Uwderdd @g,j A
l’ia_.@g,,ujj A

Fylont @/ weono ol A

R &P FAJO o /\’f
A m,\l-'%\__ﬂaf; bg stk 2 vt Coumfales
AR i,r;vx-fi) L—w'i: L RanAAL el cde PL‘}MO{ £ 2
d

H ty

é"f\.@,,dﬁ oA o 0 'L’J {3 {f«t

jh4a+ 9+ 10 = 42~




High Sample Rate VLSI Median Filters

Gagan Gupta
992-56-5432
EEE 558D




Abstract

Median fillers have been proposed for the analysis of speech data & in image processing
to enhance the data by smoothing the signal & removing noise. Many designs for
median filters have been suggested in literature. In this paper, we will introduce new
high sample rate VLSI median filter designs that can work at a rate faster than the
existing designs. Designs for 1 dimensional & 2 dimensional cases are discussed. The same
ideas can be casily extended over to any order statistic filters.

I. Introduction

Median filters are a special class of nonlinear filters useful in the removal of impulse
noise & smoothing signals. These filters while doing so, preserve the edge information
thereby making them aitractive for speech processing & image processing applications.
Mathematical properties of these filters have been discussed in [1] & [2]. There are twao
classes of median filters. The 1 dimensional filters are for speech processing & related
problems; 2 dimensional filters are often used in image processing. We will discuss 1
dimensional filters & show how the same idea can be extended over for 2 dimensional
lilters.

1 dimensional filters work as following. A window of size 2N+1 is moved across the entire
signal & the center value of cach window is replaced by the median values in the
window, A window centered on the ith value, of an input stream of values X0. X1, X92,....., is

denoted as Wi = {Xj-N,..-eo.Xireoeorn Xj+N]. The window W slides over the input stream as shown
in ligure 1.The idea of a median filter is 10 use the median of the values in the window Wi
as the best guess for the truc value of Xj, The running median Y; = median {Wi}. In

general any order statistic could be used in place of the median , i.e. Yi= rank_r {W;}
where the element of rank r is the rth largest in a set. We will describe algorithms for
median values. In general the same algorithms can be used for any order statistic values,

The existing architectures for median filters can be broadly classified into two classes
[3]: ones which adopt window oriented approach & others which adopt sample oriented
approach. In window oriented approach, samples are stored in order of arrival & are
cither linear systolic array architectures [6] or. are based on sorting nelworks [7] (see
figure 2). Although the 2 dimensional sorting networks can be highly pipelined, they
usc up a lot of space O(IWI2), IWl = 2N+1, making them unattractive for large windows [71.
Archilecture of [6] consists of 2N+1 processors, but has a large pipeline period because
for each input sample a sequence of operations are performed for updating ranks. The
sample oricnied approach maintains the sample in sorted order & ranks are updaied
based on the sample values arriving & departing [5, 9] (see figure 3). They use 2ZN+1
processors, but have a large pipeline period because for each input sample, comparisons
& shifts have to be performed (0 maintain the sorted list.

There arc several proposed architectures for median filters. [3] gives a survey & critical
analysis of the existing archilectures. There are algorithms that take time O(N) to output
a median value for every window.Architecture of [4] has a pipeline period of 2 (if no
interleaving is used), but has a latency time O(N). The 2 dimensional archilecture of (4]
also uses exitra hardware (o convert parallel data input into serial input thereby losing
the advantage of availability of data in parallel,



We describe itwo architectures for median filters which allow very high data sampling
rate with a low constant latency time & a pipeline period of 1 without any interleaving.
The first architecture is same as the samples stored in order of arrival algorithm in [8],
but with a small modification which speeds up the original algorithm. The modified
algorithm has been repeated here. The second algorithm is based on this algorithm.

IT. Design I

The architecture consists of linear systolic array of processors. A high sampling rate is
achicved by pipelining the computations in each processor. Each processor performs
computations related Lo windows Wj & Wij.1 simultaneously. This is done by pipelining
the computations through two computation units so that while the first computation unit
is working on window Wj, the second performs computations related to window Wi.1, The
architecture can be sampled at a rate twice that of existing systolic array
implementations [4,5,6].

The architecture consists of a linear array of 2N+1 processors, each of which consists of
two compuling units. The first compuling unit consists of register a, two comparators,
while the second computing unit consists of a rank register R, a comparator, a few 1 bit
flags & circuitry for updating the rank.

" There are 2N+1 such processors in the array which store samples in the order of arrival.
P1 stores the oldest sample & Pan4+1 stores the newest sample. The rank register stores
the rank of this sample. The array stores one entire window at a time. Ranking of the
presenl window is obtained by a simple modification of the ranking of the old window
(rather (han reevaluation (rom scratch). The algorithm consists of comparisons
followed by rank updates. The implementation is pipelined in such a way that while the
first computing unit performs comparisons on the ith window, the second compuling
unit updates the rank of the /-/th window. We next describe the sequence of operations
when Xi+N is stored in register a in Pan4+1; Xi-N-1 is the old sample to be deleted (sce
figure 4).

The ranks of each sample is siored in rank register using binary number system. Hence
maximum size ol rank register will be logp(2N+1) bits, Say k= loga(2N+1). Then rank
register will be rg.rk.q....rp where rj = lor 0, 1 <= j <= k. r; is the least significant bit & 1
is the mostL significant bit. There will be a set of unique 2N+1 numbers representing the
2N+1 possible ranks & at a given instance, all elements will have exacily one rank out of
this set. A parity (cither even or odd) can be defined for bit rj of all the 2N+1 eclements of
this set, 1 <= j <= k. This parity will be unique for a given set of 2N+1 numbers. Keeping
this in mind we proceed Lo describe the algorithm.

Operations "in the first computing unit

Al the beginning of this operation, register a in processor P;j contains Xj4i-N-1, 1 <= ] <=
ZN+1.



Compare with new & oldest samples

Sample Xj.N-1 is compared with contents of register a in processors Py through Papn. A 1
bit flag Vj in processor Pj is set to 1 if Xj4i-N-2 > Xj-N-1 for 2 <= j <= 2N+1. Sample XjiN is
compared with contents of processor P; through Pan & 1 bit flag Uj in processor Pj is set
to 1 il Xjtj.N-2 > Xj+N for 2 <+ j <= IN+1

At the end of this operation, each processor writes the contents of register a into
register b. Regisier a of all processor shift right & the new sample X, pNi1 is written into
register a of Pan+1.

Operations in the second computing unit

Al the beginning of this set of operation, register b contains the elements of the {-/th
window, rank regisier R contains the rank of the elements of the i-Zth window shifted
by 1 & flags U & V contain the comparison results of the i{-Ith window.

Update rank

Each processor updates it's rank register, Rj, depending on the flag values Uj & Vj. The
following operations take place in processor Pj, 1 <= j <= 2N.

If Uj = Vj then Rj = Rj
15 Uj > VJ' then Rj=Rj+1
If Uj < Vj then Rj = Rj-1

The above algorithm computes rank of samples in processors P to Pan. The rank of the
clement Xj4nN-.1 (in Pany+1) is straightforward to compute. Ranks of 2N clements are
known & the parity ol the 2N+1 possible rank combinations is already known. A parity
generator Lhat takes as input rj of the rank register R of all processors Pj1 <= i <= 2N will
give the value of the rj bit of the rank register R of the element Xj.n-1 in Pani1.
Log2(2N+1) parity generators will be required.

Rank Matching

Any processor whose rank matches rank N+1 (in case of median) outputs the contents of
it’s register b. This is the i-1th window median. The rank register of all the processors
are shifted right. Contents of rank register of processor Pj is lost.

Opecrations in the Tlirst & sccond computing units take place simultancously. In the
sccond computing unil, compulalion of the rank of element Xj.N-1 is done in parallel
wilh rank match. If none of the processors contain rank N+1, XjinN-1 is output, otherwise
processor with rank register N+1 outputs the content of register b.

The update & rank matching algorithms can be easily implemented in combinational
logic. Note that the lalency time is independent of N. The pipeline period is 1.



ITI. Design II

We now discuss a even faster 1 dimensional median filter architecture. The speedup in
the previous case has been achieved by modifying existing algorithm [6,8] at
implementation level. We achieve a speedup of two over the previous algorithm by
proposing a new algorithm, keeping the implementation details almost the same. This
speedup is achieved by taking as input multiple samples per time unit & outputing as
many median values corresponding to the individual windows being processed at that
time instance.

If you comsider a window size of 2N+1 with eclements Xj to Xan+1 with ranks from 1 to
2N+1, then the median of this window will be the clement with rank N+1. X is the oldest
clemeni & Xan+1 is the most recent element. XgoNy2 will be the new input sample that will
be laken & Xj will be the element that will be pushed out. Consider a window of size 2N+2
with elements X1 to Xopn4+2. This window can be considered to contain two successive
windows W; & Wiy of size 2ZN+1 each. The window W; consists of samples X1 to Xane1 &
window Wiy consists of samples X2 to Xon42 (see figure 5). If both the windows can be
processed simultaneously i.e, if medians of both the windows can be found at the same
time; two windows will be processed at the same time, thercby enabling two new samples
X2nN+3 & XaNg4 0 be input & 1wo old samples X1 & X2 to be discarded. At this time instance
thc window will contain the next two windows Wiy (samples X3 to XoNi3) & Wii3a
(samples X4 10 X2N+4). The window slides over the input stream by jumping two samples
al a time (see ligurc 6). Effectively this will enable two samples to be taken per time unit
thereby doubling (he sampling rate, thus making this algorithm faster by a factor of
twaQ,

Let us consider a window size ol 2N+2 as described above. There are 2N+2 samples in this
window with ranks 1 to 2ZN+2. In general the medians of the two windows Wi & W;ji1
contains in this window will be the clements with ranks N+1 & N+2 respecilively where
the sample ranks have been decided by combining both the windows. However there are
cxceplions to this rule. The complete algorithm follows.

We follow the following notation :

R{X;)} : rank of sample X; where 1 <= i <= 2N+2
X1. X2 : oldest samples

XaIN+1, XaN+2 © recent samples

Xr=i : sample with rank 1 1 <=1 <= 2N+2

M; : median of window W;

R; - Rank register value of processor P

The array  architecture is the same as that of Design I, except that we now -have 2N+2
processors. The processors of this architecture are also very similar to the processors of

computing unil requires 4 comparators & a few more one bit flags. The operations in the
two compuling units are slightly modified. The changes are described below,

The primary change in this design apant form the algorithm is the way the ranks are
being stored. Ranks are no longer stored as numbers using the binary number system.
For a window size of 2ZN+2, rank regisier has 2ZN+2 bits. Rank regisier of processor Pj is Rj

& can be delined as

thepreviousarchitecture, "Eachprocessor hastwocomputing units;Inthis case the [iTs1



Ri={rj;1<=j<=2N+2; 1 =0,1} alternatively
Ri=rmN+2.19Nt1onens TV ra.rp where j=1or0 & rj+1.rj indicates concatenation
of 541 & 1j.
If rank of sample Xj = k then it's rank will be represented as

Ri={rj=0;1<=j<k & k<j<=2N+2
=1;j=k]

Basically if rank of a sample = n then the nth bit from right in the rank register is set to
1 & all other bits are reset 1o 0. In other words, rank register is a flag register of size
2N+1 bits. Each bii flag is reserved for a possible value that a sample rank can take. It is
set to "1" if the sample has that rank. All other bit flags for of the rank register of this
sample will be reset 10 "0".

Associated with each processor Pj are 4 one bit flag registers Ui, Vi, Wi, Z;.
Say, the window has samples Xj.N to Xj4N+1 i.e. the two windows within this window are

Wi & Witl. Xj-N-2 & Xj.N-1 are old samples being discarded & Xj+N & Xi+N+1 are the new
samples that have been taken in.

Operations in first computing unit

Al the beginning of this operation, register a in processor Pj contains Xj4j-N-1, | <= j <=
IN+1.

Compare with old & new samples
The four samples Xi.N.2. Xi-N-1. Xi+N & Xj+N+1 are compared with contents of register a in

processors Py through Ppn. The four comparators of the unit are used for following
comparisons:

Forj=11t02N: if Xj> Xj.N-2 then Uj=lelse Uj=0
Forj=1102N: il Xj> Xj-N-1 then Vj=1else Vi=0
Forj=1102N: ifXj:»Xi_,.N then Wj= I else Wj=0
Forj=1102N: il Xj > Xi4N+1 then Zj=1 else Zi=0

in the remaining two processors Pans+1 & Pona2, only one comparison takes place. The
new sample Xi+N & Xi+N+1 are compared with each other & their relative ranks are
determined. The Z flag is used for this. The other three flags need not be present in these
two processors. The comparison is as follows :

I Xitng1 > XN
Lhen

Zoni2=1& ZoNg1 =70
clse
ZaN+1=0& ZyN42=1

The above algorithm basically defines job of each processor. At the end of this operation,
cach processor writes the conilents of register a into register b. Register a of all the
processors, shift 1o the right by iwo places & Lwo new samples XijuN4+2 & XjeN+3
corresponding lo the next two windows Wipo & WiLs



Operations in the second computing unit

This computation unit is working on the previous window samples i.e. windows Wi.1 &
Wi.3. The rank regisier conlains the ranks of windows previous to these (Wiss & Wi.g
combined) & they have to be updated. The flags contain the status of comparisons of the
previous window (Wi.1 & W;i.2 combined).

Update Rank

All processors Py to PaN execute the following algorithm in parallel

For j=1to 2N
FVi=1Ri=R;>>1 ' . . Jt ol
J =R e - NI RO el
IfWj=1Rj=Rj<<1 f L«J{Jmc{?x pronhel  chictade
erj=1Rj=Rj << 1 % Awt

Where Rj >> 1 represents a bit wise shift to the right by one & Rj << 1 represents a bit wise
shifl to the left by one.

This algorithm is good enough for rank updation of all elements except for the last two
samples in processors Pani) & Pang2, Their ranks are computed as follows:

Ran+1 = Ran+2 = NOT (R1+Rp+......+RaN-1+R2N)
where NOT & '+' are logical NOT & OR operators, i.e. carryout a bitwise NOR on the rank
registers  of processors Py to Pany. We call this rank prediction. We have predicted

approximale rank register values of the two new samples. We arrive at the exact values,
using the following procedure.

For both the samples Xj N & XjiN+1 in processors PaNei & Pon4+2 respectively.
If Z=1
then

resel the rightmosl_ﬁu-—-],/ of the rank register R, 10 0
else

LB
resct the leltmosl_bil—=—1» of the rank register R, to 0

Now we have ranks of all the clements in the new window & are ready to find the
medians.

Rank . _matching

We describe here the exception to the rule mentioned ecarlier. The median of the two
windows are found as per following algorithm (the second computing unit is working on
the previous two windows)



[ Ry <= Nt ) AND

Hy (R1=§+1)AND(R2N+O;<N+I) 4B 4 LD =X

(Ran+z = N+I)O§ND (R1 £ N+1) gl rr P TR

y OR b

(R; < N+1) AND (Ray42 < N+1)
then

Mi3 = Xp=N+2 ) Mi] = Xp=N+2 | g | b -
Else ‘ - 1
1f  (R; =N+2) AND (Ran42 > N+2)

(Rania = N+2?iND (R} > N+2)

(R} > N+2) AN%R(RQN.;.Q > N+2)
then

Mi2=Xp=N+17 Mi.1 = Xp=N+1
Else
If (Ran+2 <= N+1)
then

M= Xk=N+2 P Mi] = XR=N+1]
Else

Mz =Xp=N+1+ Mi]=Xp=py2

The processors match the rank N+1 & N+2 & output the contents of register b as per
above algorithm. The above algorithm can be easily implemented in a combinational
logic.

This algorithm requires four comparators in each processor except for the last two
processors. The algorithm can be used for large window sizes without affecting either
the pipeline period or compulation time or laiency time. Another advantage of using the
above mentioned rank representation, the rank matching logic & rank updation logic
becomes exircmely siraight forward to implement, involving one or maximum two levels
of combinational logic. The only limiting factor of this algorithm is the size of the rank
register R which takes up 2N+2 biis. B o S

The processor pipeline working frequency need not be the same as the sampling rate,

The system as such can work at hall the sampling rate frequency. Figure 7 shows a
scquence of operations for Design 1.

However, one area that needs to be further improved is the rank updation logic of the
last two elements. Thesc two ranks can only be updated after all the other 2N ranks are
updated, thus forcing this part of the algorithm to run serially.



IV. 2 Dimensional filters

Given a 2 dimensional sequence with size of MxAM, a 2 dimensional window Wi with size
NxN is used for the operation of the rank order filtering. When this 2 dimensional
window moves horizontally across a stripe of 2 dimensional data sequence with size MxM,
the 2 dimensional rank filter can be interpreted as a 1 dimensional rank order filtering
with a 1 dimensional window (of length NZ) moving across an expanded 1 dimensional
sequence (of length NM) & each movement of the window jumps multiple N data samples
{see [figure B8).

By using the same technique as in Design II, the architecture can be easily extended for
2 dimensional fillers. A briel description with reference to the above discussion follows.

Since N samples are being processed at a time, architecture for 2 dimensional filters will
require N2 processors, with 2N comparators in the first N2-N processors. The algorithm
will require to perform 2N comparisons in the N2-N processors : N comparisons with N
old samples & remaining N with N new samples. To keep track of these 2N comparisons,
cach processor will need 2N 1 bit flags. The last N processors, which will basically
receive the N new samples will need N-1 comparators & equal number of 1 bit flags each.

The comparison of old & new samples can be carried out as per the algorithm of Design
1I. This will give the ranks of the overlapping N2-N samples & relative ordering of the N
ncw samples. The rank updaling & predicting algorithm can be extended for N samples
and can be used here. However, the elaborate rank matching algorithm of Design 1T is
not needed in this case. All the processors will match the desired order statistic rank
with their rank registers & output their sample values if a match occurs (similar to the
rank matching algorithm of Design I).

Note that this algorithm takes as input N samples at a time & processes them all in
parallel, resulting in very high speed 2 dimensional median filter. Also note that the
latency time & pipeline period are the same as that of the one dimensional filter. No PISO
logic is required as in [4], no cascading is required for maximum throughput & the
availability of data in parallel is fully exploited. However, the size of the rank register

increases at a rale N2 with increase in N.

V. Conclusion

In this paper, we have described two new semisystolic array architectures & algorithms
for 1 and 2 dimensional median filters. A high sample rate is achieved by processing
muliiple inpuls simultaneously & efficiently pipelining the computations. The
algorithms can be casily extended over 1o any order statistic filters.




References

(1] J. P. Fitch, E. C. Coyle & N. C. Gallagher, “Median filtering by threshold
decomposition”, IEEE Trans on Circuits, Systems, vol. CAS 34, 1987, pp. 553-559.

[2] N. C. Gallagher, Jr, & G. L. Wise, “A theoretical analysis of the properties of median
filters”, IEEE Trans on Acousl, Speech, Signal Processing, vol. ASSP 29, Dec 1981, Pp-
1136-1141.

[3] D. 8. Richards, “VLSI median filters”, IEEE Trans on Acoust., Speech, Signal
Processing, vol. ASSP 38, Fan 90, pp. 145-153.

4] J. N. Hwang, J. M. Jong, “Systolic architecture for 2-D rank order filtering”, Int'nl
Conf. on App. Specific Array Processors, Sept 1990, pp. 90-99

(51 G. R. Arce, P. J. Warter, “A median filter architecture suitable for VLSI
implementation”, Proc. of 23rd Annual Allerton Conf. on Comm., Control & Computing,
1984, pp.172-181.

[6] S. Y. Kung, “VLSI Array Processors”, Prentice Hall, 1989.

|71 K. Offazer, “Design & implementation of a single chip 1-d median filter”, IEEE Trans
on Acoust., Speech & Signal Processing, vol. 31, 1983, pp. 1164-1168.

(8] C. Chakrabarti, “High sample rate systolic architectures for median filters”.

[91 A. L. Fisher, "Systolic algorithms for running order statistics in signal & image
processing”, J. Digital Syst., vol. 4, 1982, pp. 251-264

+

!




Figures

i+ 1

Ri+k+1

Ritk

......

#i-k+1

Ri-k

Hi-k-1

Fig 1. Window Y slides over the input samples. Window Wi is obtained

from Wi-1 by deleting Ki-k-1 & inserting ¥ i+k




Ri+M -
Shift -
Register Median Vi
Finder
(Sorting
Metwork)
——f—
®i-M -

l

Fig 2 Design using a median finder with unsorted values

P2M+1

»i+M Yi

P1

Fig 3. Design that maintains the walue in sorted order.



'Y

g

e Ri-MN-1

Rith el o | Riel [ N
—_— - - _— -
P2N+1 P2M P2 P1
Fig 4 (a)
t 1 Y Y Yy ¥ l
R 3 ien [ it | R
e a - ———t-
P2M+1 P2M P2 P1
Fig 4 (b)

Fig 4. (a) Processor array with window wi-1. (b} Processor array with

windaw Wi,




window of 2H+2 samples

E ] T T ) YT IO = T 3 1 N Sc?z'; Fal

: ' ‘ :

f""“‘::::::::::::::::::::::::::::::::::::::::::i---J
Wi+ Wi

Fig 5. A window of 2lN+2 samples consisting of two overlapping
windows of 2N+1 samples each.

K2MNHE M2N+D | R2M+d R2ZN+3 | K2N+2 K2N+1 B2N . .. . Xd K3 | K2 R

Fig 6.%indow W sldes over the input samples covering two windows at a time.




Proc Rega Compare Shift Regb U V W Z RegR Updated Final R Median

a Reg R P53, P6

8 (old sample) 5

6 (old sample) 3
Pq 5 5: 8,64,2 7 8 11 11 100000 100000
P2 3 3: 8,6,4,2 1 6 11 0 1 010000 001000 Mj-2
Pq 7 7: 8,6,4,2 4 5 11 0 1 001000 000100 M.
Pa 1 1: 8,64,2 2 3 0 1 01 000100 000010
P3 4 4: 2 6 7 1 0_}000} 010000
Pg 2 2.4 4 1 0 0:100[[1 000001

. !

4
Fig 7 (a).

5 7

3 ]
P 7 7: 3,3,6,4 4 5 0 0 1 1 000100 010000
P2 1 1: 53,64 2 3 0 0 01 000010 000100 Mj41
P3 4 4: 53,64 6 7 01 1 1 010000 100000
Py 2 Z: 5,364 4 t 0 0 00 000001 000001
Ps5 6 6: 4 3 4 i 001010 001000 M;
Pa 4 4: 6 5 2 0 001010  00GOL0

3

3
Fig 7 (b).
Fig 7. Sequence of operations thal take place simultanecusly in the two computation units. The input
sequence being processed is 8, 6, 5, 3, 7, 1, 4, 2, 6, 4, 3, 5......... Window sizes of 5 (i.e. a combined

window size of 6) are being processesd Wi = (5, 3, 7, 1, 4) . (a) Fig (a) is the snapshot of the array a1
time t = T. At this time instance, the first computing unit will be processing windows Wi & Wi+1. The
sceond computing unil will output median values of windows Wj_1 & Wi_2. (b) Fig (b) is the snapshot
of the array 4l time t = T+1.



W12 ;mmmmmmmsosssooeoy
wit + ot TTTTA :
romss- R ehEEEER y : ! 2-D m x m image
] T ] i +
; H1‘1 K125 ®13 X1;4 EX15 X"lEa - . -
: : : ' - |
nxn 0 |x21 |X22! [w25 |x24 | 1%25|x26
window ! " ! | : ;
b-: : : 1 ; T
! w31 K32: K33 H34 1 B33 | K36
1 f 3 ]
VoL : | [ 1
O T I ey imra R B il
] [ ]
L ]
[ ]
»
[ -]
Figt (a)
wWid
W12 W11
HEB H256 H16 | X35 K25 KI5 | K34 K24 K14 | K3IT K23 K13 | ¥32 K22 X122 [ %3] %21 %11

Figa (b}

Fig 2. {a) & 2-d windowed image sequence, (b) Conversion from 2-D windowed
sequence to 1-D windowed sequence with multiple data movements at each
window. ATl the new data samples are available at the same time.







