
Scalable Fault Tolerance in Multiprocessor Systems

Gagan Gupta
Department of Computer Sciences
University of Wisconsin-Madison

Email: gagang@cs.wisc.edu

Gurindar S. Sohi (Advisor)
Department of Computer Sciences
University of Wisconsin-Madison

Email: sohi@cs.wisc.edu

Abstract—Evolving trends in design and use of computers are
resulting in fault-prone systems which may not execute a program
to completion. Checkpoint-and-recovery is commonly used to
recover from faults and complete parallel programs. Conventional
checkpointing-and-recovery can incur high overheads and may be
inadequate in the future as faults become frequent. We propose
to execute parallel programs deterministically to tolerate faults
at lower overheads and scalably.

I. INTRODUCTION

Today multiprocessors and hence parallel programs have
become ubiquitous. Hardware faults, which can corrupt pro-
grams, are slated to become more frequent [1]. To conserve
energy and scale performance, newly proposed techniques,
such as hardware energy management, dynamic resource man-
agement, and approximate computing, can frequently cause
errors and corrupt the program’s state. Here, we term all
hardware and software events that can corrupt a program’s
state, as faults. To successfully use these systems and employ
the new emerging techniques, the challenge is to efficiently
recover from the faults and still complete the programs.

To recover from faults in parallel programs checkpoint-
and-recovery (CPR) approaches [2] periodically checkpoints
the program’s state during its execution. Since conventional
parallel programs are characterized by inter-thread communi-
cation and nondeterminism, inter-thread coordination is needed
to perform each checkpoint. When a fault occurs, the most
recent error-free consistent architectural state is constructed
from the checkpoint, from where the program is resumed. This
effectively rolls back the execution. Uncoordinated checkpoint-
ing, an alternative, can eliminate coordination, but can cause
cascading rollbacks [2], and is hence not preferred.

The CPR process incurs overheads from two main sources:
(i) periodic inter-thread coordination, and (ii) loss of paral-
lelism when all work since the last checkpoint is discarded,
whether “good” or “bad”. Due to these overheads CPR may not
scale to handle frequent faults. Intuitively, if the rate of faults
(e) is more than the work performed in a checkpoint interval
(t), a program may never complete, i.e., e ≤ 1

t for the program
to complete, irrespective of the system size, although e grows
with the system size. Simply increasing the checkpointing
frequency, i.e., 1

t , will increase the inter-thread coordination
overheads, and hence is not appealing.

Here we draw inspiration from CPR, database recovery
methods [3], and out-of-order (OOO) superscalar processors
to propose a low overhead, scalable fault tolerance model.

OOO processors execute instructions concurrently, of-
ten speculatively, and are yet precise-interruptible. Precise-

interruptibility allows them to handle exceptions, e.g., mis-
speculations, which can be very frequent, efficiently. The
key to precise interruptibility is the ordered view of the
instructions the processor executes. We apply an analogous
approach in multiprocessor systems in which the parallel
program’s execution is made deterministic to achieve global
precise-restartability. Global precise-restartability in turn leads
to efficient fault tolerance.

The proposed approach is implemented as an application-
level recovery system, called the Globally Precise-Restartable
System (GPRS). GPRS is a C++ run-time library and can
be applied to different styles of parallel programs. It can
work with conventional multithreaded programs (Pthreads-
based presently) as well as statically-ordered parallel pro-
grams [4]. GPRS is also uniquely capable of tolerating faults
in the user program as well as its own operations. Presently
GPRS is operational on shared-memory systems.

II. PROPOSED SYSTEM

In this section we briefly describe how GPRS operates to
recover from faults. It manages the program’s execution, the
program’s state, and shepherds the execution to completion
when faults arise.

A. Fault Tolerance in Multithreaded Programs

GPRS makes a parallel program’s execution deterministic
to simplify fault recovery. It divides the threads in conven-
tional, data race-free multithreaded programs into sub-threads
at communication points therein. A logical order is assigned
to the sub-threads, which are then scheduled for execution
in that order. This leads to deterministic execution. However,
ordered scheduling can severely impact the performance. We
propose various ordering schemes, ranging from simple round-
robin to more sophisticated balance-aware, to minimize this
impact to less than 5% on an average for ten popular parallel
benchmarks [5].

The implicit order precludes communication from
“younger” sub-threads to “older” sub-threads. hence an
affected sub-thread cannot corrupt older sub-thread(s).

The deterministic execution is then made globally precise-
restartable, analogous to precise-interruptible sequential pro-
grams. Briefly, GPRS tracks (i) the order of the program’s cur-
rently executing sub-threads, (ii) the objects they may modify
and (iii) the state of those objects before they are modified
(uncoordinated checkpoint). When a sub-thread faults, objects
modified by it and by those “younger” to it can be restored
to their pre-modified state, causing the program state to reflect



0"

5"

10"

15"

20"

25"

30"

35"

1" 2" 4" 8" 12" 16" 20" 24"

Fa
ul
t&R

at
e&
(p
er
&se

c)
&

Number&of&Processors&

Fault&Resiliency&of&Pbzip2&

Conven/onal"CPR"

Selec/ve"Restart"

Fig. 1. Fault resiliency of conventional CPR and selective restart for the
nondeterministic implementation of the Pbzip2 program running on a 24
processor machine. Selective restart can handle higher rates of faults.

precise, ordered execution up to the exception. The program
may restart using this state, and is hence globally precise-
restartable.

The logical order is exploited to selectively re-execute only
the faulted sub-thread, without impacting the rest of the pro-
gram, since only independent sub-threads execute concurrently.
Since not all, but only the affected sub-thread may have to
be restarted, this enables continuous, online recovery. Further,
now for the program to complete, e ≤ n

t in an n-context sys-
tem, which is up to n× more resilient than conventional CPR
(Figure 1). Since GPRS performs uncoordinated checkpoints
(without suffering from cascading rollbacks), its overheads
are lower than CPR (Figure 2). Thus GPRS performs low
overhead, scalable recovery, making it well-suited for the
highly fault-prone future systems.

B. Fault Tolerance in Statically-ordered Parallel Programs

Recently researchers have proposed statically-ordered pro-
grams for multiprocessor systems. These programs specify an
implicit order between the program’s tasks, but execute the
tasks concurrently whenever possible. GPRS leverages this
aspect to simplify fault tolerance in such programs. Since the
program already contains the notion of order, no explicit or-
dering need be enforced, unlike in the multithreaded programs.
Global precise-restartability is achieved using the mechanisms
described above. GPRS provides scalable fault resilience for
this programming model also.

C. Fault-tolerant Runtime System

GPRS being a software system its mechanisms are suscep-
tible to faults. It uses an Aries-like recovery protocol [3], but
simplifies the process using the sub-thread order, to recover
from faults within the runtime system. Briefly, each operation
performed by GPRS can be viewed as performed on behalf of
the user program’s sub-thread. GPRS logs its operations (on
the same stable storage as the checkpoint). Since each sub-
thread is ordered, each thread can log the operation concur-
rently without inter-thread coordination. During recovery, the
runtime’s state can be reconstructed with the help of the log
and the order of the operation. The overheads of this process
are reflected in Figures 1 and 2.

For its functioning, GPRS intercepts the programming APIs
(of both, Pthreads and the statically-ordered model [4]) and

!"#$
!"#$ %"#$

&'("#$

%"#$

!"#$

%"#$

("#$

!"#$

%"#$

)*+$ )*+$ )*+$ )*+$ )*+$ )*+$ )*+$ )*+$ )*+$ )*+$ )*+$

%"#$
%"#$

!'"#$
&',,"#$

!'"#$

("#$

!'"#$

-"#$

,"#$

!'"#$

'&-$

'&.$

!&-$

!&.$

(&-$

(&.$

,&-$

,&.$

/01
23#

456
7$

/809
:#9;

<83#
$

+02
230

8$

=>0
?@<

2#$

5A#7
<B1

0C
$
DEF

A?($
)3G

6?$ HI$

J<1G
+<6

27$

H3K
31#3

L2G
3M$ 5N

$

!"
#$
%&

"'
()
"*
+%

,-
'.
/0

"'

D4+DH4O$

PDH=4O$

D4+DH45$

PDH=45$

Fig. 2. Relative execution time when recovering at different fault rates
(listed above bars) using conventional CPR (P-CPR) and GPRS for different
programs. DNC = did not complete; HM = harmonic mean. GPRS completes
programs at high fault rates, unlike CPR. GPRS overheads are lower.

implements its own fault-tolerant versions of the APIs. GPRS
also implements its own versions of fault-tolerant memory
allocator and system functions, e.g., file I/O, commonly used
by programs.

III. CONCLUSION

Multiple sources of faults, ranging from hardware failures
to approximate computing, can prevent a program from com-
pleting execution. We propose to use ordered parallel programs
or make a conventional parallel program’s execution determin-
istic, and introduce a notion of global precise-restartability.
This approach simplifies fault tolerance and reduces the re-
lated overheads. It scales with the system size whereas the
conventional checkpoint-and-recovery does not.

So far we have tested the proof-of-concept prototype in
a relatively small system comprising 24 processors. Our goal
is to extend the approach to larger system and explore related
mechanisms. Specifically, we plan to combine GPRS principles
with proposals like containment domains [6] and transactional
memory, to provide efficient recovery on larger systems.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” Int. J. High Perform. Comput. Appl.,
vol. 23, no. 4, pp. 374–388, Nov. 2009. [Online]. Available:
http://dx.doi.org/10.1177/1094342009347767

[2] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, Sep. 2002. [Online].
Available: http://doi.acm.org/10.1145/568522.568525

[3] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“Aries: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans.
Database Syst., vol. 17, pp. 94–162, March 1992. [Online]. Available:
http://doi.acm.org/10.1145/128765.128770

[4] G. Gupta and G. S. Sohi, “Dataflow execution of sequential imperative
programs on mulcticore architectures,” in International Symposium on
Microarchitecture, ser. MICRO ’11, 2011.

[5] G. Gupta, S. Sridharan, and G. S. Sohi, “Globally precise-
restartable execution of parallel programs,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14. New York,
NY, USA: ACM, 2014, pp. 181–192. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594306

[6] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: A scalable, efficient,
and flexible resilience scheme for exascale systems,” in the Proceedings
of SC12, November 2012.


