
1 
 
 

A Roadmap for Boosting Model Generalizability for Predicting Hospital Encounters for 
Asthma 

 
Gang Luo, PhD 
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union, 
850 Republican Street, Building C, Box 358047, Seattle, WA 98195, USA 
luogang@uw.edu 
 
Corresponding author: 
Gang Luo, PhD 
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union, 
850 Republican Street, Building C, Box 358047, Seattle, WA 98195, USA 
Phone: 1-206-221-4596 
Fax: 1-206-221-2671 
Email: luogang@uw.edu 
  



2 
 
 

Abstract 
In the United States, ~9% of people have asthma. Each year, asthma incurs high healthcare cost and many hospital encounters 

covering 1.8 million emergency room visits and 439,000 hospitalizations. A small percentage of patients with asthma use most 
healthcare resources. To improve outcomes and cut resource use, many healthcare systems use predictive models to 
prospectively find high-risk patients and enroll them in care management for preventive care. For maximal benefit from costly 
care management with limited service capacity, only patients at the highest risk should be enrolled. Yet, prior models built by 
others miss >50% of true highest-risk patients and mislabel many low-risk patients as high risk, leading to suboptimal care and 
wasted resources. To address this issue, we recently built three site-specific models to predict hospital encounters for asthma 
and gained up to 11%+ better performance. But, these models do not generalize well across sites and patient subgroups, 
creating two gaps before translating these models into clinical use. This paper points out these two gaps and outlines two 
corresponding solutions: a) a new machine learning technique to create cross-site generalizable predictive models to accurately 
find high-risk patients, and b) a new machine learning technique to automatically raise model performance for poorly 
performing subgroups while maintaining model performance on other subgroups. This gives a roadmap for future research. 
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Introduction 
Asthma care management and our prior work on predictive modeling 

In the United States, ~9% of people have asthma [1-3]. Each year, asthma incurs $56 billion of healthcare cost [4] and many 
hospital encounters covering 1.8 million emergency room visits and 439,000 hospitalizations [1]. As is the case with many 
chronic diseases, a small percentage of patients with asthma use most healthcare resources [5,6]. The top 1% of patients spend 
25% of healthcare costs. The top 20% spend 80% [5,7]. An effective approach is urgently in need to prospectively identify 
high-risk patients and intervene early to avoid health decline, improve outcomes, and cut resource use. Most major employers 
purchase and nearly all private health plans offer care management services for preventive care [8-10]. Care management is a 
collaborative process to assess, coordinate, plan, implement, evaluate, and monitor the services and options to meet the health 
and service needs of a patient [11]. A care management program employs care managers to call patients regularly to assess their 
status, arrange doctor appointments, and coordinate health-related services. Proper use of care management can cut down 
hospital encounters by up to 40% [10,12-17]; lower healthcare cost by up to 15% [13-18]; and improve patient satisfaction, 
quality of life, and adherence to treatment by 30-60% [12]. Care management can cost >$5,000 per patient per year [13] and 
normally enrolls no more than 3% of patients [7] due to resource limits. 

Correctly finding high-risk patients to enroll is crucial for effective care management. Currently, the best method to identify 
high-risk patients is to use models to predict each patient’s risk [19]. Many health plans, such as those in 9 of 12 metropolitan 
communities [20], and many healthcare systems [21] use this method for care management. For patients predicted to have the 
highest risk, care managers manually review patients’ medical records, consider factors like social dimensions, and make 
enrollment decisions. Yet, prior models built by others miss >50% of true highest-risk patients and mislabel many low-risk 
patients as high risk [5,12,22-36]. This makes enrollment align poorly with patients who would benefit most from care 
management [12], leading to suboptimal care and higher costs. As the patient population is large, a small boost in model 
performance will benefit many patients and produce a large positive impact. Of the top 1% asthma patients who would incur the 
highest costs, for every 1% more whom we could find and enroll, we could save up to $21 million more in asthma care every 
year as well as improve outcomes [5,26,27]. 

To address the issue of low model performance, we recently built three site-specific models to predict whether a patient with 
asthma would incur any hospital encounter for asthma in the subsequent 12 months, one model for each of the three healthcare 
systems the University of Washington Medicine (UWM), Intermountain Healthcare (IH), and Kaiser Permanente Southern 
California (KPSC) [21,37,38]. Each prior model that others built for a comparable outcome [5,26-34] had an area under the 
receiver operating characteristic curve (AUC) that was ≤0.79 and a sensitivity that was ≤49%. Our models raised the AUC to 
0.9 and the sensitivity to 70% on the UWM data [21], the AUC to 0.86 and the sensitivity to 54% on IH data [37], and the AUC 
to 0.82 and the sensitivity to 52% on KPSC data [38]. 

Our eventual goal is to translate our models into clinical use. Yet, despite major progress, our models do not generalize well 
across sites and patient subgroups, and two gaps remain. 
 
Gap 1: The site-specific models have suboptimal generalizability when applied to the other sites 

Each of our models was built for one site. As is typical in predictive modelling [39,40], when applied to the other sites, the 
site-specific model had AUC drops of up to 4.1% [38] potentially degrading care management enrollment decisions. One can 
do transfer learning using other source healthcare systems' raw data to boost model performance for the target healthcare 
system [41-45], but healthcare systems are seldom willing to share raw data. Research networks [46-48] mitigate the problem, 
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but do not solve it. Many healthcare systems are not in any network. Healthcare systems in the network share raw data of finite 
attributes. Our prior model-based transfer learning approach [49] requires no raw data from other healthcare systems. But, it 
does not control the number of features (independent variables) used in the final model for the target site, creating difficulty to 
build the final model for the target site for clinical use. Consequently, it is never implemented in computer code. 
 
Gap 2: The models exhibit large performance gaps when applied to specific patient subgroups 

Our models performed up to 8% worse on black patients. This is a typical barrier in machine learning, where many models 
exhibit large subgroup performance gaps, e.g., of up to 38% [50-57]. No existing tool for auditing model bias and fairness 
[58,59] has been applied to our models. Currently, it is unknown how our models perform on key patient subgroups defined by 
independent variables such as race, ethnicity, and insurance type. In other words, it is unknown how our models perform for 
different races, different ethnicities, and patients using different types of insurance. Large performance gaps among patient 
subgroups can lead to care inequity and should be avoided. 

Many methods to improve fairness in machine learning exist [50-52]. These methods usually boost model performance on 
some subgroups at the price of lowering both model performance on others and the overall model performance [50-52]. 
Lowering the overall model performance is undesired [51,57]. Due to the large patient population, even a 1% drop in the overall 
model performance could potentially degrade many patients’ outcomes. Chen et al. [57] cut model performance gaps among 
subgroups by collecting more training data and adding additional features, both of which are often difficult or infeasible to do. 
For classifying images via machine learning, Goel et al.’s method [55] raised the overall model performance and also cut model 
performance gaps among subgroups of a value of the dependent variable, not among subgroups defined by independent 
variables. The dependent variable is also known as the outcome or the prediction target. An example of the dependent variable 
is whether a patient with asthma will incur any hospital encounter for asthma in the subsequent 12 months. The independent 
variables are also known as features. Race, ethnicity, and insurance type are three examples of independent variables. Many 
machine learning techniques to handle imbalanced classes exist [60,61]. There, subgroups are defined by the dependent 
variable rather than by independent variables. 
 
Contributions of this paper 

To fill the two gaps on suboptimal model generalizability and let more high-risk patients obtain appropriate and equitable 
preventive care, the paper makes two contributions giving a roadmap for future research: 
1) To address the first gap, we outline a new machine learning technique to create cross-site generalizable predictive models 

to accurately find high-risk patients. This is to cut model performance drop across sites. 
2) To address the second gap, we outline a new machine learning technique to automatically raise model performance for 

poorly performing subgroups while maintaining model performance on other subgroups. This is to cut model performance 
gaps among patient subgroups and reduce care inequity. 

In the following, we describe the main ideas of our proposed new machine learning techniques. 
 
Machine Learning Technique for Creating Cross-site Generalizable Predictive Models to 
Accurately Find High-risk Patients 
Our prior models 

In our prior work [21,37,38], for each of the three healthcare systems (sites) KPSC, IH, and the UWM, we checked >200 
candidate features and used the site’s data to build a full site-specific extreme gradient boosting (XGBoost) model to predict 
hospital encounters for asthma. XGBoost [62] automatically chose from the candidate features the features to be used in the 
model, computed their importance values, and ranked them in descending order of these values. The top (~20) features with 
importance values ≥1% have nearly all of the predictive power of all (on average ~140) features used in the model [21,37,38]. 
Although some lower-ranked features are unavailable at other sites, each top feature, such as the number of the patient’s 
asthma-related emergency room visits in the prior 12 months, is computed using (e.g., diagnosis and encounter) attributes 
routinely collected by almost every American healthcare system that uses electronic medical records. Using the top features and 
the site’s data, we built a simplified XGBoost model. It, but not the full model, can be applied to other sites. The simplified 
model performed similarly to the full model at the site. But, when applied to another site, even after being re-trained on its data, 
the simplified model performed up to 4.1% worse than the full model built specifically for it, as distinct sites have only partially 
overlapping top features [21,37,38]. 
 
Building cross-site generalizable models 

To ensure that the same variable is called the same name at different sites and the variable’s content is recorded in the same 
way across these sites, we convert the data sets at all source sites and the target site into the Observational Medical Outcomes 
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Partnership (OMOP) common data model [63] and its linked standardized terminologies [64]. If needed, the data model is 
extended to cover the variables that are not included in the original data model, but exist in the data sets. 

Our goal is to build cross-site generalizable models fulfilling two conditions. First, the model uses a moderate number of 
features. Controlling the number of features used in the model would ease future clinical deployment of the model. Second, a 
separate component or copy of the model is initially built at each source site. When applied to the target site and possibly after 
being re-trained on its data, the model performs similarly to the full model built specifically for it. To reach our goal for the case 
of IH and the UWM being the source sites and KPSC being the target site, we proceed in two steps (Figure 1). In step 1, we 
combine the top features found at each source site. For each source site, we use the combined top features, its data, and the 
machine learning algorithm used to build its full model to build an expanded simplified model. Compared with the original 
simplified model built for the site, the expanded simplified model uses more features with predictive power and tends to 
generalize better across sites. In step 2, we do model-based transfer learning to further boost model performance. For each data 
instance of the target site, we apply each source site’s expanded simplified model to the data instance, compute a prediction 
result, and use it as a new feature. For the target site, we use its data, the combined top features found at the source sites, and the 
new features to build its final model. 

 
 
 
 
 
 
 
 
 
 

Figure 1. Our method to build cross-site generalizable models. IH: Intermountain Healthcare. KPSC: Kaiser Permanente 
Southern California. UWM: University of Washington Medicine. 
 

To reach our goal for the case that IH or the UWM is the target site and KPSC is one of the source sites, we need to address 
the issue that the claim-based features used at KPSC [38] are unavailable at IH, the UWM, and many other healthcare systems 
with no claim data. At KPSC, we drop these features and use the other candidate features to build a site-specific model and 
re-compute the top features. This helps reach the effect that the top features found at each of KPSC, IH, and the UWM are 
available at all three sites and almost every other American healthcare system that uses electronic medical record systems. In 
the unlikely case that any re-computed top feature at KPSC violates this, we skip the feature when building cross-site 
generalizable models. 

Our method to build cross-site generalizable models can handle all kinds of prediction targets, features, and models used at 
the source and target sites. Given a distinct prediction target, if some top features found at a source site are unavailable at many 
American healthcare systems using electronic medical record systems, we can use the drop→re-compute→skip approach 
shown above to handle these features. Also, at any source site, if the machine learning algorithm used to build the full 
site-specific model is like XGBoost [62] or random forest that automatically computes feature importance values, we can use 
the top features with the highest importance values. Otherwise, if the algorithm used to build the full model does not 
automatically compute feature importance values, we can use an automatic feature selection method [65] like the information 
gain method to choose the top features. Alternatively, we can use XGBoost or random forest to build a model, automatically 
compute feature importance values, and choose the top features with the highest importance values. 

Our new model-based transfer learning approach waives the need for source sites’ raw data. Healthcare systems are more 
willing to share with others trained models than raw data. A model trained using the data of a source site contains much 
information that is useful for the prediction task at the target site. This information offers much value when the target site has 
insufficient data for model training. If the target site is large, this information can still be valuable. Distinct sites have differing 
data pattern distributions. A pattern that matches a small percentage of patients and is difficult to identify at the target site could 
match a larger percentage of patients and be easier to identify at one of the source sites. In this case, its expanded simplified 
model could incorporate the pattern through model training to better predict the outcomes of certain types of patients, which is 
difficult to do using only the information from the target site but no information from the source sites. Thus, we expect that 
compared with just re-training a source site’s expanded simplified model on the target site’s data, doing model-based transfer 
learning in step 2 could lead to a better performing final model for the target site. 

𝑥⃑𝑥: the top features found at IH and 
UWM in a KPSC data instance 

𝑓𝑓1(𝑥⃑𝑥) 
f1: a model trained 

using IH’s data 

𝑓𝑓2(𝑥⃑𝑥) 
f2: a model trained using  

UWM’s data 

𝑔𝑔(𝑓𝑓1(𝑥⃑𝑥), 𝑓𝑓2(𝑥⃑𝑥), 𝑥⃑𝑥) 
g: the final model for KPSC 

𝑥⃑𝑥 
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When the target site goes beyond IH, the UWM, and KPSC, we can use IH, the UWM, and KPSC as the source sites and have 
more top features to combine. This would make our cross-site models generalize even better. 
 
Machine Learning Technique for Automatically Raising Model Performance for Poorly 
Performing Patient Subgroups while Maintaining Model Performance on Other Subgroups to 
Reduce Care Inequity 

We ask several clinical experts to identify several patient subgroups of great interest to clinicians (e.g., by race, ethnicity, or 
insurance type) through discussion. These subgroups are not necessarily mutually exclusive of each other. Each subgroup is 
defined by one or more attribute values. Given a predictive model built on a training set, we compute and show model 
performance on each subgroup on the test set [58,59]. Machine learning needs enough training data to work well. Often, the 
model performs much worse on a small subgroup than on a large subgroup [50,52]. After identifying one or more target 
subgroups where the model performs much worse than on other subgroups [51], we use a new dual-model approach to raise 
model performance on the target subgroups while maintaining model performance on other subgroups. 

More specifically, given n target patient subgroups, we sort them as Gi (1≤i≤n) in ascending order of size and oversample 
them based on n integers ri (1≤i≤n) satisfying r1≥r2≥…≥rn>1. As Figure 2 shows, for each training instance in G1, we make r1 
copies of it including itself. For each training instance in 𝐺𝐺𝑗𝑗 − ⋃ 𝐺𝐺𝑖𝑖

𝑗𝑗−1
𝑖𝑖=1  (2≤j≤n), we make rj copies of it including itself. 

Intuitively, the smaller the i (1≤i≤n) and thus Gi, the more aggressive oversampling is needed on Gi for machine learning to 
work well on it. The sorting ensures that if a training instance appears in ≥2 target subgroups, copies are made for it based on the 
largest ri of these subgroups. If needed, we could use one set of ri’s for training instances with bad outcomes, and another set of 
ri’s for training instances with good outcomes [66]. 𝐺𝐺 = ⋃ 𝐺𝐺𝑖𝑖𝑛𝑛

𝑖𝑖=1  is the union of the n target subgroups. Using the training 
instances outside G, the copies made for the training instances in G, and an automatic machine learning model selection method 
like our formerly developed one [67], we optimize the AUC on G, automatically select the values of ri (1≤i≤n), and train a 
second model. As is typical in using oversampling to improve fairness in machine learning, compared with the original model, 
the second model tends to perform better on G and worse on the patients outside G [51,66] because oversampling increases the 
percentage of training instances in G and decreases the percentage of training instances outside G. To avoid running into the 
case of having insufficient data for model training, no undersampling is performed on the training instances outside G. We use 
the original model to make predictions on the patients outside G, and the second model to make predictions on the patients in G. 
In this way, we can raise model performance on G without lowering either model performance on the patients outside G or the 
overall model performance. We use all patients’ data instead of only the training instances in G to train the second model. 
Otherwise, the second model may perform poorly on G due to insufficient training data in G [51]. For a similar reason, we 
choose to not use decoupled classifiers, where a separate classifier is trained for each subgroup using only that subgroup’s data 
[51], on the target subgroups [57]. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Oversampling for three target patient subgroups G1, G2, and G3. 
 

The above discussion focuses on the case that the original model is built on one site’s data without using any other site’s 
information. When the original model is a cross-site generalizable model built for the target site using the method in the 
“Building cross-site generalizable models” section and models trained at the source sites, to raise model performance on the 
target patient subgroups, we change the way to build the second model for the target site by proceeding in two steps (Figure 3). 
In step 1, we combine the top features found at each source site. Recall that G is the union of the n target subgroups. For each 
source site, we oversample the target subgroups in the way mentioned above; optimize the AUC on G at the source site; and use 
its data both in and outside G, the combined top features, and the machine learning algorithm used to build its full model to 
build a second expanded simplified model. In step 2, we do model-based transfer learning to incorporate useful information 
from the source sites. For each data instance of the target site, we apply each source site’s second expanded simplified model to 

G1 

G2 – G1 G3 – G2 – G1 

r1 copies 

Training set 

r2 copies r3 copies 
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the data instance, compute a prediction result, and use it as a new feature. For the target site, we oversample the target 
subgroups in the way mentioned above; optimize the AUC on G at the target site; and use its data both in and outside G, the 
combined top features found at the source sites, and the new features to build the second model for it. For each i (1≤i≤n), each 
of the source and target sites could use a distinct oversampling ratio ri. 

 
 

 
 
 
 
 
 
 

 
Figure 3. Our method to boost a cross-site generalizable model’s performance on the target patient subgroups. IH: 
Intermountain Healthcare. KPSC: Kaiser Permanente Southern California. UWM: University of Washington Medicine. 

 
Discussion 

Predictive models differ by diseases and other factors. Yet, our proposed machine learning techniques are general and depend 
on no specific disease, patient cohort, or healthcare system. Given a new data set with a differing prediction target, disease, 
patient cohort, set of healthcare systems, or set of variables, one can use our proposed machine learning techniques to improve 
model generalizability across sites, as well as to boost model performance on poorly performing patient subgroups while 
maintaining model performance on others. For instance, we can use our proposed machine learning techniques to improve 
model performance for predicting other outcomes such as adherence to treatment [68] and no show [69]. This will help target 
resources, such as interventions to improve adherence to treatment [68] and reminders by phone calls to reduce no shows [69]. 
Care management is widely adopted to manage patients with chronic obstructive pulmonary disease, patients with diabetes, and 
patients with heart disease [6], where our proposed machine learning techniques can also be used. Our proposed predictive 
models are based on the OMOP common data model [63] and its linked standardized terminologies [64], which standardize 
administrative and clinical variables from at least 10 large healthcare systems in the United States [47,70]. Our proposed 
predictive models apply to those healthcare systems and others using OMOP. 
 
Conclusions 

To better identify patients likely to benefit most from asthma care management, we recently built the most accurate models to 
date to predict hospital encounters for asthma. But, these models do not generalize well across sites and patient subgroups, 
creating two gaps before translating these models into clinical use. This paper points out these two gaps and outlines two 
corresponding solutions, giving a roadmap for future research. The principles of our proposed machine learning techniques 
generalize to many other clinical predictive modeling tasks. 
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XGBoost: extreme gradient boosting 

𝑥⃑𝑥: the top features found at IH and UWM in a KPSC data instance 

𝑓𝑓1(𝑥⃑𝑥) 
f1: a model trained 

using IH’s data 

𝑓𝑓2(𝑥⃑𝑥) 
f2: a model trained using 

UWM’s data 

𝑔𝑔(𝑓𝑓1(𝑥⃑𝑥), 𝑓𝑓2(𝑥⃑𝑥), 𝑥⃑𝑥) 
g: the final model for KPSC patients outside 

the target subgroups 

𝑥⃑𝑥 
ℎ1(𝑥⃑𝑥) 

h1: a model trained using 
IH’s data and oversampling 

ℎ2(𝑥⃑𝑥) 
h2: a model trained using UWM’s 

data and oversampling 

𝑚𝑚(ℎ1(𝑥⃑𝑥), ℎ2(𝑥⃑𝑥), 𝑥⃑𝑥) 
m: the final model for the target subgroups at KPSC 

trained using KPSC’s data and oversampling 

𝑥⃑𝑥 
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