System: ParaKram

Multiprocessors are ubiquitous, but programming them continues to be challenging.

Our Goal: Simplify multiprocessor programming without compromising performance

Benefits:
• Simplified programming; Simplified system design; Better reliability
• Performance at par or better (5% to 288%) than conventional methods

Multiprocessors are ubiquitous, but programming them continues to be challenging.

Our Goal: Simplify multiprocessor programming without compromising performance

Benefits:
• Simplified programming; Simplified system design; Better reliability
• Performance at par or better (5% to 288%) than conventional methods

Research Summary

Sequencer

• Unrolls dynamic

instances of tasks
• Computes data

set dynamically
(user assisted)

 Write Set Read Set

F1: {B, C} {A}

F2: {D} {A}

F3: {?} {?}

F4: {B} {D}

F5: {B} {D}

F6: {G} {H}

Sequencer

• Unrolls dynamic

instances of tasks
• Computes data

set dynamically
(user assisted)

 Write Set Read Set

F1: {B, C} {A}

F2: {D} {A}

F3: {?} {?}

F4: {B} {D}

F5: {B} {D}

F6: {G} {H}

 Dataflow Engine
• Uncovers parallelism past blocked tasks

in the program
• Constructs dynamic data dependence

graph using write and read sets
• Executes tasks out-of-order
• If task dependences/order are unknown,

speculates tasks are independent

 Dataflow Engine
• Uncovers parallelism past blocked tasks

in the program
• Constructs dynamic data dependence

graph using write and read sets
• Executes tasks out-of-order
• If task dependences/order are unknown,

speculates tasks are independent

 Precise-restart Engine
• Tracks tasks and their order in a Reorder List
• Checkpoints mod set in History Buffer
• Retires task in program order

 Precise-restart Engine
• Tracks tasks and their order in a Reorder List
• Checkpoints mod set in History Buffer
• Retires task in program order

O
rd

e
r-

aw
ar

e
 S

ch
e

d
u

le
r

O
rd

e
r-

aw
ar

e
 S

ch
e

d
u

le
r

ParaKram
Multiprocessor program User-annotated program; Needs only task-local reasoning

Conventional Wisdom Our Approach

Order in programs obstructs parallelism Order can help to expose parallelism!

Use non-deterministic programs, or make
dataflow in programs explicit

Use ordered programs; maintain precise
program-order execution semantics

Programmer should expose parallelism Use run-time dataflow and speculative
techniques to expose parallelism

Order-aware Scheduler

Dataflow Engine

Precise-restart Engine

Sequencer

Multiprocessor System

F2

 t1 t2 t3 t4 t5 t6

 Execute Declares dataset Execute Re-execute

out-of-order => misspeculated out-of-order

speculatively => rolled back non-speculatively

 using History Buffer

 Example speculative dataflow execution on 3 processors

F1

F2

F6

F2

F3

F4 F5

F3

 Time

 P1

 P2

 P3

F1

F1

F1, F6, F2

F1

F2

 F1 F2 F3 F4 F5 F6

 Epoch Reorder List Entries Completed Retired

t1

 F2 F3 F4 F5 F6 t2

 F2 F3 F4 F5 F6 t3

 F3 F4 F5 F6 t4

Precisely restarting misspeculated task (F3 from above) ParaKram speedup (harmonic mean) is 20% higher

than non-deterministic Pthreads (excludes Cholesky)

0

1

2

3

4

5

6

7

8

9

8x
Core i7-965

16x
Opteron

8350

32x
Opteron

8356

S
p

e
e
d

u
p

Harmonic Mean of Achieved Speedups

Non-deterministic

ParaKram

ParaKram speedup is 288% higher than non-

deterministic OpenMP, 75% over Cilk

F3 F3

Applications:

Barneshut

Blackscholes

Pbzip2

Dedup

Histogram

RevereseIndex

Swaptions

Mergesort

RE

WordCount

ConjugateGradient 0

1

2

3

4

5

6

7

Genome Mergesort Labyrinth

S
p

e
e
d

u
p

Speculative Execution (8x Intel Xeon)

ParaKram

TL2

Cilk

C
+

+
 R

u
n

ti
m

e
 L

ib
ra

ry

ParaKram scales with system size;

Non-deterministic method does not scale

ParaKram speedup is up to 77% higher than

non-deterministic Cilk and TL2 STM

Schedules and prioritizes tasks for execution

Unwinds program, logs task order

Recovers and restarts from exceptions and misspeculation

Looks for parallelism beyond blocked tasks, speculatively if

needed

M
u

lt
ip

ro
ce

ss
o

r
P

ro
g
ra

m

0

2

4

6

8

10

12

14

1 2 4 8 12 16 20 24

S
p

e
e
d

u
p

Processors

Cholesky Decomposition (24x Intel Xeon)

ParaKram Speculative

ParaKram Non-speculative

OpenMP

Cilk

0

10

20

30

40

50

60

70

1 2 4 8 12 16 20 24

S
p

e
e
d

u
p

Processors

Tolerating Exceptions

Non-deterministic Checkpoint-and-
Recovery

ParaKram

 F1 F2 F3 F4 F5 F6

t1 t2

F1 F2

F3

F6 F5

F4 Time

??
F3

