Preliminary Project Write-UP

P. Mansukhani

B. Sandwick

G. Yen

Abilities:

The system can currently parse most sentences that can be generated by the provided rules, and can use declarative sentences as input to a VR world that will display spatial relations, color relations, (over a limited domain), and size relations, (again over a limited domain). The System has the ability to take mouse commands to move the relative location of the camera to the world coordinate system, but the system uses the same coordinates relative to some origin regardless of the ordination of the camera.

Limitations:

The system at this point has several major limitations. First, the system’s current truth detection system; the module that checks to see if an input is possible in context of the current 3D stasis, has not been fully implemented. At this time the system can check for single parameter relations. For example it can check if a soda can is green or not, large or not. The system at this point cannot check for two parameter relations, such as spatial, however. This limitation is not fundamental to the system, rather there was not enough time to complete the implementation. The code is completed, we just did not have enough time to debug it. The system also requires certain input structures. The system requires that objects be declared as active members before doing checks on those objects. This means that to have an object instantiated the first mention of this object must be made in a declarative sentence, and must be in the aspecific form, (a, or an instead of the). The system also has the ability to perform imperative commands, such as move the batwing to the table left of the chair that is green, but do our inability to fully implement the two parameter relational checks, this feature is not online yet.

There are also some restrictions on the form of the triples because of the heuristics used to get the calculations needed, done in a reasonable amount of time. Such as, at this point only two and three member triples will work. Also any sentence provided may not be reflexive, nor may it have less than a noun and a verb. While this last restriction does not matter in English, it does limit the extendibility to other languages. While most of the problems could be taken care of by adding additional code, or making slight modifications to the code, Use with languages other than English would require a serious re-write, due to the number of and reliance on language specific heuristics used.

The system at this point cannot change its Lexeme table, its Object / Relation table, or its Rule Table after the initial read. This can be solved by implementing a clone() method in the Lexeme table , and the Object / Relation table, but Rule table is stored as an array making the expansion of the rule table costly at minimum and causing dangerous instability at worst. Therefore the number of copies of that object that were declared at run time limits the number of available objects of a given type.

Further Extensions:

The system as a whole is fairly general and with the correction and further implementations mentioned above, and the project would be able to complete several more interesting and enlighting tasks. The system has the ability to do a complete parse through the possible production tree, and therefore would be able to do chart parsing with the addition of an extra module, and the short circuit flag removed. Currently the short circuit flag is permanently set. The system is also built in such a way as to allow multiple threads, allowing the system to follow the possible paths as they grow geometrically. The swing interface also would allow for the system to display all possible correct parses, and have the user kill all those but the one desired. The chosen thread could easily be made the main thread, and a chain of arbitrary length could be followed in a similar fashion.

These are but a few of the possible extensions the system could combine with its current implementation. Most interesting of all is / would be it ability to check multi parameter relationships, and its ability to be extended to generate descriptions of the current situation based solely on the current state of the main BranchGroup.

Classes used, authorship, and purpose: (Completed javadocs http://www.reasoning.net/~cs545/)
Classes:

Author:

Non-self explanatory purpose & comments

AboveFunction.java

Galex, Brian

BehindFunction.java

Galex, Brian

BelowFunction.java

Galex, Brian

ColorFunction.java

Galex, Brian

DATA.java

Prem

Node that contains all the tables.

DeckEntry.java

Prem

Display.java

Prem

Methods that display the rules, objects,

Lexemes, feature table, and grammar table

DisplayQueue.java

Galex

Priority Queue for the Post filter

EnumEntry.java

Prem

EnumPair.java

Prem

Enumerator.java

Galex

Filterpair.java

Prem

FrontFunction.java

Galex, Brian

Generator.java

Prem

The Sentence generator, does not work yet

This system is tightly integrated into the parser and cannot, will not be stand-alone

Input/

InvalidWordException.java
Galex

LXEntry.java

Prem

LeftFunction.java

Galex, Brian

Load3DS.java

pre-made

LoveBehavior.java

Brian

MalformStackException.java
Galex

MissingFunctionException.java Galex

MouseRotateY.java

pre-made

NearFunction.java

Galex, Brian

NPparser.java

Prem

The Noun Phrase parser for the sentence

Input.

NoValidObjectException.java
Galex

Number.java

Prem

OREntry.java

Prem

ORTable.java

Prem

PostFilter.java

Galex

Preprocessor.java

Galex

RelFunction.java

Galex

RightFunction.java

Galex, Brian

RuleEntryLHS.java

Prem

RuleEntryRHS.java

Prem

RuleTable.java

Prem

SizeFunction.java

Galex

Sparser.java

Prem

the recursive parser that reduces the

product of the NPparser

SwingApplication.java

pre-made

Table2.java

Prem

ThreeD.java

Prem, Galex

This class contains the coded need to

display the 3ds objects

Transforms.java

Prem

Used in morphology during generation

TripleEntry.java

Prem

TripleStack.java

Prem

TripleTable.java

Prem

Triplepair.java

Prem

Utilities.java

Prem

VRObject.java

Brian

This is by far the largest class and took

the most amount of time to write for any

one class

Variable.java

Prem

VectorEntry.java

Prem

parser.java

Galex, Prem, Brian

TOTAL 50 CLASSES NEEDED FOR THE PROJECT

Page 3 of 4

