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ABSTRACT Deep learning is the state-of-the-art learning algorithm for many machine learning tasks. Yet, 
training a deep learning model on a large data set is often time-consuming, taking several days or even 
months. During model training, it is desirable to offer a non-trivial progress indicator that can continuously 
project the remaining model training time and the fraction of model training work completed. This makes the 
training process more user-friendly. In addition, we can use the information given by the progress indicator 
to assist in workload management. In this paper, we present the first set of techniques to support non-trivial 
progress indicators for deep learning model training when early stopping is allowed. We report an 
implementation of these techniques in TensorFlow and our evaluation results for both convolutional and 
recurrent neural networks. Our experiments show that our progress indicator can offer useful information 
even if the run-time system load varies over time. In addition, the progress indicator can self-correct its initial 
estimation errors, if any, over time. 

INDEX TERMS Deep learning, model training, progress indicator, TensorFlow

LIST OF SYMBOLS 
 Floor function. 
a Scaling factor of the inverse power-law function. 
b Exponent of the inverse power-law function. 
bmax Maximum number of batches allowed for model

training. 
B Number of training instances in each batch. 
c Bias term of the inverse power-law function. 
c Coefficient used to compute . 
d Number of input variables of the objective function.
ei Validation error at the i-th validation point. 
f(i) Regression function’s value at the i-th validation

point. 
g Number of batches of model training between two

consecutive validation points. 
h(n) 
 

Sequence number of the current validation point on
the current segment. 

Imax Maximum number of rounds allowed for the inner 
loop in each round of the outer loop of the truncated
Newton method 

k Number of synthetic validation curves generated via
Monte Carlo simulation at each validation point after 
the v-th one. 

K Size of the sliding time window used for computing 
the model training speed. 

li

 
Number of validation points on the i-th segment of 
the validation curve. 

me Maximum number of epochs allowed for model 
training. 

n Number of validation points obtained thus far. 
ni A simulated random noise at the i-th validation 

point. 
p Patience. 
qj-1 Sequence number of the last validation point on the 

previous segment of the validation curve. 
r 
 

Number of disjoint intervals into which the possible 
range of the simulated number of validation points 
needed for model training is divided. 

Rmax Maximum number of rounds allowed for the loop. 
s(i) 
 

Sequence number of the segment of the validation 
curve that the i-th validation point is on. 

t Threshold used to identify the initial transient stage 
of each segment of the validation curve. 

T Number of data instances in the training set. 
Tmax Maximum number of rounds allowed for the outer 

loop of the truncated Newton method. 
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U Unit of work. 
V Number of data instances in the validation set. 
vj-1 Number of validation points needed for model

training that is estimated at the last validation point
on the previous segment of the validation curve. 

vmax 
 

Maximum number of validation points allowed for
model training. 

w
 

Maximum number of validation points allowed to fit
the regression function. 

w' Number of validation points used to fit the regression
function. 

α Initial learning rate used in the exponential decay
schedule. 

αi Learning rate at the i-th validation point. 
i Learning rate on the i-th segment of the validation

curve. 
 Threshold used to decide which interval is regarded

as a local mode. 
 min_delta. 
 Tolerance. 
 Constant controlling the learning rate’s decay speed

in the exponential decay schedule. 
𝜎ොଶ 
 

Estimated variance of the random noise when a fixed
learning rate is used during the entire model training
process. 

𝜎ො
ଶ Estimated variance of the random noise at the i-th 

validation point. 
𝜎ොሺሻ
ଶ  Estimated variance of the random noise on the i-th 

segment of the validation curve. 
v Threshold on the number of validation points

reached, beyond which we use the validation curve
to refine the projected number of validation points
needed for model training. 

I. INTRODUCTION 
The need for non-trivial progress indicators for deep learning 
model training 

 

FIGURE 1.  A progress indicator for deep learning model training. 

 
Deep learning is the state-of-the-art learning algorithm for 

many machine learning tasks like image classification, natural 
language processing, and speech recognition [1]. But, building 
a deep learning model on a large data set is often time-
consuming. Using 50 graphics processing units (GPUs), a 
Google team spent two months training a deep neural network 
on 300 million images [2]. With 200 central processing units, 

Weyand et al. [3] took 2.5 months to train a convolutional 
neural network on 126 million photos. Akiba et al. [4] showed 
that 29 hours were needed to train a convolutional neural 
network on the ImageNet data set [5] with two GPUs. 15 
minutes were needed with 1,024 GPUs. As a standard human-
computer interaction principle, for each task running longer 
than 10 seconds, we need a non-trivial progress indicator (see 
Fig. 1) to continuously project the remaining task running time 
and the fraction of the task completed [6, Ch. 5.5]. Thus, 
progress indicators are desirable for deep learning model 
training. 

Besides making the deep learning model training process 
more user-friendly, we can use the information given by the 
progress indicator to assist with workload management as 
outlined in our papers [7], [8]. We recently talked with Yasser 
M. Ibrahim, the head of distributed machine learning at 
Amazon. He mentioned that using a large computer cluster, 
his team took several months to train a deep neural network 
supporting Alexa’s speech recognition function. Every so 
often, his team retrains this neural network and would like to 
finish the re-training in a given amount of time. As the amount 
of training data, the neural network’s hyper-parameter values, 
and the server capacity continue changing over time, his team 
needs a method to find an appropriate cluster configuration for 
each round of re-training. A workload management approach 
aided by progress indicators would serve this purpose [7]. 

A neural network is trained in one or more epochs, each of 
which requires going through all of the training instances once. 
Some deep learning software supplies trivial progress 
indicators during model training, e.g., by displaying the 
number of epochs that has been completed [9] or the value of 
the objective function achieved [10] over time. Yet, this 
information is too coarse-grained for many purposes. On a 
large data set, a large amount of time is needed to go through 
an epoch. Moreover, early stopping is widely used in deep 
learning model training to help avoid overfitting. When early 
stopping is allowed, the number of epochs needed for model 
training is unknown beforehand, but dynamically decided 
during model training based on some stopping criterion [1]. 
Our prior work [11] presents a technique to support non-trivial 
progress indicators for deep learning model training when the 
number of epochs needed for model training is known 
beforehand. This technique updates the projected numbers for 
the model training task once every few seconds, but is unable 
to handle early stopping. To the best of our knowledge, no 
other technique has been published to offer non-trivial 
progress indicators for deep learning model training. How to 
support such progress indicators in the presence of early 
stopping remains an open problem. 
 
Our contributions 

To address the gap, in this paper we present the first set of 
techniques to support non-trivial progress indicators for deep 
learning model training when early stopping is allowed. With 
low overhead, our techniques can handle various 

Progress Indicator 

Recurrent neural network 

  
Time passed  0d 19h 41min 
Estimated remaining time 7d 9h 12min (10% done)
Estimated cost  17,645,100U 
Model training speed  249U/s Cancel
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combinations of the deep learning model, the learning rate 
schedule like learning rate decay, and the optimization method 
[12]. 

A deep learning model is trained in batches. In each batch, 
a fixed number of training instances are used to compute the 
updates to the model’s parameters. Each batch’s running cost 
is relatively stable and can be quickly measured. Thus, the key 
to estimating the progress of model training is to project the 
number of batches needed for model training. During model 
training, we use the non-smooth learning curve on the 
validation set (a.k.a. the validation curve) to make this 
projection. This curve depicts the model’s error rates on the 
validation set, i.e., the validation errors, obtained over time. As 
Fig. 2 shows, the validation error tends to reduce over time 
before early stopping occurs and also oscillates over time. If 
we use a monotonically decreasing function to model the 
validation curve without accommodating the oscillations, and 
directly apply the early stopping criterion to the projected 
curve, we seldom obtain a good estimate of the number of 
batches needed for model training. To address this challenge, 
we regard the validation curve as the sum of a smooth trend 
curve and some zero-mean random noise. We use a regression 
function to estimate the trend curve, and historical data to 
gauge the random noise’s variance. If the learning rate changes 
over time, we also model the change’s impact on the random 
noise’s variance. Then we use a Monte Carlo simulation 
approach to project the number of batches needed for model 
training. By adding simulated random noise to the projected 
trend curve, we generate several synthetic validation curves. 
On each of them, we apply the early stopping criterion to 
obtain a simulated number of batches needed for model 
training. The estimated mode of these simulated numbers 
forms the basis for the projected number of batches needed for 
model training. To the best of our knowledge, this is the first 
time Monte Carlo simulation has been used for progress 
indication and is a main innovation of this work. 

 

FIGURE 2.   The validation curve = a trend curve + some random noise. 

 
We implemented our techniques in TensorFlow [13], an 

open-source deep learning software package. We report our 
evaluation results for both convolutional and recurrent neural 
networks. Our results show that with negligible run-time 
overhead, the resulting progress indicator can provide useful 
information even in the presence of varying run-time system 
loads. Also, the progress indicator can self-correct its initial 
estimation errors, if any, over time. 

 
Organization of the paper 

The rest of the paper is organized as follows. Section II 
reviews the related work. Section III describes our proposed 
techniques for implementing progress indicators for deep 
learning model training when early stopping is allowed. 
Section IV reports an implementation of our techniques in 
Tensorflow, as well as the performance evaluation results of 
the resulting progress indicators. Section V presents some 
interesting areas for future work. Section VI concludes the 
paper. 

II. RELATED WORK 
In this section, we briefly review the related work. A detailed 
discussion of the related work is available in our prior paper 
[7]. 
 
Sophisticated progress indicators 

For machine learning model training, we have built 
sophisticated progress indicators for decision tree, random 
forest, and neural network when the number of epochs needed 
for model training is known beforehand [7], [11]. In addition, 
sophisticated progress indicators have been proposed for 
database queries [8], [14]-[17], static program analysis [18], 
program compilation [19], subgraph queries [20], MapReduce 
jobs [21], [22], and automatic machine learning model 
selection [23], [24]. As each kind of task has its own unique 
properties, we cannot directly adopt the existing techniques 
[7], [8], [11], [14]-[24] to implement progress indicators for 
deep learning model training when early stopping is allowed. 
 
Estimating deep learning model training time 

Justus et al. [25] proposed a meta learning method for 
estimating an epoch’s running time before starting to train a 
deep learning model, by adopting features of the model, the 
computational resources, and the training data set used to train 
another deep learning model. This method predicts neither the 
number of epochs nor the time needed for model training. 

For estimating a deep learning model’s training time before 
model training starts, researchers have proposed several 
methods including Bayesian optimization [26], meta learning 
using Multivariate Adaptive Regression Splines [27], meta 
learning via support vector regression [28], and meta learning 
via polynomial regression [29]. The projected numbers are 
frequently inaccurate, are not continuously refined, and could 
differ significantly from the true model training time on a 
loaded computer. To build a non-trivial progress indicator, we 
need to continuously refine the projected model training time. 
 
Complexity analysis for training neural networks 

Much research has been done on computing the time 
complexity of training a neural network [30, Ch. 24], [31], 
[32]. Yet, this information is not enough for constructing 
progress indicators and provides no projected model training 
time on a loaded computer. Time complexity typically ignores 
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data properties affecting the model training cost, as well as the 
lower order terms and coefficients required for predicting the 
model training cost. An ideal progress indicator should 
continuously refine the model training cost as model training 
proceeds. 

III. IMPLEMENTATION TECHNIQUES 
In this section, we describe our techniques for implementing 
progress indicators for deep learning model training when 
early stopping is allowed. Section III-A introduces some 
concepts and notations that will be used throughout this paper. 
Section III-B gives an overview of our progress indication 
method. Sections III-C to III-E show how to estimate the 
number of batches needed for model training when a fixed 
learning rate is used during the entire model training process, 
when a continuous decay schedule for the learning rate is used, 
and when a step decay schedule for the learning rate is used, 
respectively. Section III-F discusses the computational 
complexity of estimating the number of batches needed for 
model training. 

A. SOME CONCEPTS AND NOTATIONS 
In this section, we introduce some concepts and notations that 
will be used throughout this paper. We have two pre-set 
positive integers B and g, as well as a given early stopping 
criterion. A deep learning model is trained in batches. In each 
batch, B training instances are used to compute the updates to 
the model’s parameters. After every g batches of model 
training, we reach a validation point. At that time, we compute 
the model’s error rate on the validation set, i.e., the validation 
error, and check whether the early stopping criterion is met. If 
so, model training is ended. 

The validation curve depicts the validation errors obtained 
over time during model training. Many early stopping criteria 
exist, most of which are based on the validation curve [1], 
[33]-[35]. One criterion is to stop model training when the 
validation error has not improved over the best one recorded 
for a given number of validation points [1], [33]. Another 
criterion adopts the idea of stopping model training when the 
validation error is over the best one recorded by at least a given 
threshold, while the model’s error rate on the training set no 
longer improves much [33]. Duvenaud et al [34] proposed a 
criterion based on estimating the log marginal likelihood 
without using a validation set. Mahsereci et al. [35] proposed 
a criterion based on some local statistics of the computed 
gradients without using a validation set. 

The goal of this paper is neither to handle all of the existing 
early stopping criteria nor to make the progress indicator’s 
projections reach the maximum possible accuracy. Instead, 
our goal is to demonstrate via a case study, the feasibility of 
providing non-trivial and useful progress indication for deep 
learning model training when early stopping is allowed. 
Frequently, users can benefit from a rough estimate of the 
remaining model training time [36]. Our demonstration 
focuses on a widely used early stopping criterion with two pre-

set numbers: min_delta ≥0 and patience p>0 [37]. The 
criterion is met if the validation error improves by ≤ for p 
validation points consecutively. That is, letting ei denote the 
validation error at the i-th validation point, model training 
stops at the s-th validation point if es-p–ej< holds for each of 
j=s-p+1, s-p+2, …, and s. 

B. OVERVIEW OF OUR PROGRESS INDICATION 
METHOD 
In this section, we give an overview of our progress indication 
method. We start with an initial estimate of the model training 
cost. Both the predicted model training cost and the current 
model training speed are gauged by U, the unit of work. Each 
U depicts the average amount of work needed for processing 
each training instance once in two steps in model training. The 
first step is to go forward through the neural network once to 
compute its prediction result on the training instance. The 
second step is to go backwards through the neural network 
once for backpropagation. 

During model training, we keep gathering multiple 
statistics, such as the number of batches done, and use them to 
keep refining the estimated model training cost. We keep 
checking the model training speed defined as the number of 
Us completed per second during the K seconds before the 
current time point. By default, K’s value is 10. At any moment, 

the projected remaining model training time 
= the projected remaining model training cost / the current 

model training speed. 
Periodically, we update the progress indicator with the latest 
information. As the model training task keeps running, we 
gather more precise information of it. As a result, our estimates 
tend to become increasingly accurate over time. 
 
Computing the model training cost 

The model training cost is dominated by two components 
and can be roughly regarded as their sum. The first component 
is the cost of processing the training instances. The second 
component is the cost of computing the validation errors. The 
first one is easy to compute. 

The cost of processing the training instances 
= the number of batches needed for model training × the 

number of training instances per batch × the average amount 
of work needed for processing a training instance once in 
model training 

= the number of batches needed for model training×B×1 
= the number of batches needed for model training×B. 

Next, we compute the second component. We call each data 
instance in the validation set a validation instance. 

The cost of computing the validation errors 
= the number of validation points needed for model training × 

the number of data instances in the validation set × the 
average amount of work needed for processing a validation 
instance once to compute the validation error. 
To process a validation instance once, we need to go 

forward through the neural network once to compute its 
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prediction result on the validation instance. We use the number 
of multiplication operations needed to estimate the processing 
cost [31]. Each neuron typically takes multiple inputs, each of 
which links to a distinct connection weight. When going 
forward through the neural network, we need to compute the 
neuron’s output by multiplying each input by its linked 
connection weight. In comparison, when going backwards 
through the neural network, we need to compute a partial 
derivative with respect to each input and a partial derivative 
with respect to each connection weight. The former step 
requires doing a multiplication with the connection weight 
linked to the input. The latter requires doing a multiplication 
with the input linked to the connection weight. Hence, as a 
rough approximation based on the number of multiplication 
operations needed, we regard the cost of going backwards 
through the neural network once to be twice that of going 
forward through the neural network once. That is, the average 
amount of work needed for processing a validation instance 
one time = U/3. Consequently, 

the cost of computing the validation errors 
= the number of validation points needed for model 

training×V/3, 
with V being the number of data instances in the validation set. 

Summing the two components, we have 
the model training cost 

= the number of batches needed for model training×B + the 
number of validation points needed for model training×V/3. 

Before model training starts, we can easily know B and V’s 
values. Thus, to estimate the model training cost, we mainly 
need to estimate the number of batches and the number of 
validation points needed for model training. 

Let T denote the number of data instances in the training set. 
Before a deep neural network is trained, the user of the deep 
learning software needs to specify the value of a hyper-
parameter me showing the maximum number of epochs 
allowed for model training. Each epoch requires passing 
through all of the training instances once and includes T/B 
batches of model training. The maximum number of batches 
allowed for model training is 

bmax=me×T/B. 
Before model training starts, we can easily know T and B’s 
values and subsequently bmax’s value. Recall that a validation 
point is reached every g batches of model training. If early 
stopping occurs before finishing the bmax-th batch, 

the number of batches needed for model training 
= the number of validation points needed for model 

training×g. 
If early stopping never occurs and model training reaches the 
maximum number of batches allowed, 

the number of batches needed for model training = bmax, 
and 

the number of validation points needed for model training 
= vmax 
≝ bmax/g. 

Here,  is the floor function, e.g., 3.4=3. vmax is the 
maximum number of validation points allowed for model 
training. Thus, the key to estimating the model training cost is 
to estimate the number of validation points needed for model 
training, and subsequently, whether early stopping will ever 
occur. 
 
Estimating the number of validation points needed for model 
training 

Initially, with no extra information, we estimate the number 
of validation points needed for model training to be vmax, the 
maximum number of validation points allowed for model 
training. During model training, once the number of validation 
points reached is ≥ a given threshold v, we start using the 
validation curve to keep refining the projected number of 
validation points needed for model training. In our 
implementation, we choose 3 as v’s default value to strike a 
balance between having enough validation points to make a 
reasonable projection and not having to wait too long before 
the initial projected number could be refined. 

As Fig. 2 shows, the validation curve often oscillates over 
time. We regard it as the sum of a smooth trend curve and 
some zero-mean random noise. At each validation point that 
is after the v-th one and where the early stopping criterion is 
unmet, we first fit a smooth regression function to the 
validation curve up to this point, and then use the fitted 
function to estimate the trend curve beyond this point. Since 
the regression function is smooth, the estimated trend curve 
does not reflect the oscillations on the validation curve. Thus, 
directly applying the early stopping criterion to the estimated 
trend curve often does not lead to a good estimate of the 
number of validation points needed for model training. For 
example, as the validation error tends to decrease over time, 
we use a monotonically decreasing regression function to 
estimate the trend curve. When the min_delta =0, the early 
stopping criterion includes a term that the validation error 
increases at some point. Thus, the criterion is never met on the 
estimated trend curve, even if early stopping occurs frequently 
in practice. 

To address this issue, we use historical data to gauge the 
random noise’s variance. Then we use a Monte Carlo 
simulation approach to project the number of validation points 
needed for model training. By adding simulated random noise 
to the projected trend curve, we generate several synthetic 
validation curves. To each of them, we apply the early 
stopping criterion and obtain the number of validation points 
needed. The smaller of this number and vmax, the maximum 
number of validation points allowed for model training, 
becomes a simulated number of validation points needed for 
model training. The estimated mode of these simulated 
numbers forms the basis for our projected number of 
validation points needed for model training. 

Fig. 3 shows the flow chart of our method for estimating 
the number of validation points needed for model training. 
Sections III-C to III-E present the details of this method. 
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FIGURE 3.   The flow chart of our method for estimating the number of 
validation points needed for model training. 

C. ESTIMATING THE NUMBER OF VALIDATION POINTS 
NEEDED FOR MODEL TRAINING WHEN A FIXED 
LEARNING RATE IS USED DURING THE ENTIRE 
MODEL TRAINING PROCESS 
This section focuses on the case where a fixed learning rate is 
used during the entire model training process. We show how 
to estimate the number of validation points needed for model 
training upon reaching a validation point that is after the v-th 
one and at which the early stopping criterion is unmet. Section 
III-C.1 shows the regression method used to estimate the trend 
curve. Section III-C.2 covers how to estimate the random 
noise’s variance. Section III-C.3 presents the Monte Carlo 
simulation approach used to project the number of validation 
points needed for model training. 

 

 

 

1) ESTIMATING THE TREND CURVE 
The validation error tends to decrease over time, whereas the 
rate of decrease typically reduces over time. In keeping with 
this, we use the same inverse power law function [7], [38] of 
the form 

f(i)=ai-b+c 
as the regression function to model both the validation and 
trend curves (see Fig. 2). Here, i is the sequence number of the 
validation point, a>0, b>0, and c>0. We first fit the function to 
the validation curve up to the current validation point, and then 
use the fitted function to estimate the trend curve beyond that 
point. 

Intuitively, the validation points well before the current one 
may not accurately reflect the validation curve’s trend beyond 
the current validation point and could be unsuitable for 
function fitting. Thus, we use a pre-set window size w whose 
default value is 50 to skip these validation points. Let n denote 
the number of validation points obtained thus far. When fitting 
the regression function to the validation curve, we use the last 

w'=min(w, n) 
validation points instead of all of the n validation points 
obtained thus far. To compute a, b, and c’s values, we solve a 
constrained minimization problem: 

min ∑ ሾ𝑒 െ ሺ𝑎𝑖ି  𝑐ሻሿଶ
ୀି௪ᇱାଵ  (1) 

the sum of the squared errors at the last w' validation points, 
subject to the constraints that a>0, b>0, and c>0. Recall that ei 
is the validation error at the i-th validation point. One way to 
do constrained minimization is to use the truncated Newton 
method [39, Ch. 7.1] and initialize a, b, and c as one, one, and 
zero, respectively. 

 

2) ESTIMATING THE RANDOM NOISE’S VARIANCE 
Recall that we regard the validation curve as the sum of a 
smooth trend curve and some zero-mean random noise. ei, f(i), 
and ei-f(i) are the validation error, the estimated value of the 
trend curve, and the estimated value of the random noise at the 
i-th validation point, respectively. n is the number of validation 
points obtained so far. w' is the number of validation points 
used to fit the regression function. We use the last w' validation 
points to estimate the random noise’s variance as 

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ𝑒 െ 𝑓ሺ𝑖ሻሿଶ
ୀି௪ᇱାଵ . (2) 

 

3) PROJECTING THE NUMBER OF VALIDATION POINTS 
NEEDED FOR MODEL TRAINING 
We use a Monte Carlo simulation method to project the 
number of validation points needed for model training. To the 
best of our knowledge, this is the first time Monte Carlo 
simulation has been used for progress indication. Our method 
works as follows: 
1) Step 1: For each i (n+1≤i≤vmax), compute the estimated 

value f(i) of the trend curve at the i-th validation point. 
Recall that n is the number of validation points obtained 
thus far. vmax is the maximal number of validation points 
allowed for model training. All of these f(i) (n+1≤i≤vmax) 
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in Steps 1-6 in Section III-C.3 
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form the estimated trend curve beyond the current 
validation point, up to the last one allowed for model 
training. 

2) Step 2: For each i (n+1≤i≤vmax), randomly sample a 
number ni from the normal distribution 𝑁ሺ0, 𝜎ොଶሻ as 
simulated random noise at the i-th validation point. Recall 
that 𝜎ොଶ is the estimated variance of the random noise. 
f(i)+ni is a simulated validation error at the i-th validation 
point. All of the f(i)+ni (n+1≤i≤vmax) form a synthetic 
validation curve beyond the current validation point, up 
to the last one allowed for model training. 

3) Step 3: Connect the actual validation curve up to the 
current validation point and the synthetic validation curve 
beyond that point to obtain a full synthetic validation 
curve, which goes from the first validation point to the last 
one allowed for model training. 

4) Step 4: For each i (n+1≤i≤vmax), check one by one whether 
the early stopping criterion is met on the full synthetic 
validation curve at the i-th validation point. If the early 
stopping criterion is not met anywhere, we obtain vmax as 
a simulated number of validation points needed for model 
training, and bmax as a simulated number of batches 
needed for model training. Recall that vmax and bmax are the 
maximum number of validation points and the maximum 
number of batches allowed for model training, 
respectively. Otherwise, if the early stopping criterion is 
met on the full synthetic validation curve for the first time 
at the j-th (n+1≤j≤vmax) validation point, we obtain j as a 
simulated number of validation points needed for model 
training, and j×g as a simulated number of batches needed 
for model training. Recall that g is the number of batches 
of model training between two consecutive validation 
points. 

5) Step 5: Repeat Steps 2-4 k times to obtain k simulated 
numbers of validation points needed for model training, 
which we term simulated estimates. k is a pre-set 
parameter. We choose 2,000 as its default value to obtain 
enough simulated estimates for our projection purpose 
without incurring excessive simulation overhead. 

One could use the mode of the k simulated estimates as the 
projected number of validation points needed for model 
training. Compared to the mean, the mode is a more robust 
statistic in the presence of outliers [40]. Yet, using the mode 
directly is suboptimal. When there are ≥2 local modes with 
roughly the same frequency, which one of them is the global 
mode is somewhat random, resulting in instability of the 
projection. Considering this, we make a projection in the 
following way. 
6) Step 6: By definition, every simulated estimate [n+1, 

vmax]. Divide [n+1, vmax] into r disjoint intervals of equal 
width. r is a pre-set parameter whose default value is 200. 
Set a threshold 

=k×c, 
where c is a coefficient whose default value is 0.04. 
Group the k simulated estimates by interval. Find every 

interval containing > simulated estimates. Each such 
interval is regarded as a local mode. If the number of such 
intervals is ≥1, average the simulated estimates in all such 
intervals as the projected number of validation points 
needed for model training. Otherwise, if no such interval 
exists, the k simulated estimates spread relatively evenly 
across a wide range with no significant local mode. Their 
mean becomes the projected number of validation points 
needed for model training. 

D. ESTIMATING THE NUMBER OF VALIDATION POINTS 
NEEDED FOR MODEL TRAINING WHEN A 
CONTINUOUS DECAY SCHEDULE FOR THE LEARNING 
RATE IS USED 
This section focuses on the case where a continuous decay 
schedule for the learning rate is used. We show how to 
estimate the number of validation points needed for model 
training upon reaching a validation point that is after the v-th 
one and at which the early stopping criterion is unmet. 

In a continuous decay schedule, the learning rate shrinks 
continuously over epochs. For example, in an exponential 
decay schedule, the learning rate used in the i-th epoch is αe-iρ 
(see Fig. 4(a)). Here, α>0 is the initial learning rate. ρ>0 is a 
constant controlling the learning rate’s decay speed. Fig. 4(b) 
shows a typical validation curve in this case. The curve has 
roughly the same shape as an inverse power law function. 
Thus, we use the same method as that in Section III-C.1 to 
estimate the trend curve. 

 
(a) The learning rate over epochs. 

 
(b) A typical validation curve. 

FIGURE 4.   The learning rate over epochs and a typical validation 
curve when an exponential decay schedule for the learning rate is used. 

 
To estimate the random noise’s variance, we modify the 

method shown in Section III-C.2 in one respect. That method 
treats the random noise’s variance as invariant over time. 
However, that is not the case with a continuous decay 
schedule, where the random noise’s variance tends to shrink 
over time. The learning rate controls how much the neural 
network’s weights and subsequently the validation error 
change both over time and due to random variation. The 
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smaller the learning rate, the smaller the changes tend to be. If 
the learning rate=0, the neural network’s weights and the 
validation error never differ from their initial values over time, 
and thus the random noise’s variance=0. 

Based on this intuition, we regard the random noise’s 
standard deviation and variance as roughly proportional to the 
learning rate and its square, respectively. Let αi and 𝜎ො

ଶ denote 
the learning rate and the estimated variance of the random 
noise at the i-th validation point, respectively. All of the αi 
(1≤i≤vmax) can be computed before model training begins. 
Recall that n is the number of validation points obtained thus 
far. To compute the estimated variance of the random noise 𝜎ොଶ 
at the current validation point, we still use the last w' validation 
points, but change formula (2) in Section III-C.2 to 

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ

ିሺሻ

ఈ/ఈ
ሿଶ

ୀି௪ᇱାଵ   

to factor in the changes in variance over time. For each i 
(n+1≤i≤vmax), we compute 

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ. 

To project the number of validation points needed for model 
training, we modify the method shown in Section III-C.3 at 
Step 2 alone. 𝜎ො

ଶ is the estimated variance of the random noise 
at the i-th validation point. For each i (n+1≤i≤vmax), we 
randomly sample a number ni from the normal distribution 
𝑁ሺ0, 𝜎ො

ଶሻ instead of 𝑁ሺ0, 𝜎ොଶሻ as a simulated random noise at 
the i-th validation point. 

E. ESTIMATING THE NUMBER OF VALIDATION POINTS 
NEEDED FOR MODEL TRAINING WHEN A STEP DECAY 
SCHEDULE FOR THE LEARNING RATE IS USED 
This section focuses on the case where a step decay schedule 
for the learning rate is used. We show how to estimate the 
number of validation points needed for model training upon 
reaching a validation point that is after the v-th one and at 
which the early stopping criterion is unmet. 

 
(a) The learning rate over epochs. 

 
(b) A typical validation curve. 

FIGURE 5.   The learning rate over epochs and a typical validation 
curve when a step decay schedule for the learning rate is used. 

 

In a step decay schedule, the learning rate is reduced by a 
fixed factor >1 after a certain number of epochs (see Fig. 5(a)). 
This number could vary over epochs in a pre-set way. Fig. 5(b) 
shows a typical validation curve in this case. We call each 
validation point where the learning rate is reduced a decay 
point. The decay points split the validation curve into multiple 
segments. For each i≥1, the i-th decay point is the first 
validation point on the (i+1)-th segment. Before model 
training starts, we can easily know the position of and the 
learning rate used on each segment. 

We first consider the case that the current validation point 
is on the first segment of the validation curve. In this case, we 
use the method in Section III-C.1 to estimate the trend curve. 
We use the method in Section III-C.2 to compute 𝜎ොሺଵሻ

ଶ , the 
estimated variance of the random noise on the first segment. 
Let i denote the learning rate on the i-th segment, and s(i) 
denote the sequence number of the segment where the i-th 
validation point is located. The learning rate at the i-th 
validation point is αi=s(i). Recall that n is the number of 
validation points obtained thus far. vmax is the maximal number 
of validation points allowed for model training. For each i 
(n+1≤i≤vmax), we compute the estimated variance of the 
random noise at the i-th validation point as 

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ 
ൌ 𝜎ොሺଵሻ

ଶ ൈ ሺ௦ሺሻ/ଵሻ
ଶ. 

Then we use the method mentioned in the last paragraph of 
Section III-D to project the number of validation points needed 
for model training. 

Next, we consider the case that the current validation point 
is on the j-th (j≥2) segment of the validation curve. As Fig. 
5(b) shows, due to the learning rate reduction at a decay point, 
the validation curve often drops suddenly at both that point and 
the following several validation points. When we reach a 
validation point not far after such a decay point, if we use the 
method in Section III-C.1 to estimate the trend curve, this drop 
could cause the estimated trend curve to be inaccurate (see Fig. 
6). 

 

FIGURE 6.   When reaching a validation point not far after the most 
recent decay point, using the method in Section III-C.1 to estimate the 
trend curve. 

 
To address this issue, we modify the estimation methods in 

Sections III-C and III-D as follows. Let li denote the number 
of validation points on the i-th segment of the validation curve. 
Before model training starts, we can easily know each li. 
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𝑞ିଵ ൌ ∑ 𝑙
ିଵ
ୀଵ   

is the sequence number of the last validation point on the 
previous segment. Let vj-1 denote the number of validation 
points needed for model training that is estimated at the last 
validation point on the previous segment. If the estimated final 
validation point needed for model training is located on the 
current j-th segment, vj-1-qj-1 is the sequence number of that 
validation point on the current j-th segment. Let h(n) denote 
the sequence number of the current validation point on the 
current j-th segment. h(n) is ≤lj. We use a pre-set threshold t 
whose default value is 15 to identify the initial transient stage 
of each segment, where the validation error could change 
rapidly before becoming relatively stable on the later part of 
the segment. We differentiate between two possible sub-cases. 

In the first sub-case, h(n)≤min(lj-1, t, vj-1-qj-1). We posit the 
current validation point to be at the initial transient stage of the 
current segment of the validation curve. Since it is hard to use 
rapidly changing validation errors to obtain a good estimate of 
the number of validation points needed for model training, we 
reuse vj-1 as the estimate of this number. As t is small, we 
typically pass the initial transient stage in a relatively short 
amount of time. 

In the second sub-case, h(n)>min(lj-1, t, vj-1-qj-1). We 
consider ourselves to have passed the initial transient stage and 
have reached the relatively stable stage of the current segment 
of the validation curve. Recall that to use the validation curve 
to refine the projected number of validation points needed for 
model training, we need at least v validation points. v’s 
default value is three. Typically, lj-1≥v and t≥v. If h(n)<v, 
which can occur if vj-1-qj-1<v, we project the current validation 
point as the last one needed for model training. Otherwise, if 
h(n)≥v, we refine the projected number of validation points 
needed for model training in the following way. As Fig. 5(b) 
shows, if shifted to the left by qj-1 validation points, the current 
segment has roughly the same shape as an inverse power law 
function. Accordingly, we use the same shifted inverse power 
law function of the form 

f(i)=a(i-qj-1)-b+c 
as the regression function to model the current segment of both 
the validation and trend curves. Recall that w is the maximum 
number of validation points allowed to fit the regression 
function. n is the number of validation points obtained thus far. 
h(n) is the sequence number of the current validation point on 
the current segment. We use the last 

w'=min(w, h(n)) 
validation points on the current segment to fit the regression 
function to the validation curve, as well as to estimate the 
variance of the random noise at the current validation point as 

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ𝑒 െ 𝑓ሺ𝑖ሻሿଶ
ୀି௪ᇱାଵ . 

Recall that vmax is the maximal number of validation points 
allowed for model training. i is the learning rate on the i-th 
segment. s(i) is the sequence number of the segment where the 
i-th validation point is located. The learning rate at the i-th 
validation point is αi=s(i). For each i (n+1≤i≤vmax), we 

compute the estimated variance of the random noise at the i-th 
validation point as 

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ 
ൌ 𝜎ොଶ ൈ ሺ௦ሺሻ/ሻ

ଶ. 

Then we use the method mentioned in the last paragraph of 
Section III-D to project the number of validation points needed 
for model training. 

F. COMPLEXITY ANALYSIS FOR ESTIMATING THE 
NUMBER OF VALIDATION POINTS NEEDED FOR 
MODEL TRAINING 
The key and most time-consuming step of our progress 
indication method is to estimate the number of validation 
points needed for model training. In this section, we discuss 
the worst-case computational complexity of this step, by 
defining each unit of computation as doing a basic (e.g., 
arithmetic) operation or computing an elementary (e.g., 
exponential or logarithmic) function. 

As Fig. 3 shows, this estimation step typically involves 
three actions: 1) a power regression to estimate the trend 
curve, 2) estimating the random noise’s variance, and 3) a 
Monte Carlo simulation to project the number of validation 
points needed for model training. When a step decay schedule 
is used for the learning rate and the current validation point is 
on the j-th (j≥2) segment of the validation curve, one of two 
exceptions could occur. First, if h(n) is ≤min(lj-1, t, vj-1-qj-1), 
we reuse vj-1 as the estimated number of validation points 
needed for model training. Second, if h(n) is >min(lj-1, t, vj-1-
qj-1) and h(n) is <v, we project the current validation point as 
the last one needed for model training. In the case of either 
exception, our estimation step has a computational complexity 
of O(1). 

In the rest of this section, we focus on the case that neither 
exception occurs. We first give the worst-case computational 
complexity of each of the three actions. Then we show the 
worst-case computational complexity of our estimation step. 
 

1) THE WORST-CASE COMPUTATIONAL COMPLEXITY 
OF ACTION 1: DOING POWER REGRESSION TO 
ESTIMATE THE TREND CURVE 
In this section, we give the worst-case computational 
complexity of using the truncated Newton method to do power 
regression to estimate the trend curve. As detailed in Nocedal 
and Wright [39, Ch. 7.1], to find the optimal point minimizing 
the objective function, this method starts from an initial point 
and uses a two-level nested loop to move the point towards the 
optimal point iteratively. The inner loop produces a search 
direction. In each round of the outer loop, the point is moved 
along the search direction. 

Either loop could be terminated in one of two ways: 
1) We preset a tolerance . The loop is terminated when a 

specific variable’s value becomes <. 
2) We preset  and Rmax, the maximum number of rounds 

allowed for the loop. The loop is terminated when a 
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specific variable’s value becomes < or the loop has run 
for Rmax rounds, whichever occurs the first. 

To the best of our knowledge, when the first way is used for 
both loops, the computational complexity of the truncated 
Newton method has not been given in any prior study nor can 
it be computed in an easy manner. 

In the rest of this section, we focus on the second way that 
is often used in practice [41], [42]. Let Tmax≥1 denote the 
maximum number of rounds allowed for the outer loop, and 
Imax≥1 denote the maximum number of rounds allowed for the 
inner loop in each round of the outer loop. In the worst case, 
the outer loop runs for Tmax rounds, in each of which the inner 
loop runs for Imax rounds. From the description of the truncated 
Newton method in Nocedal and Wright [39, Ch. 7.1], we see 
that each round of the inner loop computes O(1) Hessian-
vector products, vector products, and gradients. Excluding the 
inner loop, the rest of each round of the outer loop computes 
O(1) gradients. Putting these two parts together, each round of 
the outer loop computes 

O(Imax)+O(1)=O(Imax) 
Hessian-vector products, vector products, and gradients. 
Using the truncated Newton method to do power regression 
requires computing O(Tmax×Imax) Hessian-vector products, 
vector products, and gradients. 

Computing a vector product involves O(d) basic operations, 
where d is the number of input variables of the objective 
function. For our objective function shown in formula (1) with 
three input variables a, b, and c, d=3. 

To calculate a Hessian-vector product or a gradient, we can 
use finite differencing [39, Ch. 8.1] that involves computing 
our objective function O(d) times. Each such computation 
requires doing O(w') basic operations and calculating O(w') 
elementary functions. Recall w' is the number of validation 
points used to fit the regression function. 

Putting everything together, calculating a Hessian-vector 
product or a gradient has a computational complexity of 

O(d)×O(w')=O(w'). 
The worst-case computational complexity of using the 
truncated Newton method to do power regression is 

O(Tmax×Imax)×(O(d)+O(w')) 
=O(Tmax×Imax×w'). 

 

2) THE COMPUTATIONAL COMPLEXITY OF ACTION 2: 
ESTIMATING THE RANDOM NOISE’S VARIANCE 
The last w' validation points are used to estimate the random 
noise’s variance, with a computational complexity of O(w'). 
 

3) THE WORST-CASE COMPUTATIONAL COMPLEXITY 
OF ACTION 3: DOING MONTE CARLO SIMULATION TO 
PROJECT THE NUMBER OF VALIDATION POINTS 
NEEDED FOR MODEL TRAINING 
In this section, we give the worst-case computational 
complexity of doing Monte Carlo simulation to project the 
number of validation points needed for model training. As 
shown in Section III-C.3, this simulation is done in six steps. 

We compute each step’s computational complexity and sum 
them to obtain the final result. 

In Step 1, the estimated value f(i) of the trend curve is 
computed at vmax-n validation points. Recall vmax is the 
maximum number of validation points allowed for model 
training. n is the number of validation points obtained thus far. 
Computing f(i) at a single validation point has a computational 
complexity of O(1). Thus, Step 1 has a computational 
complexity of O(vmax-n). 

In Step 2, we generate vmax-n random samples ni 
(n+1≤i≤vmax) from a normal distribution and compute f(i)+ni. 
Each sample can be obtained via the Box-Muller transform 
[43], which has a computational complexity of O(1). 
Generating the vmax-n random samples ni (n+1≤i≤vmax) has a 
computational complexity of O(vmax-n). Computing f(i)+ni 
(n+1≤i≤vmax) has the same computational complexity. Putting 
these two parts together, Step 2 has a computational 
complexity of O(vmax-n). 

In Step 3, vmax-n points on the synthetic validation curve are 
connected with the actual validation curve to obtain the full 
synthetic validation curve. This has a computational 
complexity of O(vmax-n). 

In Step 4, for each i (n+1≤i≤vmax), we check one by one 
whether the early stopping criterion is met on the full synthetic 
validation curve at the i-th validation point. In the worst case, 
we go over all of these vmax-n points and find out the early 
stopping criterion is not met anywhere. Thus, Step 4 has a 
worst-case computational complexity of O(vmax-n). 

Summing Steps 2-4, we get a worst-case computational 
complexity of O(vmax-n). In Step 5, Steps 2-4 are repeated k 
times, with a worst-case computational complexity of 
O(k(vmax-n)). 

In Step 6, we divide [n+1, vmax] into r disjoint intervals of 
equal width, group the k simulated estimates by interval, and 
compute the projected number of validation points needed for 
model training. This has a computational complexity of 
O(r)+O(k). 

Summing the six steps, we obtain the worst-case 
computational complexity of doing Monte Carlo simulation as 

O(vmax-n)+O(k(vmax-n))+O(r)+O(k) 
=O(max{k(vmax-n), r}). 

The above derivation uses the fact that k>1 and vmax-n≥1. If 
n=vmax, we are at the last validation point ever allowed for 
model training. Monte Carlo simulation is not needed there. 
 

4) THE WORST-CASE COMPUTATIONAL COMPLEXITY 
OF OUR ESTIMATION STEP 
Summing the three actions, we obtain the worst-case 
computational complexity of estimating the number of 
validation points needed for model training as 

O(Tmax×Imax×w')+O(w')+O(max{k(vmax-n), r}) 
=O(max{Tmax×Imax×w', k(vmax-n), r}). 

The above derivation uses the fact that Tmax×Imax×w'≥w' 
because Tmax≥1 and Imax≥1. 
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IV. PERFORMANCE 
In this section, we report the performance results of our 
progress indicators for deep learning model training. We 
implemented our techniques given in Section III in 
TensorFlow Version 1.13.1. TensorFlow is a widely used 
open-source deep learning software package developed by 
Google [13]. In all of our tests, the progress indicators could 
provide useful estimates and revise them every 10 seconds 
with negligible overhead. We regard this as having fulfilled 
the three progress indication goals set out in our prior paper 
[7]: continuously revised estimates, acceptable pacing, and 
minimal overhead. 

A. EXPERIMENT DESCRIPTION 
We conducted the experiments by running TensorFlow on a 
Digital Storm workstation with one GeForce RTX 2080 Ti 
GPU, one eight-core Intel Core i7-9800X 3.8GHz central 
processing unit, 64GB memory, one 500GB solid-state drive, 
one 3TB SATA disk, and running the Ubuntu 18.04.02 
operating system. All of the deep learning models were trained 
on the GPU. 

We tested two popular deep learning models: GoogLeNet 
[44], a convolutional neural network, and the Gated Recurrent 
Unit (GRU) model in Purushotham et al. [45], a recurrent 
neural network. Except for the learning rate schedule, the 
number of training instances in each batch, and the maximum 
number of epochs allowed for model training, all of the hyper-
parameters were set to their default values used in the two 
models’ open source code [46], [47]. For each model, we 
tested three learning rate schedules: with a fixed learning rate, 
an exponential decay, and a step decay, respectively. For each 
model, we also tested four widely used optimization methods 
for deep learning model training: adaptive moment estimation 
(Adam) [48], classical stochastic gradient descent (SGD) [49], 
root mean square propagation (RMSprop) [50], and adaptive 
gradient (AdaGrad) [51]. We show the test results for Adam 
and RMSprop. The test results for SGD and AdaGrad are 
similar and put in the Appendix. For RMSprop, we show the 
test results when a fixed learning rate is used to train 
GoogLeNet. The test results for the other cases of RMSprop 
are similar and put in the Appendix. All of the other test results 
shown in Section IV are for the case using the Adam 
optimization method. 

We used two well-known benchmark data sets: CIFAR-10 
[52] and MIMIC-III [53] (Table I). Each data instance in 
CIFAR-10 is an image whose size is shown in Table I. We 
trained GoogLeNet on CIFAR-10, by splitting CIFAR-10 into 
a training set and a validation set in the same way as that in 
Krizhevsky [52]. We trained the GRU model on a subset of 
the MIMIC-III data set, which Purushotham et al. [45] termed 
the “Feature Set A, 48-h data,” for the mortality prediction 
task. Each data instance in this subset is a sequence whose 
length is shown in Table I. This subset was split into a training 
set and a validation set in the same way as that in Purushotham 
et al. [45]. 

 
TABLE I 

THE DATA SETS USED FOR TESTING OUR PROGRESS INDICATION METHOD 

Name 
# of data 

instances in the 
training set

# of data 
instances in the 
validation set 

data instance 
size 

# of 
classes

CIFAR-10 50,000 10,000 image size: 
32×32 

10 

Feature Set 
A, 48-h data

19,146 6,382 sequence 
length: 48 

2 

 
We ran two kinds of tests: 

1) Unloaded system test: The model was trained on an 
unloaded system. 

2) Workload interference test: We began model training 
on an unloaded system. In the middle of model training, 
we started another model training task that competed with 
the first model training task for GPU resources. 

For the unloaded system test, we report the test results for 
each combination of a learning rate schedule and a deep 
learning model. The only exception is that for the step decay 
schedule, we show the test results for training GoogLeNet. 
The test results for training the GRU model are similar and put 
in the Appendix. For the workload interference test, we 
present the test results of using a fixed learning rate to train 
GoogLeNet. The test results for the other cases of the 
workload interference test provide no extra information and 
are omitted. 

In each test, the number of training instances in each batch 
was set to 128. The number of batches of model training 
between two consecutive validation points was set to 200 and 
50 for GoogLeNet and the GRU model, respectively. The 
maximum number of epochs allowed for model training was 
set to 150. The initial learning rate was set to 0.001, regardless 
of which learning rate schedule was used. The patience p was 
set to 39, an integer randomly chosen from the range [5, 50]. 
The min_delta  was set to 0.00207, a number randomly 
chosen from the range [0, 0.01]. 

B. ACCURACY MEASURE 
We adopted the average estimation error used in Chaudhuri et 
al. [14] to measure the accuracy of the estimates provided by 
the progress indicator. As shown in Fig. 7, the average 
estimation error is defined as the ratio of two numbers. The 
numerator is the area of the region between a curve and a 
straight diagonal line. The curve gives the remaining model 
training time projected by the progress indicator over time. 
The straight diagonal line depicts the actual remaining model 
training time. The denominator is the area of the right triangle 
formed by the straight diagonal line, the x-axis, and the y-axis. 
The smaller the average estimation error, the more accurate 
the estimates provided by the progress indicator. 
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FIGURE 7.   The numerator and denominator used to compute the 
average estimation error. 

 
For each combination of a deep learning model, a learning 

rate schedule, a test type, and an optimization method, we 
trained the model five times, each in a separate run. We 
randomly choose one of these five runs and show the progress 
indicator’s outputs over time in that run in Sections IV-C to 
IV-E and Sections A to C of the Appendix. In addition, we 
show the mean and the standard deviation of the average 
estimation error across the five runs in Section IV-F and 
Section D of the Appendix. 

C. TEST RESULTS OF USING A FIXED LEARNING RATE 
DURING THE ENTIRE MODEL TRAINING PROCESS 
In this section, we show the test results of using a fixed 
learning rate during the entire model training process. 
 

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET 
In this test, GoogLeNet was trained on an unloaded system. 
The test’s purpose is to show that when training GoogLeNet 
on an unloaded system using a fixed learning rate during the 
entire model training process, the progress indicator’s 
estimates can be reasonably accurate for various optimization 
methods. 
 
Using the Adam optimization method 

We first consider the case that GoogLeNet was trained 
using the Adam optimization method. Fig. 8 shows the model 
training cost projected by the progress indicator over time, 
with the actual model training cost given by the horizontal 
dotted line. At the beginning of model training with no extra 
information, the progress indicator projected the model 
training cost based on the maximum number of validation 
points allowed for model training, which differed significantly 
from the actual number of validation points needed. Hence, 
the projected model training cost differed greatly from the 
actual model training cost. After reaching at least v=3 
validation points within 152 seconds, the progress indicator 
was able to revise the projected model training cost and make 
it more accurate. 

 

FIGURE 8.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a fixed learning rate and Adam). 

 
Fig. 9 shows the model training speed monitored by the 

progress indicator over time. During the entire model training 
process, the monitored model training speed was relatively 
stable. 

 

FIGURE 9.   Model training speed over time (unloaded system test for 
training GoogLeNet using a fixed learning rate and Adam). 

 

 

FIGURE 10.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a fixed learning 
rate and Adam). 

 
Fig. 10 shows the remaining model training time projected 

by the progress indicator over time, with the actual remaining 
model training time given by the dashed line. At the beginning 
of model training, the progress indicator’s projected model 
training cost differed greatly from the actual model training 
cost. Thus, the remaining model training time projected by the 
progress indicator differed significantly from the actual one. 
Within 152 seconds, once the progress indicator was able to 
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revise the projected model training cost and improve its 
accuracy, the projected remaining model training time became 
more precise. 

Recall that the patience p was set to 39. By 4,392 seconds, 
the validation error had improved by ≤ the min_delta  for 
eight validation points consecutively. From 4,392 to 5,690 
seconds, the number of consecutive validation points for 
which the validation error had improved by ≤ kept rising, 
causing the progress indicator to mistakenly project that model 
training could finish by ~5,800 seconds. Yet, the reality is that 
model training continued until 7,685 seconds. At 5,739 
seconds, the validation error improved by >, making the 
progress indicator realize that model training would take much 
longer than 5,800 seconds and revise its projections 
accordingly. 

Fig. 11 shows the progress indicator’s estimated percentage 
of model training work completed over time. Most of the time, 
the completed percentage curve is relatively close to the dotted 
diagonal line connecting the lower left corner and the upper 
right corner. A non-trivial deviation between the completed 
percentage curve and the diagonal line exists between 4,392 
and 5,739 seconds for the reason given above. 

 

FIGURE 11.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a fixed learning rate and 
Adam). 

 
Using the RMSprop optimization method 

Next, we consider the case that GoogLeNet was trained 
using the RMSprop optimization method. The performance 
results are shown in Fig. 12-15 and are similar to those shown 
in Fig. 8-11. 

 

FIGURE 12.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a fixed learning rate and RMSprop). 

 

FIGURE 13.   Model training speed over time (unloaded system test for 
training GoogLeNet using a fixed learning rate and RMSprop). 

 

FIGURE 14.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a fixed learning 
rate and RMSprop). 

 

FIGURE 15.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a fixed learning rate and 
RMSprop). 

 
In the rest of Section IV, all of the test results shown were 

for training the deep learning model using the Adam 
optimization method. 

 

2) WORKLOAD INTERFERENCE TEST RESULTS FOR 
TRAINING GOOGLENET 
In the workload interference test, we began training 
GoogLeNet on an unloaded system using the same hyper-
parameter values as those used in Section IV-C.1. In the 
middle of model training (at 3,600 seconds), we started 
another GoogLeNet training task that competed with the first 
model training task for GPU resources throughout the rest of 
the first task’s execution. This extended the first task’s running 
time. We present the performance results of the first task. This 
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test’s purpose is to show that our progress indicator can adjust 
to varying run-time system loads. In each figure of Section IV-
C.2, we use a vertical dash-dotted line to give the point in time 
when the second GoogLeNet training task started running. 

Fig. 16 shows the model training speed monitored by the 
progress indicator over time. Before the second model training 
task started running at 3,600 seconds, the shape of the curve in 
Fig. 16 is similar to that in Fig. 9. Once the second task started 
running, the monitored model training speed of the first task 
dropped roughly by half, as the second task was competing for 
GPU resources. 

 

FIGURE 16.   Model training speed over time (workload interference 
test for training GoogLeNet using a fixed learning rate and Adam). 

 
Fig. 17 shows the remaining model training time projected 

by the progress indicator over time, with the actual remaining 
model training time given by the dashed line. Before the 
second model training task started running at 3,600 seconds, 
the shape of the curve in Fig. 17 is similar to that in Fig. 10. 
The progress indicator’s projection error for the remaining 
model training time is mainly due to the unexpected large rise 
in system load starting from 3,600 seconds. After 3,600 
seconds, the remaining model training time projected by the 
progress indicator became much more precise. The curve 
showing the projected remaining model training time becomes 
reasonably close to the dashed line. 

 

FIGURE 17.   Remaining model training time projected over time 
(workload interference test for training GoogLeNet using a fixed 
learning rate and Adam). 

 
Fig. 18 shows the progress indicator’s estimated percentage 

of model training work completed over time. The estimated 
percentage tends to increase over time. The impact of running 

the second model training task is apparent starting at 3,600 
seconds. 

 

FIGURE 18.   Completed percentage estimated over time (workload 
interference test for training GoogLeNet using a fixed learning rate and 
Adam). 

 

3) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
THE GRU MODEL 
In this test, the GRU model was trained on an unloaded 
system. The test’s purpose is to show that the progress 
indicator’s estimates can be reasonably accurate for different 
types of neural networks. 

Fig. 19 shows the model training cost projected by the 
progress indicator over time, with the actual model training 
cost given by the horizontal dotted line. After reaching at least 
v=3 validation points within 12 seconds, the progress 
indicator was able to project the model training cost 
reasonably accurately. 

 

FIGURE 19.   Model training cost projected over time (unloaded system 
test for training the GRU model using a fixed learning rate and Adam). 

 
Fig. 20 shows the model training speed monitored by the 

progress indicator over time. Compared to that in Fig. 9, the 
curve in Fig. 20 is closer to a horizontal line, showing a more 
stable model training speed over time. The model training 
speed is computed based on the amount of work done in the 
past K=10 seconds. As mentioned in Section III-B, we regard 
the average amount of work needed for processing a validation 
instance one time to be U/3, as a rough approximation. Yet, 
this is not fully accurate, resulting in estimation errors on the 
amount of work done. In training the GRU model, it took 
about 3.5 seconds to go from one validation point to the next. 
As roughly the same number of validation instances were 
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processed in each 10-second period, the estimation error of the 
amount of work completed is approximately the same across 
different 10-second periods, leading to a stable model training 
speed over time. By comparison, in training GoogLeNet, it 
took about 50 seconds to go from one validation point to the 
next one. The number of validation instances processed, and 
subsequently the estimation error of the amount of work 
completed, varies significantly across different 10-second 
periods, causing the monitored model training speed to vary 
more over time. 

 

FIGURE 20.   Model training speed over time (unloaded system test for 
training the GRU model using a fixed learning rate and Adam). 

 
Fig. 21 shows the remaining model training time projected 

by the progress indicator over time, with the actual remaining 
model training time given by the dashed line. The projected 
remaining model training time is reasonably accurate. 

 

FIGURE 21.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a fixed learning 
rate and Adam). 

 
Fig. 22 shows the progress indicator’s estimated percentage 

of model training work completed over time. The completed 
percentage curve is relatively close to the dotted diagonal line 
connecting the lower left corner and the upper right corner. 

 

FIGURE 22.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a fixed learning rate and 
Adam). 

D. TEST RESULTS OF USING AN EXPONENTIAL 
DECAY SCHEDULE FOR THE LEARNING RATE 
In this section, we show the test results of using an exponential 
decay schedule for the learning rate. Here, the constant  
controlling the learning rate’s decay speed was set to 0.05. The 
test’s purpose is to show that the progress indicator’s estimates 
can be reasonably accurate when an exponential decay 
schedule for the learning rate is used. 
 

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET 
In this test, GoogLeNet was trained on an unloaded system 
using an exponential decay schedule for the learning rate. The 
performance results are shown in Fig. 23-26. From 0 to 3,945 
seconds, the projected model training cost differed 
significantly from the actual one, leading to inaccurate 
projections of the remaining model training time and the 
percentage of model training work completed. Much of this 
inaccuracy results from the imprecise approximation we make 
in handling the exponential decay schedule, by treating the 
random noise’s variance as roughly proportional to the square 
of the learning rate. After 3,945 seconds, the projections given 
by the progress indicator became much more accurate. 

 

FIGURE 23.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using an exponential decay schedule for the 
learning rate and Adam). 
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FIGURE 24.   Model training speed over time (unloaded system test for 
training GoogLeNet using an exponential decay schedule for the 
learning rate and Adam). 

 

FIGURE 25.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using an exponential 
decay schedule for the learning rate and Adam). 

 

 

FIGURE 26.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using an exponential decay 
schedule for the learning rate and Adam). 

 

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
THE GRU MODEL 
In this test, the GRU model was trained on an unloaded system 
using an exponential decay schedule for the learning rate. The 
performance results are plotted in Fig. 27-30, showing the 
progress indicator made reasonably accurate projections. 

 

FIGURE 27.   Model training cost projected over time (unloaded system 
test for training the GRU model using an exponential decay schedule for 
the learning rate and Adam). 

 

FIGURE 28.   Model training speed over time (unloaded system test for 
training the GRU model using an exponential decay schedule for the 
learning rate and Adam). 

 

FIGURE 29.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using an exponential 
decay schedule for the learning rate and Adam). 

 

FIGURE 30.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using an exponential decay 
schedule for the learning rate and Adam). 
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E. UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET USING A STEP DECAY SCHEDULE FOR 
THE LEARNING RATE 
In this section, we show the test results for training 
GoogLeNet on an unloaded system using a step decay 
schedule for the learning rate. Here, the learning rate was cut 
from 10-3 to 10-4 and 10-5 at the beginning of the 64-th and the 
115-th epoch, respectively. The test’s purpose is to show the 
progress indicator’s estimates can be reasonably accurate 
when a step decay schedule for the learning rate is used. 

In the test, early stopping occurred on the second segment 
of the validation curve, i.e., after the first decay point (see Fig. 
5). The performance results are shown in Fig. 31-34 and 
similar to those shown in Fig. 8-11. In each figure of this 
section, we use a vertical dash-dotted line to give the time 
when the learning rate decay occurred. 

 

FIGURE 31.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a step decay schedule for the learning 
rate and Adam). 

 

FIGURE 32.   Model training speed over time (unloaded system test for 
training GoogLeNet using a step decay schedule for the learning rate 
and Adam). 

 

FIGURE 33.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a step decay 
schedule for the learning rate and Adam). 

 
FIGURE 34.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a step decay schedule for the 
learning rate and Adam). 

F. SUMMARY STATISTICS OF THE AVERAGE 
ESTIMATION ERROR ACROSS THE FIVE RUNS 
Recall that for each combination of a deep learning model, a 
learning rate schedule, a test type, and an optimization 
method, we trained the model five times, each in a separate 
run. For each combination presented in Sections IV-C to IV-
E, we show the mean and the standard deviation of the 
average estimation error across the five runs in Table II. 
Except for one case, the average estimation error is ≤0.417 
for every combination, indicating that our progress indicator 
offered reasonably accurate estimates of the remaining 
model training time. 
 
 

 
TABLE II 

FOR EACH COMBINATION OF A DEEP LEARNING MODEL, A LEARNING RATE SCHEDULE, A TEST TYPE, AND AN OPTIMIZATION METHOD PRESENTED IN SECTIONS 

IV-C TO IV-E, THE SUMMARY STATISTICS OF THE AVERAGE ESTIMATION ERROR ACROSS THE FIVE RUNS 

Deep learning model Learning rate schedule Test type Optimization method Average estimation error

GoogLeNet 

fixed learning rate unloaded system test Adam  0.272±0.060 
fixed learning rate unloaded system test RMSprop 0.417±0.140 
fixed learning rate workload interference test Adam 0.400±0.074 
exponential decay unloaded system test Adam 1.033±0.169 
step decay unloaded system test Adam 0.372±0.028 

GRU 
fixed learning rate unloaded system test Adam 0.362±0.034 
exponential decay unloaded system test Adam 0.303±0.074 
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G. SELECTING THE DEFAULT VALUES OF w, r, AND c 
Our progress indication method uses three key parameters: 1) 
w, the maximum number of validation points allowed to fit the 
regression function; 2) r, the number of disjoint intervals into 
which the possible range [n+1, vmax] of the simulated number 
of validation points needed for model training is divided; and 
3) c, the coefficient used to compute the threshold . In this 
section, we show how we selected these parameters’ default 
values by minimizing the mean of the average estimation 
errors of our progress indicator across several deep learning 
model training processes. 

To do this selection, we used three popular deep learning 
models: VGG19 [54], a convolutional neural network, the 
long short-term memory (LSTM) model [55], a recurrent 
neural network, and the GRU model. We used three 
benchmark data sets: ImageNet Large Scale Visual 
Recognition Challenge 2012 (ILSVRC2012) [56], the Large 
Movie Review Dataset [57], and THUCNews [58] (Table III). 
 

TABLE III 
THE DATA SETS USED FOR SELECTING THE DEFAULT VALUES OF w, r, AND 

c 

Name 
# of data 

instances in the 
training set 

# of data 
instances in the 
validation set 

data instance 
size 

# of 
classes

Subset of 
ILSVRC2012 

44,570 1,750 image size: 
32×32 

35 

Large Movie 
Review Dataset 

23,000 2,000 sequence length: 
10-2,470 (234 on 
average) 

2 

Subset of 
THUCNews 

50,000 5,000 sequence length: 
8-26,849 (903 on 
average) 

10 

 
We trained VGG19 on a subset of ILSVRC2012. 

ILSVRC2012 has 1,000 image classes, ~1.2 million images 
intended for model training, and 50,000 images intended for 
model validation. We randomly chose 35 image classes and 
resized each image in them to 32×32 to make it suitable for 
training VGG19. All of the 44,570 images intended for model 
training in these classes were put into the training set. All of 
the 1,750 images intended for model validation in these 
classes were put into the validation set. 

We trained the LSTM model on the Large Movie Review 
Dataset. Each data instance in this data set is a sequence. Table 
III shows the length distribution of all of these sequences. This 
data set includes 25,000 data instances that can be used for 
model training and validation. We randomly chose 2,000 of 
them to put into the validation set. The rest of them were put 
into the training set. 

THUCNews has 14 classes and 740,000 data instances. 
Each data instance in this data set is a sequence. We trained 
the GRU model on a subset of THUCNews used in the 
model’s open source code [59]. This subset includes ten 
classes, each with 5,000 data instances for training and 500 
data instances for validation. Table III shows the length 
distribution of all of the sequences in this subset. 

When training VGG19 and the LSTM model, the number of 
batches of model training between two consecutive validation 
points was set to 200. When training the GRU model, the 
number of batches of model training between two consecutive 
validation points was set to 10. For all of the three models, the 
patience p was set to 27, an integer randomly chosen from the 
range [5, 50]. The min_delta  was set to 0.00443, a number 
randomly chosen from the range [0, 0.01]. Moreover, we used 
the same hyper-parameter values, learning rate schedule, and 
optimization method as those used in the three model’s open 
source code [59-61]: 
1) When training VGG19, the Adam optimization method 

and a step decay schedule for the learning rate were used. 
The initial learning rate was set to 10-3. The learning rate 
was reduced to 10-4 and 10-5 at the beginning of the 50-th 
and the 70-th epoch, respectively. The number of training 
instances in each batch was set to 128. The maximum 
number of epochs allowed for model training was set to 
100. 

2) When training the LSTM model, the Adam optimization 
method and a fixed learning rate of 10-3 were used. The 
number of training instances in each batch was set to 24. 
The maximum number of epochs allowed for model 
training was set to 104. 

3) When training the GRU model, the Adam optimization 
method and a fixed learning rate of 10-3 were used. The 
number of training instances in each batch was set to 128. 
The maximum number of epochs allowed for model 
training was set to 10. 

On an unloaded system, we trained VGG19 five times, the 
LSTM model five times, and the GRU model five times, each 
in a separate run. We found for our progress indication 
method, the mean of the average estimation errors across the 
15 runs was minimized when w=50, r=200, and c=0.04. 
These values were chosen as the default values of w, r, and c. 

H. SENSITIVITY ANALYSIS OF w, r, AND c 
In this section, we use several experiments to evaluate the 
impact of w, r, and c on the accuracy of the estimates provided 
by the progress indicator. In each experiment, we varied one 
parameter’s value while keeping the other parameters’ values 
constant. The mean of the average estimation errors across all 
runs of all of the unloaded system tests shown in Sections IV-
C to IV-E and Sections A-C in the Appendix served as the 
accuracy measure for the estimates provided by the progress 
indicator. 
 
w (the maximum number of validation points allowed to fit the 
regression function) 

The first experiment concerns w, the maximum number of 
validation points allowed to fit the regression function. The 
default value of w is 50. We varied w from 3 to 90. Fig. 35 
shows w’s impact on the mean of the average estimation 
errors. When w=10, 20, 30, 40, or 60, the accuracy measures 
are approximately the same as when w=50. When w is too 
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small, not enough validation points are used to fit the 
regression function. When w is too large, many validation 
points that are too old to properly reflect the validation curve’s 
future trend are used to fit the regression function. In either 
case, the fitted regression function may not reflect the 
validation curve’s future trend well, degrading the accuracy of 
the estimates provided by the progress indicator. The safe 
range for w is between 10 and 60. If w is outside of this safe 
range, the accuracy of the estimates provided by the progress 
indicator will drop. 

 

FIGURE 35.   The mean of the average estimation errors vs. w. 

 
r (the number of disjoint intervals into which the possible 
range of the simulated number of validation points needed for 
model training is divided) 

 

FIGURE 36.   The mean of the average estimation errors vs. r. 

 
The second experiment concerns r, the number of disjoint 

intervals into which the possible range [n+1, vmax] of the 
simulated number of validation points needed for model 
training is divided (see Section III-C.3). The default value of r 
is 200. We varied r from 75 to 550. Fig. 36 shows r’s impact 
on the mean of the average estimation errors. When r=150, 
250, 300, 350, 400, or 450, the accuracy measures are 
approximately the same as when r=200. Recall that the 
projected number of validation points needed for model 
training is computed based on the intervals identified as local 
modes. When r is too small, each of the r divided intervals is 
large. An interval regarded as a local mode can contain much 
more than the actual local mode, introducing noise in 
estimating the number of validation points needed for model 
training. When r is too large, each of the r divided intervals is 
small. None of the r intervals may contain enough simulated 
numbers of validation points needed for model training and 
pass the threshold of being regarded as a local mode, even if 

some relevant local modes do indeed exist. In either case, the 
accuracy of the estimates provided by the progress indicator 
can degrade. The safe range for r is between 150 and 450. 
 
c (the coefficient used to compute ) 

The third experiment concerns c, the coefficient used to 
compute the threshold . Recall that  is used to decide whether 
an interval split from [n+1, vmax] is a local mode or not. The 
projected number of validation points needed for model 
training is computed based on the identified local modes. The 
default value of c is 0.04. We varied c from 0.01 to 0.11. Fig. 
37 shows c’s impact on the mean of the average estimation 
errors. When c=0.03, 0.05, 0.06, or 0.07, the accuracy 
measures are roughly the same as when c=0.04. When c is 
too large, some relevant local modes may be excluded. When 
c is too small, some intervals regarded as local modes may 
not be real local modes. In either case, the accuracy of the 
estimates provided by the progress indicator can degrade. The 
safe range for c is between 0.03 and 0.07. 

 

FIGURE 37.   The mean of the average estimation errors vs. c . 

 
In summary, each of the parameters has a reasonably large 

safe range, within which the accuracy of the estimates 
provided by the progress indicator is insensitive to parameter 
value changes. For each parameter, its default value is within 
its safe range. If a parameter is outside of its safe range, the 
accuracy of the estimates provided by the progress indicator 
may drop. 

V. DISCUSSION 
This work focuses on developing system techniques to support 
progress indicators for deep learning model training. In this 
section, we describe several theoretical issues as being 
potentially interesting areas for future work. 

When a fixed learning rate is used during the entire model 
training process, the method for estimating the number of 
validation points needed for model training in Section III-C 
treats the random noise’s variance as invariant over time. Yet, 
in reality, as the validation error tends to decrease more slowly 
over time, the random noise’s variance tends to reduce over 
time. Factoring this into our estimation method could improve 
its accuracy. One way to do this is to use a decay factor to 
model the reduction of the random noise’s variance over time. 
Ideally, the decay factor should be derived based on a 
theoretical underpinning. 
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This work gives no upper bound on the progress indicator’s 
estimation errors for the model training cost. It would be 
interesting to derive such upper bounds, possibly under certain 
conditions, similar to what Chaudhuri et al. [62] did for 
database query progress indicators. 

This work uses only the data collected from the current 
model training process to estimate the regression function and 
the random noise’s variance. In practice, a lot of data from the 
previous model building processes are often available. Meta-
learning can be done on these data to improve the progress 
indicator’s estimates for the current model training process. 
One way to do this is to compute weights based on the 
similarities of the validation curves from the previous model 
training processes and the current validation curve [63]. Then 
a weighted likelihood approach [64] is used to estimate the 
regression function and the random noise’s variance for the 
current model training process. 

In estimating the model training cost, as a rough 
approximation, we regard the cost of going backwards through 
the neural network once to be twice that of going forward 
through the neural network once. Yet, this is not fully accurate, 
resulting in estimation errors. To improve the estimation 
accuracy, we can develop more precise cost estimation models 
based on the type and architecture of the deep neural network 
and the activation functions used. 

VI. CONCLUSIONS 
In this paper, we present a detailed progress indicator 
implementation method for deep learning model training 
when early stopping is allowed. Our main idea is to use the 
validation curve to project the number of batches needed for 
model training. During model training, we keep refining the 
projected model training cost and checking the current model 
training speed. Periodically, we revise the projected fraction 
of model training work completed and the projected remaining 
model training time displayed to the user. Our experiments 
show that the resulting progress indicator can offer useful 
information even if the run-time system load varies over time. 
In addition, the progress indicator can self-correct its initial 
estimation errors, if any, over time. This demonstrates for the 
first time the feasibility of providing non-trivial progress 
indicators for deep learning model training when early 
stopping is allowed. 

APPENDIX 
In the appendix, we show the performance results not included 
in Section IV. 

A. ADDITIONAL TEST RESULTS OF USING A FIXED 
LEARNING RATE DURING THE ENTIRE MODEL 
TRAINING PROCESS 

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET 
Using the SGD optimization method 

In this test, GoogLeNet was trained on an unloaded system 
using the SGD optimization method and a fixed learning rate 

during the entire model training process. The performance 
results are shown in Fig. 38-41. The early stopping criterion 
was never satisfied during the whole model training process. 
The progress indicator figured this out correctly and made 
accurate projections. 

 

FIGURE 38.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a fixed learning rate and SGD). 

 

FIGURE 39.   Model training speed over time (unloaded system test for 
training GoogLeNet using a fixed learning rate and SGD). 

 
FIGURE 40.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a fixed learning 
rate and SGD). 
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FIGURE 41.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a fixed learning rate and 
SGD). 

 
Using the AdaGrad optimization method 

In this test, GoogLeNet was trained on an unloaded system 
using the AdaGrad optimization method and a fixed learning 
rate during the entire model training process. The performance 
results are shown in Fig. 42-45 and are similar to those shown 
in Fig. 38-41. 

 
FIGURE 42.   Model training cost projected over time (unloaded 
system test for training GoogLeNet using a fixed learning rate and 
AdaGrad). 

 

FIGURE 43.   Model training speed over time (unloaded system test for 
training GoogLeNet using a fixed learning rate and AdaGrad). 

 
FIGURE 44.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a fixed learning 
rate and AdaGrad). 

 
FIGURE 45.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a fixed learning rate and 
AdaGrad). 

 

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
THE GRU MODEL 
Using the RMSprop optimization method 

In this test, the GRU model was trained on an unloaded 
system using the RMSprop optimization method and a fixed 
learning rate during the entire model training process. The 
performance results are shown in Fig. 46-49 and are similar to 
those shown in Fig. 19-22. 

 

FIGURE 46.   Model training cost projected over time (unloaded system 
test for training the GRU model using a fixed learning rate and 
RMSprop). 
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FIGURE 47.   Model training speed over time (unloaded system test for 
training the GRU model using a fixed learning rate and RMSprop). 

 

FIGURE 48.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a fixed learning 
rate and RMSprop). 

 

FIGURE 49.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a fixed learning rate and 
RMSprop). 

 
Using the SGD optimization method 

In this test, the GRU model was trained on an unloaded 
system using the SGD optimization method and a fixed 
learning rate during the entire model training process. The 
performance results are shown in Fig. 50-53. From 163 to 388 
seconds, the projected model training cost differed 
significantly from the actual one, leading to inaccurate 
projections of the remaining model training time and the 
percentage of model training work completed. Much of this 
inaccuracy results from power regression’s inability to 
accurately estimate the trend curve during this time period. 

 

FIGURE 50.   Model training cost projected over time (unloaded system 
test for training the GRU model using a fixed learning rate and SGD). 

 

FIGURE 51.   Model training speed over time (unloaded system test for 
training the GRU model using a fixed learning rate and SGD). 

 

FIGURE 52.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a fixed learning 
rate and SGD). 

 

FIGURE 53.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a fixed learning rate and 
SGD). 
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Using the AdaGrad optimization method 
In this test, the GRU model was trained on an unloaded 

system using the AdaGrad optimization method and a fixed 
learning rate during the entire model training process. The 
performance results are shown in Fig. 54-57. At 10 seconds, 
only three validation points were available, making it difficult 
to estimate the trend curve accurately. Hence, the progress 
indicator made inaccurate projections. After 20 seconds, the 
projections given by the progress indicator became much more 
accurate as more validation points became available. 

 

FIGURE 54.   Model training cost projected over time (unloaded system 
test for training the GRU model using a fixed learning rate and 
AdaGrad). 

 

FIGURE 55.   Model training speed over time (unloaded system test for 
training the GRU model using a fixed learning rate and AdaGrad). 

 

FIGURE 56.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a fixed learning 
and AdaGrad). 

 

FIGURE 57.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a fixed learning rate and 
AdaGrad). 

B. ADDITIONAL TEST RESULTS OF USING AN 
EXPONENTIAL DECAY SCHEDULE FOR THE 
LEARNING RATE 

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET 
Using the RMSprop optimization method 

In this test, GoogLeNet was trained on an unloaded system 
using an exponential decay schedule for the learning rate and 
the RMSprop optimization method. The performance results 
are shown in Fig. 58-61 and are similar to those shown in Fig. 
23-26. 

 

FIGURE 58.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using an exponential decay schedule for the 
learning rate and RMSprop). 

 

FIGURE 59.   Model training speed over time (unloaded system test for 
training GoogLeNet using an exponential decay schedule for the 
learning rate and RMSprop). 
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FIGURE 60.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using an exponential 
decay schedule for the learning rate and RMSprop). 

 

FIGURE 61.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using an exponential decay 
schedule for the learning rate and RMSprop). 

 
Using the SGD optimization method 

In this test, GoogLeNet was trained on an unloaded system 
using an exponential decay schedule for the learning rate and 
the SGD optimization method. The performance results are 
shown in Fig. 62-65 and are similar to those shown in Fig. 23-
26. 

 

FIGURE 62.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using an exponential decay schedule for the 
learning rate and SGD). 

 

FIGURE 63.   Model training speed over time (unloaded system test for 
training GoogLeNet using an exponential decay schedule for the 
learning rate and SGD). 

 

FIGURE 64.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using an exponential 
decay schedule for the learning rate and SGD). 

 

FIGURE 65.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using an exponential decay 
schedule for the learning rate and SGD). 

 
Using the AdaGrad optimization method 

In this test, GoogLeNet was trained on an unloaded system 
using an exponential decay schedule for the learning rate and 
the AdaGrad optimization method. The performance results 
are shown in Fig. 66-69 and are similar to those shown in Fig. 
23-26. 
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FIGURE 66.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using an exponential decay schedule for the 
learning rate and AdaGrad). 

 

FIGURE 67.   Model training speed over time (unloaded system test for 
training GoogLeNet using an exponential decay schedule for the 
learning rate and AdaGrad). 

 

FIGURE 68.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using an exponential 
decay schedule for the learning rate and AdaGrad). 

 

FIGURE 69.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using an exponential decay 
schedule for the learning rate and AdaGrad). 

 

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
THE GRU MODEL 
Using the RMSprop optimization method 

In this test, the GRU model was trained on an unloaded 
system using an exponential decay schedule for the learning 
rate and the RMSprop optimization method. The performance 
results are shown in Fig. 70-73 and are similar to those shown 
in Fig. 27-30. 

 

FIGURE 70.   Model training cost projected over time (unloaded system 
test for training the GRU model using an exponential decay schedule for 
the learning rate and RMSprop). 

 

FIGURE 71.   Model training speed over time (unloaded system test for 
training the GRU model using an exponential decay schedule for the 
learning rate and RMSprop). 

 

FIGURE 72.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using an exponential 
decay schedule for the learning rate and RMSprop). 
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FIGURE 73.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using an exponential decay 
schedule for the learning rate and RMSprop). 

 
Using the SGD optimization method 

In this test, the GRU model was trained on an unloaded 
system using an exponential decay schedule for the learning 
rate and the SGD optimization method. The performance 
results are shown in Fig. 74-77 and are similar to those shown 
in Fig. 23-26. 

 

FIGURE 74.   Model training cost projected over time (unloaded system 
test for training the GRU model using an exponential decay schedule for 
the learning rate and SGD). 

 

FIGURE 75.   Model training speed over time (unloaded system test for 
training the GRU model using an exponential decay schedule for the 
learning rate and SGD). 

 

FIGURE 76.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using an exponential 
decay schedule for the learning rate and SGD). 

 

FIGURE 77.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using an exponential decay 
schedule for the learning rate and SGD). 

 
Using the AdaGrad optimization method 

In this test, the GRU model was trained on an unloaded 
system using an exponential decay schedule for the learning 
rate and the AdaGrad optimization method. The performance 
results are plotted in Fig. 78-81, showing the progress 
indicator made reasonably accurate projections. 

 

FIGURE 78.   Model training cost projected over time (unloaded system 
test for training the GRU model using an exponential decay schedule for 
the learning rate and AdaGrad). 
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FIGURE 79.   Model training speed over time (unloaded system test for 
training the GRU model using an exponential decay schedule for the 
learning rate and AdaGrad). 

 

FIGURE 80.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using an exponential 
decay schedule for the learning rate and AdaGrad). 

 

FIGURE 81.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using an exponential decay 
schedule for the learning rate and AdaGrad). 

C. ADDITIONAL TEST RESULTS OF USING A STEP 
DECAY SCHEDULE FOR THE LEARNING RATE 

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
GOOGLENET 
In this section, we show the test results for model training 
using a step decay schedule for the learning rate. In each figure 
of this section, we use a vertical dash-dotted line to give the 
time when a learning rate decay occurred. 
 
Using the RMSprop optimization method 

In this section, we show the test results for training 
GoogLeNet on an unloaded system using a step decay 
schedule for the learning rate and the RMSprop optimization 
method. The performance results are shown in Fig. 82-85 and 
are similar to those shown in Fig. 31-34. 

 

FIGURE 82.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a step decay schedule for the learning 
rate and RMSprop). 

 

FIGURE 83.   Model training speed over time (unloaded system test for 
training GoogLeNet using a step decay schedule for the learning rate 
and RMSprop). 

 

FIGURE 84.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a step decay 
schedule for the learning rate and RMSprop). 

 

FIGURE 85.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a step decay schedule for the 
learning rate and RMSprop). 
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Using the SGD optimization method 

In this section, we show the test results for training 
GoogLeNet on an unloaded system using a step decay 
schedule for the learning rate and the SGD optimization 
method. The performance results are plotted in Fig. 86-89, 
showing the progress indicator made reasonably accurate 
projections. 

 

FIGURE 86.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a step decay schedule for the learning 
rate and SGD). 

 

FIGURE 87.   Model training speed over time (unloaded system test for 
training GoogLeNet using a step decay schedule for the learning rate 
and SGD). 

 

FIGURE 88.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a step decay 
schedule for the learning rate and SGD). 

 

FIGURE 89.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a step decay schedule for the 
learning rate and SGD). 

 
Using the AdaGrad optimization method 

In this section, we show the test results for training 
GoogLeNet on an unloaded system using a step decay 
schedule for the learning rate and the AdaGrad optimization 
method. The performance results are shown in Fig. 90-93 and 
are similar to those shown in Fig. 86-89. 

 

FIGURE 90.   Model training cost projected over time (unloaded system 
test for training GoogLeNet using a step decay schedule for the learning 
rate and AdaGrad). 

 

FIGURE 91.   Model training speed over time (unloaded system test for 
training GoogLeNet using a step decay schedule for the learning rate 
and AdaGrad). 
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FIGURE 92.   Remaining model training time projected over time 
(unloaded system test for training GoogLeNet using a step decay 
schedule for the learning rate and AdaGrad). 

 

FIGURE 93.   Completed percentage estimated over time (unloaded 
system test for training GoogLeNet using a step decay schedule for the 
learning rate and AdaGrad). 

 

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING 
THE GRU MODEL 
In each test shown in this section, early stopping occurred 
before the first decay point (see Fig. 5). 
 
Using the Adam optimization method 

In this section, we show the test results for training the GRU 
model on an unloaded system using a step decay schedule for 
the learning rate and the Adam optimization method. The 
performance results are plotted in Fig. 94-97, showing the 
progress indicator made reasonably accurate projections. 

 

FIGURE 94.   Model training cost projected over time (unloaded system 
test for training the GRU model using a step decay schedule on the 
learning rate and Adam). 

 

 

FIGURE 95.   Model training speed over time (unloaded system test for 
training the GRU model using a step decay schedule on the learning 
rate and Adam). 

 

FIGURE 96.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a step decay 
schedule on the learning rate and Adam). 

 

FIGURE 97.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and Adam). 

 
Using the RMSprop optimization method 

In this section, we show the test results for training the GRU 
model on an unloaded system using a step decay schedule for 
the learning rate and the RMSprop optimization method. The 
performance results are shown in Fig. 98-101 and are similar 
to those shown in Fig. 94-97. 
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FIGURE 98.   Model training cost projected over time (unloaded system 
test for training the GRU model using a step decay schedule on the 
learning rate and RMSprop). 

 

FIGURE 99.   Model training speed over time (unloaded system test for 
training the GRU model using a step decay schedule on the learning 
rate and RMSprop). 

 

FIGURE 100.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a step decay 
schedule on the learning rate and RMSprop). 

 

FIGURE 101.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and RMSprop). 

 

Using the SGD optimization method 
In this section, we show the test results for training the GRU 

model on an unloaded system using a step decay schedule for 
the learning rate and the SGD optimization method. The 
performance results are shown in Fig. 102-105. At 10 seconds, 
only three validation points were available, making it difficult 
to estimate the trend curve accurately. Hence, the progress 
indicator made inaccurate projections. After 20 seconds, the 
projections given by the progress indicator became much more 
accurate as more validation points became available. 

 

FIGURE 102.   Model training cost projected over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and SGD). 

 

FIGURE 103.   Model training speed over time (unloaded system test 
for training the GRU model using a step decay schedule on the learning 
rate and SGD). 

 

FIGURE 104.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a step decay 
schedule on the learning rate and SGD). 
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FIGURE 105.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and SGD). 

 
Using the AdaGrad optimization method 

In this section, we show the test results for training the GRU 
model on an unloaded system using a step decay schedule for 
the learning rate and the AdaGrad optimization method. The 
performance results are plotted in Fig. 106-109, showing the 
progress indicator made reasonably accurate projections. 

 

FIGURE 106.   Model training cost projected over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and AdaGrad). 

 

FIGURE 107.   Model training speed over time (unloaded system test 
for training the GRU model using a step decay schedule on the learning 
rate and AdaGrad). 

 

FIGURE 108.   Remaining model training time projected over time 
(unloaded system test for training the GRU model using a step decay 
schedule on the learning rate and AdaGrad). 

 

FIGURE 109.   Completed percentage estimated over time (unloaded 
system test for training the GRU model using a step decay schedule on 
the learning rate and AdaGrad). 

D. SUMMARY STATISTICS OF THE AVERAGE 
ESTIMATION ERROR ACROSS THE FIVE RUNS 
 

TABLE IV 
FOR EACH COMBINATION OF A DEEP LEARNING MODEL, A LEARNING RATE 

SCHEDULE, AND AN OPTIMIZATION METHOD IN THE UNLOADED SYSTEM 

TEST PRESENTED IN SECTIONS A TO C, THE SUMMARY STATISTICS OF THE 

AVERAGE ESTIMATION ERROR ACROSS THE FIVE RUNS 

Deep learning 
model 

Learning rate 
schedule 

Optimization 
method 

Average estimation 
error 

GoogLeNet 

fixed learning rate SGD  0.093±0.012 
fixed learning rate AdaGrad 0.093±0.008 
exponential decay RMSprop 0.990±0.282 
exponential decay SGD 0.897±0.274 
exponential decay AdaGrad 0.632±0.197 
step decay RMSprop 0.364±0.025 
step decay SGD 0.540±0.160 
step decay AdaGrad 0.552±0.196 

GRU 

fixed learning rate RMSprop 0.275±0.101 
fixed learning rate SGD 0.793±0.326 
fixed learning rate AdaGrad 0.536±0.226 
exponential decay RMSprop 0.284±0.046 
exponential decay SGD 0.695±0.530 
exponential decay AdaGrad 0.631±0.360 
step decay Adam 0.333±0.050 
step decay RMSprop 0.384±0.133 
step decay SGD 0.568±0.217 

 step decay AdaGrad 0.304±0.169 

 
Recall that for each combination of a deep learning model, a 
learning rate schedule, and an optimization method in the 
unloaded system test, we trained the model five times, each in 
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a separate run. For each combination presented in Sections A 
to C, we show the mean and the standard deviation of the 
average estimation error across the five runs in Table IV. 
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