
 1

Auxiliary Relations for Join View Maintenance in Parallel RDBMS

 Gang Luo Jeffrey F. Naughton Curt J. Ellmann Michael W. Watzke
 Department of Computer Sciences NCR Advance Development Lab
 University of Wisconsin-Madison 5752 Tokay Boulevard, Suite 400
 1210 West Dayton Street Madison, WI 53719

 Madison, WI 53705 {Curt.Ellmann, Michael.Watzke}@ncr.com
 {gangluo, naughton}@cs.wisc.edu

Abstract

In a typical data warehouse, materialized views are used to speed up query execution. Upon updates to the

base relations in the warehouse, these materialized views must also be updated. The need to update these

materialized views can have a negative impact on performance. First, it requires materialized view

updates in addition to the base relation updates, and second, it renders the materialized views unavailable

for querying during the update window. This performance problem is exacerbated in parallel RDBMSs,

where simple single-node updates to base relations can give rise to expensive all-node updates on the

materialized views. In this paper, we investigate the use of auxiliary relations to speed up materialized

join view maintenance in a parallel RDBMS. Both analytical results and an implementation of our

approach in a commercial parallel RDBMS show that the use of auxiliary relations significantly decreases

the system resources required for updates in the presence of materialized views, and that this benefit

increases with the number of processors in the system.

1. Introduction

A data warehouse collects information from several, possibly widely distributed and loosely coupled, data

sources. The collected information is integrated into a single database to be queried by the data warehouse

clients. To provide acceptable query performance in the presence of complex queries over a large volume

of data, a data warehouse is usually managed by a parallel RDBMS. In addition, a data warehouse usually

makes use of many materialized views [CD97, HRU96]. There are two commonly used architectures for a

data warehouse:

 2

(1) Distributed Architecture: The base relations are stored at remote sources while the materialized

views are stored at the centralized data warehouse repository.

(2) Centralized Architecture: Both base relations and materialized views are stored at the centralized

data warehouse repository.

 (a) distributed architecture (b) centralized architecture

Figure 1. Data Warehouse Architecture.

In a data warehouse, when base relations are updated, materialized views defined on the base relations

must also be updated. These materialized views are typically maintained incrementally rather than

recomputed from scratch in order to improve efficiency [GM99]. This incremental maintenance of

materialized views degrades system performance in two ways. First, while these materialized views are

being updated, they may not be available for querying. Second, updating these materialized views

imposes additional demands on system resources above and beyond those required to simply update the

base relations.

Recent trends in data warehousing make it imperative to reduce the burden imposed on the system by the

update of materialized views. First, as the world moves to a 24 × 7 environment, there is no longer any

“batch window” of downtime in which these updates can be hidden. Second, more and more businesses

are finding it useful to run real-time [Kla] or “operational” data warehouses in which it is critical that the

data in the warehouse be as up-to-date as possible. This second trend is reflected in most major RDBMS

vendors’ products and initiatives, including Oracle9i [Ora], NCR’s active data warehouse [Win00],

IBM’s business intelligence system [BI], Microsoft’s digital nervous system [Grz], and Compaq’s zero-

latency enterprise [ZLE].

Data Warehouse
Materialized Views

Source 1 ……

Queries

Base Relations

Data Warehouse
Materialized Views

Queries

Base Relations
Source 2

Base Relations
Source N

Base Relations

 3

In this paper we focus on an important class of materialized views called join views. Briefly, a join view

on two relations A and B pre-computes a projection of the join of A and B, and facilitates queries based on

this join. Updates to join views pose special challenges in parallel systems as it is likely that simple

single-node updates to base relations give rise to expensive all-node operations in the presence of a join

view.

We propose using auxiliary relations to speed materialized view maintenance for join queries in a parallel

RDBMS. Conceptually, an auxiliary relation is a selection and projection of a base relation that is

partitioned in a special way. It is, perhaps, counter-intuitive that adding still more relations, each of which

must also be updated, can mitigate the update problem for materialized views. The reason adding more

relations is effective is that through proper partitioning, auxiliary relations can be used to change

expensive all-node update operations to single-node operations. While this may not improve the elapsed

time for a given single-tuple update, in the context of multiple-tuple updates this can greatly reduce the

total workload and thereby increase the performance of the system.

Auxiliary relations have been considered previously in the context of distributed data warehouses

[QGM+96]. There, they were used to make the materialized views “ self-maintainable,” that is, to ensure

that updates at one distributed source could be propagated to the materialized view at the data warehouse

without contacting other sources. To our knowledge, our present work is the first that considers the

benefits of auxiliary relations in the context of a centralized data warehouse built upon a parallel

RDBMS. Our results show that, unless the number of inserted tuples per transaction approaches the size

in pages of the base relation, the auxiliary relation approach can substantially improve update

performance.

2. Join Views in Parallel RDBMS

In this paper we consider join views in a parallel RDBMS with L data server nodes at which both base

relations and materialized views are stored (the centralized data warehouse architecture). As we have

 4

stated in the introduction, a join view stores and maintains the result from a join. We first consider join

views on two base relations, and then we discuss join views on multiple base relations.

2.1. Join Views on Two Base Relations

Suppose that there are two base relations, A and B. An example of a join view JV for relations A and B on

join attributes A.c and B.d is the following:

create join view JV as
select *
from A, B
where A.c=B.d
partitioned on A.e;

2.1.1. The Naive Maintenance Method

We begin by considering what happens if we propagate base relation updates using the obvious or “ naive”

approach in the absence of auxiliary relations. Consider how a join view JV is incrementally maintained

when a tuple is inserted into a base relation in a parallel RDBMS. Assume that tuple TA is inserted into

base relation A at node i. Here are two cases to illustrate the disadvantages of the naive join view

maintenance method:

Case 1: Suppose that the base relations A and B are partitioned on the join attributes A.c and B.d,

respectively. Figures 2a and 2b show the procedure to maintain JV. Tuple TA is joined with the

appropriate tuples of B at node i. If JV is partitioned on an attribute of A, the join result tuples (if any) are

sent to some node k (node k might be the same as node i) to be inserted into JV based on the attribute

value of TA. If JV is not partitioned on an attribute of A, then the join result tuples need to be distributed to

multiple nodes to be inserted into JV.

(a) join view is partitioned on an attribute of A (b) join view is not partitioned on an attribute of A

Figure 2. Naive method of maintaining a join view (case 1).

join
result

… … node k

node i

node 1 node 2 node L

join
result

join
result

join
result

node i

 5

Case 2: Suppose now that the base relations A and B are partitioned on the attributes A.a and B.b,

which are not join attributes, respectively. Figures 3a and 3b show the procedure to maintain JV. The

dashed lines represent cases in which the network communication is conceptual and no real network

communication happens as the message is sent and received by the same node. Tuple TA is redistributed to

every node to search for the matching tuples of B for the join. If JV is partitioned on an attribute of A, the

join result tuples (if any) are sent to some node k (node k might be the same as node i) to be inserted into

JV based on the attribute value of TA. If JV is not partitioned on an attribute of A, then the join result

tuples need to be distributed to multiple nodes to be inserted into JV.

(a) join view is partitioned on an attribute of A (b) join view is not partitioned on an attribute of A

Figure 3. Naive method of maintaining a join view (case 2).

In case 2, the naive method of maintaining a join view incurs substantial inter-node communication cost.

Also, perhaps more importantly, a join needs to be done at every node, even though the base relation

updates can be localized to a single node. We consider next how to eliminate both inefficiencies,

especially the second one, by using auxiliary relations.

2.1.2. View Maintenance using Auxiliary Relations

We use auxiliary relations to overcome the shortcomings of the naive method of join view maintenance.

Without loss of generality, we assume that neither base relation is partitioned on the join attribute. (If

some base relation is partitioned on the join attribute, the auxiliary relation for that base relation is

unnecessary.) At each node, besides the base relations A and B and the join view JV, we maintain two

auxiliary relations: ARA for A and ARB for B. Relation ARA (ARB) is a copy of relation A (B) that is

… … node 1 node 2 node L

TA

node i

join
result

join
result

join
result

node k

TA TA

… … node 1 node 2 node L

TA

node i

TA TA

join
result

join
result

join
result

… … node 1 node 2 node L

 6

partitioned on the join attribute A.c (B.d). We maintain a clustered index IA on A.c for ARA (IB on B.d for

ARB). Figure 4 shows the base relations, auxiliary relations, and join view at one node of the parallel

RDBMS.

Figure 4. Base relations, auxiliary relations, and join view on a node of the parallel RDBMS.

When a tuple TA is inserted into relation A at node i, it is also redistributed to some node j (node j might

be the same as node i) based on its join attribute value. Tuple TA is inserted into the auxiliary relation ARA

at node j. Then TA is joined with the appropriate tuples in the auxiliary relation ARB at node j utilizing the

index IB. If JV is partitioned on an attribute of A, the join result tuples (if any) are sent to some node k

(node k might be the same as node j) to be inserted into JV based on the attribute value of TA. If JV is not

partitioned on an attribute of A, then the join result tuples need to be distributed to multiple nodes to be

inserted into JV. Figures 5a and 5b show this procedure.

(a) join view is partitioned on an attribute of A (b) join view is not partitioned on an attribute of A

Figure 5. Maintaining a join view using auxiliary relations.

auxiliary relation ARA for A

index IA
on A.c

auxiliary relation ARB for B

index IB
on B.d

relation A relation B

Join View JV

join
result

TA

attributes of A

… … node 1 node 2 node L

join
result

join
result

join
result

node j

node i

TA

node j

node i

node k

attributes of B

attributes of A attributes of B

attributes of A attributes of B

 7

The steps needed when a tuple TA is deleted from or updated in the base relation A are similar to those

needed in the case of insertion. Compared to the naive method, the auxiliary relation method of

maintaining a join view has the following advantages:

(1) It saves substantial inter-node communication.

(2) For each inserted (deleted, updated) tuple of base relation A, the join work needs to be done at

only one node rather than at every node.

These two points are perhaps the primary advantages of the auxiliary relation method. In the case of join

views over joins on more than two relations, a third advantage can arise:

(3) The join work can be done utilizing the clustered index on the join attribute.

One might think that clustered indices could also be built and used for the naive method. While this is

true for two-relation joins, as we will see in Section 2.2, this is not true for three-relation joins. For

example, consider the join A B C. Here there will be two auxiliary relations for B, so one can be

clustered for the join with A, the other for the join with C. In the naive method, there is no way that B can

be simultaneously clustered for both joins (unless they are on the same attribute.)

In the naive method of maintaining a join view, the work needed when the base relation A is updated is as

follows:

begin transaction

update base relation A;

update join view JV;

end transaction.

For comparison, when we use the auxiliary relation method to maintain a join view, the work that needs

to be done when the base relation A is updated is as follows:

begin transaction

update base relation A;

 8

update auxiliary relation ARA;

update join view JV;

end transaction.

The extra work of updating the auxiliary relation ARA is dominated by the advantages brought by the

auxiliary relations in updating the join view JV.

In the above, we have considered the situation in which the base relation A is updated. The situation in

which base relation B is updated is the same except we switch the roles of A and B.

2.2. Extension to Multiple Base Relation Joins

Now we consider the situation that a join view is defined on multiple base relations. Suppose that a join

view JV is defined on base relations R1, R2, …, and Rn. Then the auxiliary relation method works as

follows:

For each base relation Ri (1≤i≤n)

For each base relation Rk that is joined with Ri in the join view definition

We keep an auxiliary relation of Ri that is partitioned on the join attribute of Ri Rk

unless Ri is partitioned on the join attribute of Ri Rk.

When a base relation Ri (1≤i≤n) is updated, we do the following operations to maintain the join view:

(1) Update all the auxiliary relations of Ri accordingly.

(2) For each base relation Rj (j≠i, 1≤j≤n)

Select a proper auxiliary relation of Rj (or Rj itself) based on the join conditions.

(3) Compute the changes to the join view according to the updates to Ri and the auxiliary (base)

relation of Rj (j≠i, 1≤j≤n) determined above.

(4) Update the join view.

 9

The following is an example illustrating how this algorithm works. Consider a join view JV that is

defined on A B C. For simplicity, we assume that no base relation is partitioned on the join attribute.

(Again, if some base relation is partitioned on the join attribute, there is no need for an auxiliary relation

on that base relation.) We keep the following auxiliary relations:

(1) ARA for relation A, partitioned on the join attribute of A B.

(2) ARB1 for relation B, partitioned on the join attribute of A B.

(3) ARB2 for relation B, partitioned on the join attribute of B C.

(4) ARC for relation C, partitioned on the join attribute of B C.

To maintain JV when some base relation is updated, we distinguish between three cases:

(1) If base relation A is updated, the same updates are propagated to the auxiliary relation ARA. We

use ARB1 and ARC to maintain JV.

(2) If base relation B is updated, the same updates are propagated to the auxiliary relations ARB1 and

ARB2. We use ARA and ARC to maintain JV.

(3) If base relation C is updated, the same updates are propagated to the auxiliary relation ARC. We

use ARB2 and ARA to maintain JV.

In the case of a join view defined on two base relations, the auxiliary relation method of maintaining join

views is straightforward to implement using a query rewriting approach similar to [QW97]. However, if a

join view is defined on multiple base relations, there are many choices as to how to use the auxiliary

relations, and an optimization problem results. For example, consider a join view that is defined on the

complete join of three base relations A, B, and C, where each base relation is joined to another on some

join attribute. Assume that no base relation is partitioned on the join attribute. Then we need to keep the

following auxiliary relations:

(1) ARA1 for relation A and ARB2 for relation B, both partitioned on the join attributes of A B.

 10

(2) ARB1 for relation B and ARC2 for relation C, both partitioned on the join attributes of B C.

(3) ARC1 for relation C and ARA2 for relation A, both partitioned on the join attributes of C A.

Figure 6. Auxiliary Relations for a join view defined on a complete join of three base relations.

If a tuple TA is inserted into the base relation A, there are four possible ways to compute the corresponding

changes to the join view JV:

(1) TA is joined with the auxiliary relation ARB2, then the join result tuples are joined with the

auxiliary relation ARC2.

(2) TA is joined with the auxiliary relation ARB2, then the join result tuples are joined with the

auxiliary relation ARC1.

(3) TA is joined with the auxiliary relation ARC1, then the join result tuples are joined with the

auxiliary relation ARB1.

(4) TA is joined with the auxiliary relation ARC1, then the join result tuples are joined with the

auxiliary relation ARB2.

The optimization problem arises because it is impossible to state which alternative is best without

considering relational statistics.

2.3. Minimizing Storage Overhead

In the worst case, the auxiliary relation method requires substantial extra storage, as each auxiliary

relation is a copy of some base relation. However, a more careful examination shows that the storage

overhead required by the auxiliary relations can be reduced in many cases. As we stated in the

introduction, in [QGM+96], auxiliary views were proposed to make materialized views self-maintainable

in a distributed data warehouse. [QGM+96] also proposed a systematic algorithm to minimize the storage

A
ARA1

ARA2

ARB2

ARB1

ARC1 ARC2
C

B

 11

overhead of auxiliary views. Their techniques for reducing storage overhead can be used in our auxiliary

relation method. Here is a brief review of the applicable techniques.

(1) If a join view has some selection condition on the base relation A in the “ where” clause, such as:

create join view JV as
select *
from A, B
where A.c=B.d and A.e=3;

we only need to keep in the auxiliary relation ARA those tuples of A that satisfy the selection condition. In

the example above, we only need to keep in ARA those tuples of A that satisfy A.e=3.

(2) If a join view does not contain all attributes of the base relation A, such as:

create join view JV as
select A.e, B.f
from A, B
where A.c=B.d;

we only need to keep in the auxiliary relation ARA those attributes of A that are necessary, e.g., the join

attribute and the attributes appearing in the “ select” clause. We can exclude the other unnecessary

attributes. In the example above, we only need to keep in ARA the attributes c and e of base relation A.

(3) Suppose that the join view is a key – foreign-key join, such as:

create join view JV as
select *
from A, B
where A.c=B.d;

where A.c is a key of relation A and B.d is a foreign key of relation B that references A.c.

If a tuple TA is inserted into relation A, there can be no matching tuple in relation B (or else that tuple

would have violated the key-foreign key constraint before TA was inserted). However, if a tuple TB is

inserted into relation B, there must be a matching tuple of relation A (or else relation B will violate the

constraint after insertion). The case for deletion is similar. Thus, if we only consider insertion and

deletion, we only need to keep the auxiliary relation ARA and there will be no need for the auxiliary

relation ARB. However, if a tuple TA of relation A is modified on a non-join attribute, to maintain the join

 12

view JV, tuple TA has to be joined with the appropriate tuples in the base relation B. In this case, the

auxiliary relation ARB is helpful. Thus there is a tradeoff:

(1) If we do not keep the auxiliary relation ARB, we can save the storage overhead of ARB. However,

maintaining the join view JV will be costly in the case of updates to the base relation A.

(2) If we keep the auxiliary relation ARB, we have the storage overhead of ARB, but maintaining the

join view JV will be efficient.

In a data warehousing environment, it is common for certain base relations to be infrequently modified,

with virtually all updates being inserts or deletes. An example of this is the dimension tables of a star

schema. In such a situation we can use the key-foreign key constraint analysis to eliminate the need for an

auxiliary relation on the fact table. The space savings here could be substantial, since the dimension tables

are typically a small fraction of the size of the fact table.

3. An Analytic Performance Model

In this section we propose a simple analytical model to gain insight into the performance advantage of the

auxiliary relation method vs. the naive method in maintaining materialized views. The goal of this model

is not to accurately predict exact performance numbers in specific scenarios. Rather, it is to identify and

explore some of the main trends that dominate in the auxiliary relation approach. In Section 4 we show

that our model predicts trends fairly accurately where it overlaps with our experiments with a commercial

parallel RDBMS.

Consider a join view JV=A B. For simplicity and without loss of generality, we only analyze the case

that the join view, JV, is partitioned on an attribute of relation A (the case in which the join view is

partitioned on an attribute of B is symmetric.) Furthermore, we assume that neither the base relation A nor

the base relation B is partitioned on the join attribute. We make the following simplifying assumptions in

this model:

(1) Nodes i, j, and k are different from each other (Figures 3a and 5a).

 13

(2) Base relation A (B) has an index JA (JB) on the join attribute.

(3) The join view JV is partitioned on an attribute of relation A, and there is an index on this attribute.

(4) The network overhead of sending one message from one node to another node is a constant

SEND, regardless of the message size and the network structure.

(5) In the auxiliary relation method, the overhead of searching the index once at each node is a

constant SEARCH. If n (n>0) tuples TB of base relation B are found to match a tuple TA through

index search at that node, the overhead of fetching these n tuples TB and joining them with the

tuple TA is regarded as free. This is because the index on the join attribute of base relation B is

clustered and these n tuples TB are stored together in the index entry. (We are assuming that all n

tuples fit on a single page. The model could be easily extended to capture cases where TA joins

with more tuples than fit on a single page; however, this would not change the conclusions that

we draw from our model.)

(6) In the naive method, the overhead of searching the index once at each node is a constant

SEARCH. At one node, suppose n (n>0) tuples TB of base relation B are found to match a tuple TA

through index search. Then the overhead of fetching these n tuples TB and joining them with the

tuple TA is (i) n×FETCH, if index JB is non-clustered or (ii) regarded as free, if index JB is

clustered.

(7) The overhead of inserting a tuple into any table (base relation, auxiliary relation, join view) is a

constant INSERT.

(8) |∆A| tuples are inserted, and these tuples are uniformly distributed on the join attribute.

(9) For each tuple TA, N join result tuples are generated in total.

(10) For each tuple TA, the matching tuples TB of base relation B reside at K of the L nodes.

(11) The |∆A| new tuples TA are inserted into base relation A in a single transaction.

This last restriction allows us to ignore the effect of lock contention in join view updates. Our results in

this paper can be regarded as showing the performance that results if updates are grouped into batches.

 14

Other researchers, for example [QW97], have proposed techniques to maintain two versions of the

database such that one version is used for reader queries while another version is used for maintenance. In

such a scenario batched updates is a reasonable assumption.

It is not obvious, however, how the relative performance of the naive and auxiliary relation methods

would change if updates were done instead as many concurrent, single tuple transactions. On one hand,

the auxiliary relation method converts all-node operations to single-node operations, which tends to

increase concurrency; on the other hand, concurrency control conflicts may serialize some transactions,

resulting in worse performance than that predicted by our model for both view maintenance methods.

Exploring this tradeoff, and specialized locking schemes for this problem, is an interesting topic for future

work.

Returning to our model, for each tuple TA, we use as the cost metric the total workload TW, which we

define to be the sum of the work done over all the nodes of the parallel RDBMS. This is a useful basic

metric because while other metrics, such as response time, can be derived from it, the reverse is not true

(response time alone can hide the fact that multiple nodes may be doing irrelevant unproductive work in

parallel with the useful update operations.)

For either join view maintenance method (naive or auxiliary relation), the same updates must be

performed on the base relations and on the join view. Because of this, in our model we omit the cost of

these updates. Then the costs that must be captured are (a) the extra update of the auxiliary relation that is

required by the auxiliary relation method, and (b) the differences between the two methods in the cost of

the joins that are required to determine the result tuples that need to be inserted into the join view. We

now turn to quantify those costs, which we refer to as TW.

For the naive method, upon an insertion of a tuple TA,

(1) Sending tuple TA to each node has overhead L×SEND.

 15

(2) Joining tuple TA with the appropriate tuples of base relation B at each node to generate all the N

join result tuples has overhead (i) L×SEARCH+N×FETCH, if index JB is non-clustered or (ii)

L×SEARCH, if index JB is clustered. (Here again we are assuming that in the clustered index case,

all the joining tuples are found on the leaf page reached at the end of the search.)

(3) The N join result tuples are generated at K of the L nodes. Sending these join result tuples to node

k has overhead K×SEND.

Thus for the naive method, the total workload TW for each tuple TA is (i)

(L+K)×SEND+L×SEARCH+N×FETCH, if index JB is non-clustered or (ii) (L+K)×SEND+L×SEARCH, if

index JB is clustered.

For the auxiliary relation method,

(1) Sending tuple TA to node j has overhead SEND.

(2) Inserting tuple TA into auxiliary relation ARA at node j has overhead INSERT.

(3) Joining tuple TA with the appropriate tuples of base relation B at node j to generate all the N join

result tuples has overhead SEARCH. (Again, we assume that because the index is clustered, the

joining tuples are all found on the same leaf page reached by the SEARCH.)

(4) Sending the join result tuples from node j to node k has overhead SEND.

So for the auxiliary relation method, the total workload TW for each tuple TA is

INSERT+2×SEND+SEARCH.

Compared to the naive method, the auxiliary relation method incurs an extra INSERT, while saving (L+K-

2) SENDs, (L-1) SEARCHs, and N FETCHs (if index JB is non-clustered). As L grows, the savings in

SEND, SEARCH and FETCH are significant compared to the overhead of one extra INSERT. In a typical

parallel RDBMS, the time spent on SEND is much smaller than the time spent on SEARCH, FETCH, and

INSERT. In the following, we only consider the time spent on SEARCH, FETCH, and INSERT. For

 16

simplicity, we will assume that SEARCH takes one I/O, FETCH takes one I/O, and INSERT takes two

I/Os. Our conclusions would remain unchanged by small variations in these assumptions.

Note, however, that this model is accurate only if the join method is index nested loops, for which the

cost is directly proportional to the number of tuples inserted. If |∆A| is large enough, an algorithm such as

sort merge may perform better than index nested loops. To explore this issue, we extend our model to

handle this case. We use sort merge join as an alternative to index nested loops here; we believe our

conclusions would be the same for hash joins. The point is that for both sort-merge and hash join, the join

time is dominated by the time to scan a relation, and unless the number of modified tuples is a sizeable

fraction of the base relations, the join time is independent of the number of modified tuples.

Let ||x|| denote the size of x in pages. Let M denote the size of available memory in pages. In addition, we

make the following simplifying assumptions:

(1) We use the number of page I/Os to measure the performance. Then the total workload TW for

each tuple TA is (i) 3 I/Os for the auxiliary relation method, (ii) (L+N) I/Os for the naive method

when index JB is non-clustered, or (iii) L I/Os for the naive method when index JB is clustered.

(2) Tuples of relation B are evenly distributed both on the partitioning attribute and on the join

attribute so that at each node i, the size of auxiliary relation ARB in pages is equal to the size of

relation B in pages. Both of them are denoted as ||Bi||=||B||/L.

(3) ∆Ai can be held entirely in memory.

Given these assumptions, TW for both methods for the multiple-tuple insertion is just |∆A| times the TW

for a single-tuple update. Calculating the response time is more interesting. We can express the response

time (in number of I/Os) for each update method by considering the work that is done by each node in

parallel.

(1) At each node i, for the naive method,

(a) If the join method of choice is sort merge, then

 17

(i) if index JB is non-clustered, the sort merge join time is dominated by the time of

sorting Bi and is approximated by ||Bi||×logM||Bi|| I/Os;

(ii) if index JB is clustered, the sort merge join time is dominated by the time of

scanning Bi and is approximated by ||Bi|| I/Os.

(b) If the join method of choice is the index join algorithm, the index join time is

approximated by |∆A|×(L+N)/L=|∆Ai|×(L+N) I/Os (if index JB is non-clustered) or

|∆A|×L/L=|∆Ai|×L I/Os (if index JB is clustered).

(2) At each node i, for the auxiliary relation method,

(a) If the sort merge join algorithm is the join method of choice, the sort merge join time is

dominated by the time of scanning Bi and is approximated by ||Bi|| I/Os, as auxiliary

relation ARB is clustered on the join attribute.

(b) If index nested loops is the algorithm of choice, the index join time is approximated by

|∆A|/L=|∆Ai| I/Os.

(c) The number of updates to the auxiliary relation is |∆A|/L=|∆Ai|.

If |∆A| is large enough that ||Bi||<|∆Ai|, ||Bi||×logM||Bi||<|∆Ai|×(L+N) (if index JB is non-clustered), and

||Bi||<|∆Ai|×L (if index JB is clustered) are satisfied, then the sort merge join algorithm is preferable to

index nested loops.

The above analysis shows that when sort-merge is the join algorithm of choice, the naive join view

maintenance algorithm with clustered index actually outperforms the auxiliary relation method. This is

because both have the same join cost (the scan of B), while the auxiliary relation has the extra overhead of

the updates to the auxiliary relation. In the discussion of the experiments with the analytic model below,

we discuss the implications of this fact when choosing a method for join view maintenance.

 18

Experiments with Analytic Model

Setting ||B||=6,400, M=10, and N=10, we present in Figures 7 ~ 11 the resulting performance of the

auxiliary relation method and the naive method of join view maintenance. Figure 7 shows TW for a single

tuple insert vs. the number of data server nodes. For the auxiliary relation method, TW is a constant. For

the naive method, TW increases linearly with the number of data server nodes.

Figure 7. TW vs. number of data server nodes.

0

50

100

150

200

0 20 40 60 80 100 120
number of data server nodes

T
W

 in
 I

/O
s

auxiliary relation method
naive methed with non-clustered index
naive method with clustered index

Figure 8. Execution time of one transaction with 40 tuples
(index join).

0

100

200

300

400

0 20 40 60 80 100 120
number of data server nodes

re
sp

on
se

 ti
m

e
in

 I
/O

s

auxiliary relation method
naive methed with non-clustered index
naive method with clustered index

Figure 9. Execution time of one transaction with 6,500
tuples (sort merge join).

0

4000

8000

12000

16000

0 20 40 60 80 100 120
number of data server nodes

re
sp

on
se

 ti
m

e
in

 I
/O

s

auxiliary relation method
naive methed with non-clustered index
naive method with clustered index

Figure 10. Execution time vs. tuples inserted (L=128).

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000
number of inserted tuples

re
sp

on
se

 ti
m

e
in

 I
/O

s

auxiliary relation method
naive method with non-clustered index
naive method with clustered index

Figure 11. Execution time vs. tuples inserted - detail
(L=128).

0

40

80

120

0 50 100 150 200 250 300

number of inserted tuples

re
sp

on
se

 ti
m

e
in

 I
/O

s

auxiliary relation method
naive method with non-clustered index
naive method with clustered index

 19

Figure 8 shows the execution time of one transaction with 40 inserted tuples, where the join method of

choice is the index join algorithm. The execution time of the auxiliary relation method (3×|∆A|/L)

decreases rapidly with more data server nodes. This is because in the auxiliary relation method, on

average each node will see |∆A|/L inserted tuples, whereas in the naive method, each node sees all |∆A|

inserted tuples. The execution time of the naive method (|∆A|×L/L=|∆A|) is a constant when index JB is

clustered. Recall that this is because in our model, we assumed that in the clustered index case all joining

tuples are found on the leaf page reached at the end of the SEARCH operation. When index JB is non-

clustered, the execution time of the naive method approaches that constant with more data server nodes

(|∆A|×(L+N)/L approaches |∆A| as L grows).

Figure 9 shows the execution time of one transaction with 6,500 inserted tuples, where the join method of

choice is the sort merge join algorithm. Here we see that the naive method with a clustered index

performs better than the auxiliary relation method. Note that there is nothing special about the number

6,500 other than that it is greater than the number of pages in base relation B. This indicates that if the

expected update transaction inserts a number of tuples approximately equal to the number of pages in the

base relation B, the naive method with clustered base relations is the method of choice.

It is an interesting empirical question whether or not such large update transactions are likely. Anecdotal

evidence suggests that they are not – data warehouses typically store data from several years of operation,

so it seems highly unlikely that individual update transactions (of which there are presumably many each

day) insert more than a very small fraction of the warehoused data. However, this is not something that

can be proven by an abstract argument; rather, it must be decided on a case by case basis in the “ real

world.”

Figure 10 shows the execution time of one transaction where the number of inserted tuples varies from 1

to 7,000. For the naive method, the execution time increases rapidly with the number of inserted tuples.

For the auxiliary relation method, the execution time increases much more slowly. The join time of each

 20

method reaches a constant when the number of inserted tuples is large enough for the sort merge join

method to become the join method of choice. The auxiliary relation method reaches this point much later

than the naive method, because in the auxiliary relation method, on average each node will see |∆A|/L

inserted tuples, whereas in the naive method, each node sees all |∆A| tuples. However, once again, as the

number of inserted tuples approaches the number of pages of B, the auxiliary relation method is indeed

worse than the naive method.

Figure 11 “ zooms in” on the execution time of one large transaction where the number of inserted tuples

varies from 1 to 300. We notice that the execution time of the auxiliary relation method has a step-wise

behavior. This is because the execution time of the auxiliary relation method depends on the maximum

number of inserted tuples seen by each node. Assuming an even distribution, the maximum number of

inserted tuples seen by each node for the auxiliary relation method is ∆A/L, where x is the ceiling

function (e.g., 1.3 =2). For example, if |∆A|≤L, the maximum number of inserted tuples seen by each

node is 1. If L<|∆A|≤2×L, the maximum number of inserted tuples seen by each node is 2.

It is straightforward to apply the above analytical model to the situation of a join view on multiple base

relations. Experiments with this model did not provide any insight not already given by the two-relation

model, so we omit them here.

4. Evaluation in the Teradata Parallel RDBMS

In this section, we investigate the performance of the auxiliary relation method for materialized view

maintenance in NCR’ s Teradata Release V2R4 Version 4D. Our measurements were performed with the

Teradata client application and server running on an Intel x86 Family 6 Model 5 Stepping 3 workstation

with four 400MHz processors, 1GB main memory, six 8GB disks, and running the Microsoft Windows

NT 4.0 operating system. We allocated a processor and a disk for each data server, so there were at most

four data servers on each workstation.

 21

The three relations used for the tests followed the schema of the standard TPC-R Benchmark relations

[TPC]:

customer (custkey, name, address, nationkey, phone, acctbal, mktsegment, comment),
orders (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriority,

comment),
lineitem (orderkey, partkey, suppkey, linenumber, quantity, entendedprice, discount, tax,

returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode,
comment).

The underscore indicates the partitioning attributes of the relations. In our tests, each customer tuple

matches 1 orders tuple on the attribute custkey. Each orders tuple matches 4 lineitem tuples on the

attribute orderkey.

 number of tuples total size

customer 0.15M 25MB
orders 1.5M 178MB
lineitem 6M 764MB

Table 1. Test data set.

We wanted to test the performance of insertion into the customer relation in the presence of join views.

We chose two join views for testing:

(1) JV1 was the join result of customer and orders based on the join attribute custkey:

create join view JV1 as
select c.custkey, c.acctbal, o.orderkey, o.totalprice
from orders o, customer c
where c.custkey=o.custkey;

(2) JV2 was the join result of customer, orders, and lineitem based on the join attributes custkey and

orderkey.

 create join view JV2 as
select c.custkey, c.acctbal, o.orderkey, o.totalprice, l.discount, l.extendedprice
from orders o, customer c, lineitem l
where c.custkey=o.custkey and o.orderkey=l.orderkey;

As the customer relation was partitioned on the join attribute, it required no auxiliary relation. The join

view maintenance consists of three steps: updating the base relation, computing the changes to the join

view, and updating the join view. As the first step and the third step were the same for the naive method

and the auxiliary relation method, we only measured the time spent on the second step.

 22

Because Teradata does not currently support the auxiliary relation update method for join views, we used

the following approach to see how it would perform if implemented. We evaluated the performance of

join view maintenance when 128 tuples were inserted into the customer relation (these tuples each have

one matching tuple in the orders relation) in the following way:

(1) We created a non-clustered index on the custkey attribute of the orders, and another non-clustered

index on the orderkey attribute of the lineitem relation.

(2) We created a new relation delta_customer that had the same schema and was partitioned in the same

way as customer.

(3) We inserted 128 tuples into delta_customer.

(4) We created two relations orders_1 and lineitem_1 as auxiliary relations for orders and lineitem. They

had the same schema and the same content as that of the relations orders and lineitem. The relation

orders_1 was partitioned on the custkey, while lineitem_1 was partitioned on orderkey. In Teradata,

this means that a clustered index was automatically built on the custkey attribute of orders_1;

similarly, Teradata automatically built a clustered index on the orderkey attribute of lineitem_1.

(5) We measured the execution time of the following two SQL statements:

select c.custkey, c.acctbal, o.orderkey, o.totalprice
from orders o, delta_customer c
where c.custkey=o.custkey;

select c.custkey, c.acctbal, o.orderkey, o.totalprice, l.discount, l.extendedprice
from orders o, delta_customer c, lineitem l
where c.custkey=o.custkey and o.orderkey=l.orderkey;

These two SQL statements implemented the naive method for maintaining join views JV1 and JV2,

respectively, while 128 tuples were inserted into the base relation customer. To implement the

auxiliary relation method for maintaining join views JV1 and JV2, we replaced orders and lineitem

with orders_1 and lineitem_1, respectively, in the two SQL statements.

We ran the SQL statements on 2-node, 4-node, and 8-node configurations, where each node was a data

server. The 8-node configuration was the largest available hardware configuration.

 23

The join view maintenance time predicated by the analytical model is shown in Figure 12. All the

numbers in Figure 12 are scaled by a constant factor (the time unit is 128 I/Os) so only the relative ratios

between them are meaningful. The experimental join view maintenance time is shown in Figure 13.

Figures 12 and 13 match well. The speedup gained by the auxiliary relation (AR) method over the naive

method for materialized view maintenance increases with the number of data server nodes.

We also ran experiments with large update transactions, where our analytic model predicts that the naive

algorithm with clustered base relations performs well. Unfortunately, in the version of Teradata we tested,

it was impossible to test the naive method with clustered indices, because clustered indices must be on

partitioning attributes. We did indeed observe the trend that the performance of the naive and auxiliary

relation methods became comparable; however, the analytic model was less accurate for large updates

than for small. This is likely due to the impact of buffering throughout the system – with large insert

transactions substantial fractions of the base and auxiliary relations end up getting cached in main

memory. For these reasons and due to space constraints we do not present the large update results here.

The difficulty of duplicating in Teradata the analytic model results for large updates does not affect our

conclusions. The model is accurate for reasonably sized updates; these are the ones that are common in

practice and also are the ones for which the auxiliary relation method dramatically outperforms the naive

method.

Figure 12. Predicated join view maintenance t ime.

0

1

2

3

4

5

2 4 8
number of data server nodes

pr
ed

ic
at

ed
 jo

in
 v

ie
w

m

ai
nt

en
an

ce
 ti

m
e

AR method for JV1
naive method for JV1
AR method for JV2
naive method for JV2

Figure 13. Real join view maintenance time.

0

1

2

3

4

5

2 4 8
number of data server nodes

re
al

 jo
in

 v
ie

w
 m

ai
nt

en
an

ce
 ti

m
e

(i
n

se
co

nd
s)

AR method for JV1
naive method for JV1
AR method for JV2
naive method for JV2

 24

5. Conclusion

This paper proposes the use of auxiliary relations to speed materialized join view maintenance in a

parallel RDBMS. We show, through an analytic model and through experiments with a commercial

parallel RDBMS, that this approach can substantially improve efficiency by eliminating redundant all-

node operations, replacing them with focused single-node operations. We show that this leads to superior

performance for the auxiliary relation method unless the number of inserted tuples grows approximately

equal to the size in pages of the base relations. There are a number of interesting problems remaining for

future work.

As one example, it would be interesting to consider how auxiliary relations can be used to improve

maintenance times for other kinds of materialized views such as aggregate views. There has been

substantial work (e.g., [LQA97, RSS96]) on the use of complex materialized views to speed the

maintenance of other complex materialized views. Previous work in this direction has considered only a

uni-processor environment so that the effects of data partitioning (the main focus of our work) were not

considered; it is possible that throwing a consideration of partitioning into the mix could create the need

for new techniques.

Finally, although the experiments in this paper accurately model situations in which updates to the

warehouse are grouped into batches, additional issues arise if the updates are instead submitted as many

small, concurrent transactions. As we mentioned in Section 3, there is an interesting tradeoff here, since

for single tuple update transactions, the auxiliary relation approach replaces all-node operations by single-

node operations, which suggests that it will increase concurrency over the naive method. On the other

hand, concurrency control conflicts will serialize some of the update transactions, thus perhaps giving a

smaller speedup over the naive approach than that predicted by our model, which assumed that all the

updates were gathered into a single transaction.

 25

Acknowledgements

We would like to thank Grace Au for providing the implementation details of join view in Teradata,

Patricia Bamrah for helpful comments on the manuscript.

References

[AAS+97] D. Agrawal, A.E. Abbadi, A.K. Singh, and T. Yurek. Efficient View Maintenance at Data

Warehouses. SIGMOD Conf. 1997: 417-427.
[BCL89] J.A. Blakeley, N. Coburn, and P. Larson. Updating Derived Relations: Detecting Irrelevant and

Autonomously Computable Updates. TODS 14(3): 369-400, 1989.

[BI] The Road to Business Intelligence. http://www-4.ibm.com/software/data/busn-intel/road2bi.

[CD97] S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology. SIGMOD
Record 26(1): 65-74, 1997.

[GM99] A. Gupta, I.S. Mumick. Materialized Views: Techniques, Implementations, and Applications.
MIT Press, 1999.

[Grz] L. Grzanka. The Digital Nervous System and Beyond.
http://www.enterprisebusiness.com/archives/vol1_issue1/cover.html.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing Data Cubes Efficiently.
SIGMOD Conf. 1996: 205-216.

[JMS95] H.V. Jagadish, I.S. Mumick, and A. Silberschatz. View Maintenance Issues for the Chronicle
Data Model. PODS 1995: 113-124.

[Kla] G. Klaus. Real-time Data Warehousing and Data Mining for E-Commerce.
http://ids.csom.umn.edu/faculty/wanninger/lectures/DataMining-6204Sp00.html.

[LQA97] W. Labio, D. Quass, and B. Adelberg. Physical Database Design for Data Warehouses. ICDE
1997: 277-288.

[Ora] Oracle Takes Aim At Real-Time Data Warehousing.
http://www.informationweek.com/story/IWK20001120S0002.

[QGM+96] D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Making Views Self-Maintainable for Data
Warehousing. PDIS 1996: 158-169.

[QW97] D. Quass, J. Widom. On-Line Warehouse View Maintenance. SIGMOD Conf. 1997: 393-404.

[RSS96] K.A. Ross, D. Srivastava, and S. Sudarshan. Materialized View Maintenance and Integrity
Constraint Checking: Trading Space for Time. SIGMOD Conf. 1996: 447-458.

[TPC] TPC Homepage. TPC-R benchmark, www.tpc.org.

[Val87] P. Valduriez. Join Indices. TODS 12(2): 218-246, 1987.

[Wid95] J. Widom. Research Problems in Data Warehousing. CIKM 1995: 25-30.

[Win00] R. Winter. B2B Active Warehousing: Data on Demand.
http://www.teradatareview.com/fall00/winter.html. Teradata Review, 2000.

[ZLE] Compaq Zero Latency Enterprise Homepage.
http://zle.himalaya.compaq.com/view.asp?PAGE=ZLE_HomeExt.

