Semantically Sequential, Parallel Execution of Programs on Multiprocessors

THE UNIVERSITY THE UNIVERSITY

WISCONSIN Gagan Gupta (Advisor: Gurindar S. Sohi) WISCONSIN

MADISON MADISON

Research Summary

Proposed System: ParaKram

* A Runtime system to manage the multiprocessor program’s execution
* Performs out-of-order superscalar processor-like execution on multicores
» Uses data dependences to perform dataflow execution
» Supports program-wide precise exceptions (overall order)
» Speculates when dependences are unknown, but keeps ordered semantics

Multiprocessors are ubiquitous, but programming them continues to be challenging.

Our Goal: Simplify multiprocessor programming without compromising performance

Conventional Wisdom Our Approach

Order in programs obstructs parallelism Order can help to expose parallelism!

Multiprocessor program > User-annotated program; Needs only task-local reasoning
Use non-deterministic programs, or make Use ordered programs; maintain precise Parakram R S —
dataflow in programs explicit program-order execution semantics > Sequencer — Unwinds program, logs task order
. . . g ;
Programmer should expose parallelism Use run-time dataflow and speculative - Precise-restart Engine ——— Recovers and restarts from exceptions and misspeculation
techniques to expose parallelism I
S Dataflow Engine — Looks for parallelism beyond blocked tasks, speculatively if
Benefits: * needed
° Simplified programming; Simplified system design; Better relia bility 3t ' Order-aware Scheduler ———— Schedules and prioritizes tasks for execution

* Performance at par or better (5% to 288%) than conventional methods .
Multiprocessor System

® e . -
Sequencer Precise-restart Engine O
j> * Tracks tasks and their order in a Reorder List =) © ®)
i . Unrolls dynamic P * Checkpoints mod set in History Buffer 0 |:> - D R
S instances of tasks * Retires task in program order _qc) : 4 @ @ :;:-: """""""" '_"_‘;':;@
S e Computes data 3 F3) @ o TTTmmeT
: . Tim
: E ot dynamicaly Dataflow Engine " °
A (user assisted) . S t1 tD t3 t4 t5 t6
Y \~— * Uncovers parallelism past blocked tasks (O !
O :
= Write Set Read Set in the program (';U Execute _Declgres dataset Execute Re-execute
= F1: {B, C} {A} * Constructs dynamic data dependence “\—4...\ ~ | out-of-lo:.deq => m:ISSdpECUII?ted OUt-Of-Orldir |
, : : el N &= Speculative => rolled bac non-speculative
S F2: {D} 1A} j> graph using write and read sets ‘ Time j> Q P Y using History Buffer P Y
. ? ?
F3: %) e * Executes tasks out-of-order ge
F4: {B} {D} v S
F5: {B) D) * If task dependences/order are unknown, t1 t2 O _ _
' : Example speculative dataflow execution on 3 processors
F6: {G} {H} speculates tasks are independent
B _ _ _ _ _ _ Epoch Reorder List Entries Completed Retired
Cholesky Decomposition (24x Intel Xeon) Harmonic Mean of Achieved Speedups Tolerating Exceptions Speculative Execution (8x Intel Xeon)
14 e T g B Non-deterministic Applications: 70 -0-gon-deterministic Checkpoint-and- 7 ParaKram
12 : — araKram arneshu 60 ecovery
0 *eraKl\;aPm Non'Specu'at'\;’/KO/‘ 9_(73 rare N Elt?ckzchhcfles 50 ParaKram 2 BTL2 t1
g_ en _g L Zip g— - m Cilk
) ¢ -~ Wooan i 34 - 2 |_[Fe|Fs|FalF3|F2| F1 F1
- 03 ~ Revereselndex o §3 I I
;f%;%{i:; = e : A s [Ire[re[Fa[ra[Fa]
0 RE
. ordCoun —_— 00— T 1+—
’ 1 2 4 8 12 16 20 24 Coresi);-965 o;tgfon Op:ﬁ)r(on \(/Dvon;ju(z]ate(gradient ’ 1 2 4 8 12 16 20 24 0 t4 -- F1, F6, F2 F2
Processors 8350 8356 # Processors Genome Mergesort Labyrinth
ParaKram speedup is 288% higher than non- ParaKram speedup (harmonic mean) is 20% higher ParaKram scales with system size; ParaKram speedup is up to 77% higher than PreCisely reSta rting miSS peCUIated taSk (F3 frOm above)

deterministic OpenMP, 75% over Cilk than non-deterministic Pthreads (excludes Cholesky) Non-deterministic method does not scale non-deterministic Cilk and TL2 STM

