

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Progress Indication for Deep Learning Model
Training: A Feasibility Demonstration
Qifei Dong1 and Gang Luo1
1Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA

Corresponding author: Gang Luo (luogang@uw.edu).

Gang Luo was partially supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number R01HL142503.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ABSTRACT Deep learning is the state-of-the-art learning algorithm for many machine learning tasks. Yet,
training a deep learning model on a large data set is often time-consuming, taking several days or even
months. During model training, it is desirable to offer a non-trivial progress indicator that can continuously
project the remaining model training time and the fraction of model training work completed. This makes the
training process more user-friendly. In addition, we can use the information given by the progress indicator
to assist in workload management. In this paper, we present the first set of techniques to support non-trivial
progress indicators for deep learning model training when early stopping is allowed. We report an
implementation of these techniques in TensorFlow and our evaluation results for both convolutional and
recurrent neural networks. Our experiments show that our progress indicator can offer useful information
even if the run-time system load varies over time. In addition, the progress indicator can self-correct its initial
estimation errors, if any, over time.

INDEX TERMS Deep learning, model training, progress indicator, TensorFlow

LIST OF SYMBOLS
 Floor function.
a Scaling factor of the inverse power-law function.
b Exponent of the inverse power-law function.
bmax Maximum number of batches allowed for model

training.
B Number of training instances in each batch.
c Bias term of the inverse power-law function.
c Coefficient used to compute .
d Number of input variables of the objective function.
ei Validation error at the i-th validation point.
f(i) Regression function’s value at the i-th validation

point.
g Number of batches of model training between two

consecutive validation points.
h(n)

Sequence number of the current validation point on
the current segment.

Imax Maximum number of rounds allowed for the inner
loop in each round of the outer loop of the truncated
Newton method

k Number of synthetic validation curves generated via
Monte Carlo simulation at each validation point after
the v-th one.

K Size of the sliding time window used for computing
the model training speed.

li

Number of validation points on the i-th segment of
the validation curve.

me Maximum number of epochs allowed for model
training.

n Number of validation points obtained thus far.
ni A simulated random noise at the i-th validation

point.
p Patience.
qj-1 Sequence number of the last validation point on the

previous segment of the validation curve.
r

Number of disjoint intervals into which the possible
range of the simulated number of validation points
needed for model training is divided.

Rmax Maximum number of rounds allowed for the loop.
s(i)

Sequence number of the segment of the validation
curve that the i-th validation point is on.

t Threshold used to identify the initial transient stage
of each segment of the validation curve.

T Number of data instances in the training set.
Tmax Maximum number of rounds allowed for the outer

loop of the truncated Newton method.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

U Unit of work.
V Number of data instances in the validation set.
vj-1 Number of validation points needed for model

training that is estimated at the last validation point
on the previous segment of the validation curve.

vmax

Maximum number of validation points allowed for
model training.

w

Maximum number of validation points allowed to fit
the regression function.

w' Number of validation points used to fit the regression
function.

α Initial learning rate used in the exponential decay
schedule.

αi Learning rate at the i-th validation point.
i Learning rate on the i-th segment of the validation

curve.
 Threshold used to decide which interval is regarded

as a local mode.
 min_delta.
 Tolerance.
 Constant controlling the learning rate’s decay speed

in the exponential decay schedule.
𝜎ොଶ

Estimated variance of the random noise when a fixed
learning rate is used during the entire model training
process.

𝜎ො
ଶ Estimated variance of the random noise at the i-th

validation point.
𝜎ොሺሻ
ଶ Estimated variance of the random noise on the i-th

segment of the validation curve.
v Threshold on the number of validation points

reached, beyond which we use the validation curve
to refine the projected number of validation points
needed for model training.

I. INTRODUCTION
The need for non-trivial progress indicators for deep learning
model training

FIGURE 1. A progress indicator for deep learning model training.

Deep learning is the state-of-the-art learning algorithm for

many machine learning tasks like image classification, natural
language processing, and speech recognition [1]. But, building
a deep learning model on a large data set is often time-
consuming. Using 50 graphics processing units (GPUs), a
Google team spent two months training a deep neural network
on 300 million images [2]. With 200 central processing units,

Weyand et al. [3] took 2.5 months to train a convolutional
neural network on 126 million photos. Akiba et al. [4] showed
that 29 hours were needed to train a convolutional neural
network on the ImageNet data set [5] with two GPUs. 15
minutes were needed with 1,024 GPUs. As a standard human-
computer interaction principle, for each task running longer
than 10 seconds, we need a non-trivial progress indicator (see
Fig. 1) to continuously project the remaining task running time
and the fraction of the task completed [6, Ch. 5.5]. Thus,
progress indicators are desirable for deep learning model
training.

Besides making the deep learning model training process
more user-friendly, we can use the information given by the
progress indicator to assist with workload management as
outlined in our papers [7], [8]. We recently talked with Yasser
M. Ibrahim, the head of distributed machine learning at
Amazon. He mentioned that using a large computer cluster,
his team took several months to train a deep neural network
supporting Alexa’s speech recognition function. Every so
often, his team retrains this neural network and would like to
finish the re-training in a given amount of time. As the amount
of training data, the neural network’s hyper-parameter values,
and the server capacity continue changing over time, his team
needs a method to find an appropriate cluster configuration for
each round of re-training. A workload management approach
aided by progress indicators would serve this purpose [7].

A neural network is trained in one or more epochs, each of
which requires going through all of the training instances once.
Some deep learning software supplies trivial progress
indicators during model training, e.g., by displaying the
number of epochs that has been completed [9] or the value of
the objective function achieved [10] over time. Yet, this
information is too coarse-grained for many purposes. On a
large data set, a large amount of time is needed to go through
an epoch. Moreover, early stopping is widely used in deep
learning model training to help avoid overfitting. When early
stopping is allowed, the number of epochs needed for model
training is unknown beforehand, but dynamically decided
during model training based on some stopping criterion [1].
Our prior work [11] presents a technique to support non-trivial
progress indicators for deep learning model training when the
number of epochs needed for model training is known
beforehand. This technique updates the projected numbers for
the model training task once every few seconds, but is unable
to handle early stopping. To the best of our knowledge, no
other technique has been published to offer non-trivial
progress indicators for deep learning model training. How to
support such progress indicators in the presence of early
stopping remains an open problem.

Our contributions

To address the gap, in this paper we present the first set of
techniques to support non-trivial progress indicators for deep
learning model training when early stopping is allowed. With
low overhead, our techniques can handle various

Progress Indicator

Recurrent neural network

Time passed 0d 19h 41min
Estimated remaining time 7d 9h 12min (10% done)
Estimated cost 17,645,100U
Model training speed 249U/s Cancel

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 3

combinations of the deep learning model, the learning rate
schedule like learning rate decay, and the optimization method
[12].

A deep learning model is trained in batches. In each batch,
a fixed number of training instances are used to compute the
updates to the model’s parameters. Each batch’s running cost
is relatively stable and can be quickly measured. Thus, the key
to estimating the progress of model training is to project the
number of batches needed for model training. During model
training, we use the non-smooth learning curve on the
validation set (a.k.a. the validation curve) to make this
projection. This curve depicts the model’s error rates on the
validation set, i.e., the validation errors, obtained over time. As
Fig. 2 shows, the validation error tends to reduce over time
before early stopping occurs and also oscillates over time. If
we use a monotonically decreasing function to model the
validation curve without accommodating the oscillations, and
directly apply the early stopping criterion to the projected
curve, we seldom obtain a good estimate of the number of
batches needed for model training. To address this challenge,
we regard the validation curve as the sum of a smooth trend
curve and some zero-mean random noise. We use a regression
function to estimate the trend curve, and historical data to
gauge the random noise’s variance. If the learning rate changes
over time, we also model the change’s impact on the random
noise’s variance. Then we use a Monte Carlo simulation
approach to project the number of batches needed for model
training. By adding simulated random noise to the projected
trend curve, we generate several synthetic validation curves.
On each of them, we apply the early stopping criterion to
obtain a simulated number of batches needed for model
training. The estimated mode of these simulated numbers
forms the basis for the projected number of batches needed for
model training. To the best of our knowledge, this is the first
time Monte Carlo simulation has been used for progress
indication and is a main innovation of this work.

FIGURE 2. The validation curve = a trend curve + some random noise.

We implemented our techniques in TensorFlow [13], an

open-source deep learning software package. We report our
evaluation results for both convolutional and recurrent neural
networks. Our results show that with negligible run-time
overhead, the resulting progress indicator can provide useful
information even in the presence of varying run-time system
loads. Also, the progress indicator can self-correct its initial
estimation errors, if any, over time.

Organization of the paper

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes our proposed
techniques for implementing progress indicators for deep
learning model training when early stopping is allowed.
Section IV reports an implementation of our techniques in
Tensorflow, as well as the performance evaluation results of
the resulting progress indicators. Section V presents some
interesting areas for future work. Section VI concludes the
paper.

II. RELATED WORK
In this section, we briefly review the related work. A detailed
discussion of the related work is available in our prior paper
[7].

Sophisticated progress indicators

For machine learning model training, we have built
sophisticated progress indicators for decision tree, random
forest, and neural network when the number of epochs needed
for model training is known beforehand [7], [11]. In addition,
sophisticated progress indicators have been proposed for
database queries [8], [14]-[17], static program analysis [18],
program compilation [19], subgraph queries [20], MapReduce
jobs [21], [22], and automatic machine learning model
selection [23], [24]. As each kind of task has its own unique
properties, we cannot directly adopt the existing techniques
[7], [8], [11], [14]-[24] to implement progress indicators for
deep learning model training when early stopping is allowed.

Estimating deep learning model training time

Justus et al. [25] proposed a meta learning method for
estimating an epoch’s running time before starting to train a
deep learning model, by adopting features of the model, the
computational resources, and the training data set used to train
another deep learning model. This method predicts neither the
number of epochs nor the time needed for model training.

For estimating a deep learning model’s training time before
model training starts, researchers have proposed several
methods including Bayesian optimization [26], meta learning
using Multivariate Adaptive Regression Splines [27], meta
learning via support vector regression [28], and meta learning
via polynomial regression [29]. The projected numbers are
frequently inaccurate, are not continuously refined, and could
differ significantly from the true model training time on a
loaded computer. To build a non-trivial progress indicator, we
need to continuously refine the projected model training time.

Complexity analysis for training neural networks

Much research has been done on computing the time
complexity of training a neural network [30, Ch. 24], [31],
[32]. Yet, this information is not enough for constructing
progress indicators and provides no projected model training
time on a loaded computer. Time complexity typically ignores

V
al

id
at

io
n

er
ro

r

Time

validation curve

actual trend curve

random noise

0

 Author Name: Preparation of Papers for IEEE Access (February 2017)

4 VOLUME XX, 2017

data properties affecting the model training cost, as well as the
lower order terms and coefficients required for predicting the
model training cost. An ideal progress indicator should
continuously refine the model training cost as model training
proceeds.

III. IMPLEMENTATION TECHNIQUES
In this section, we describe our techniques for implementing
progress indicators for deep learning model training when
early stopping is allowed. Section III-A introduces some
concepts and notations that will be used throughout this paper.
Section III-B gives an overview of our progress indication
method. Sections III-C to III-E show how to estimate the
number of batches needed for model training when a fixed
learning rate is used during the entire model training process,
when a continuous decay schedule for the learning rate is used,
and when a step decay schedule for the learning rate is used,
respectively. Section III-F discusses the computational
complexity of estimating the number of batches needed for
model training.

A. SOME CONCEPTS AND NOTATIONS
In this section, we introduce some concepts and notations that
will be used throughout this paper. We have two pre-set
positive integers B and g, as well as a given early stopping
criterion. A deep learning model is trained in batches. In each
batch, B training instances are used to compute the updates to
the model’s parameters. After every g batches of model
training, we reach a validation point. At that time, we compute
the model’s error rate on the validation set, i.e., the validation
error, and check whether the early stopping criterion is met. If
so, model training is ended.

The validation curve depicts the validation errors obtained
over time during model training. Many early stopping criteria
exist, most of which are based on the validation curve [1],
[33]-[35]. One criterion is to stop model training when the
validation error has not improved over the best one recorded
for a given number of validation points [1], [33]. Another
criterion adopts the idea of stopping model training when the
validation error is over the best one recorded by at least a given
threshold, while the model’s error rate on the training set no
longer improves much [33]. Duvenaud et al [34] proposed a
criterion based on estimating the log marginal likelihood
without using a validation set. Mahsereci et al. [35] proposed
a criterion based on some local statistics of the computed
gradients without using a validation set.

The goal of this paper is neither to handle all of the existing
early stopping criteria nor to make the progress indicator’s
projections reach the maximum possible accuracy. Instead,
our goal is to demonstrate via a case study, the feasibility of
providing non-trivial and useful progress indication for deep
learning model training when early stopping is allowed.
Frequently, users can benefit from a rough estimate of the
remaining model training time [36]. Our demonstration
focuses on a widely used early stopping criterion with two pre-

set numbers: min_delta ≥0 and patience p>0 [37]. The
criterion is met if the validation error improves by ≤ for p
validation points consecutively. That is, letting ei denote the
validation error at the i-th validation point, model training
stops at the s-th validation point if es-p–ej< holds for each of
j=s-p+1, s-p+2, …, and s.

B. OVERVIEW OF OUR PROGRESS INDICATION
METHOD
In this section, we give an overview of our progress indication
method. We start with an initial estimate of the model training
cost. Both the predicted model training cost and the current
model training speed are gauged by U, the unit of work. Each
U depicts the average amount of work needed for processing
each training instance once in two steps in model training. The
first step is to go forward through the neural network once to
compute its prediction result on the training instance. The
second step is to go backwards through the neural network
once for backpropagation.

During model training, we keep gathering multiple
statistics, such as the number of batches done, and use them to
keep refining the estimated model training cost. We keep
checking the model training speed defined as the number of
Us completed per second during the K seconds before the
current time point. By default, K’s value is 10. At any moment,

the projected remaining model training time
= the projected remaining model training cost / the current

model training speed.
Periodically, we update the progress indicator with the latest
information. As the model training task keeps running, we
gather more precise information of it. As a result, our estimates
tend to become increasingly accurate over time.

Computing the model training cost

The model training cost is dominated by two components
and can be roughly regarded as their sum. The first component
is the cost of processing the training instances. The second
component is the cost of computing the validation errors. The
first one is easy to compute.

The cost of processing the training instances
= the number of batches needed for model training × the

number of training instances per batch × the average amount
of work needed for processing a training instance once in
model training

= the number of batches needed for model training×B×1
= the number of batches needed for model training×B.

Next, we compute the second component. We call each data
instance in the validation set a validation instance.

The cost of computing the validation errors
= the number of validation points needed for model training ×

the number of data instances in the validation set × the
average amount of work needed for processing a validation
instance once to compute the validation error.
To process a validation instance once, we need to go

forward through the neural network once to compute its

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 5

prediction result on the validation instance. We use the number
of multiplication operations needed to estimate the processing
cost [31]. Each neuron typically takes multiple inputs, each of
which links to a distinct connection weight. When going
forward through the neural network, we need to compute the
neuron’s output by multiplying each input by its linked
connection weight. In comparison, when going backwards
through the neural network, we need to compute a partial
derivative with respect to each input and a partial derivative
with respect to each connection weight. The former step
requires doing a multiplication with the connection weight
linked to the input. The latter requires doing a multiplication
with the input linked to the connection weight. Hence, as a
rough approximation based on the number of multiplication
operations needed, we regard the cost of going backwards
through the neural network once to be twice that of going
forward through the neural network once. That is, the average
amount of work needed for processing a validation instance
one time = U/3. Consequently,

the cost of computing the validation errors
= the number of validation points needed for model

training×V/3,
with V being the number of data instances in the validation set.

Summing the two components, we have
the model training cost

= the number of batches needed for model training×B + the
number of validation points needed for model training×V/3.

Before model training starts, we can easily know B and V’s
values. Thus, to estimate the model training cost, we mainly
need to estimate the number of batches and the number of
validation points needed for model training.

Let T denote the number of data instances in the training set.
Before a deep neural network is trained, the user of the deep
learning software needs to specify the value of a hyper-
parameter me showing the maximum number of epochs
allowed for model training. Each epoch requires passing
through all of the training instances once and includes T/B
batches of model training. The maximum number of batches
allowed for model training is

bmax=me×T/B.
Before model training starts, we can easily know T and B’s
values and subsequently bmax’s value. Recall that a validation
point is reached every g batches of model training. If early
stopping occurs before finishing the bmax-th batch,

the number of batches needed for model training
= the number of validation points needed for model

training×g.
If early stopping never occurs and model training reaches the
maximum number of batches allowed,

the number of batches needed for model training = bmax,
and

the number of validation points needed for model training
= vmax
≝ bmax/g.

Here, is the floor function, e.g., 3.4=3. vmax is the
maximum number of validation points allowed for model
training. Thus, the key to estimating the model training cost is
to estimate the number of validation points needed for model
training, and subsequently, whether early stopping will ever
occur.

Estimating the number of validation points needed for model
training

Initially, with no extra information, we estimate the number
of validation points needed for model training to be vmax, the
maximum number of validation points allowed for model
training. During model training, once the number of validation
points reached is ≥ a given threshold v, we start using the
validation curve to keep refining the projected number of
validation points needed for model training. In our
implementation, we choose 3 as v’s default value to strike a
balance between having enough validation points to make a
reasonable projection and not having to wait too long before
the initial projected number could be refined.

As Fig. 2 shows, the validation curve often oscillates over
time. We regard it as the sum of a smooth trend curve and
some zero-mean random noise. At each validation point that
is after the v-th one and where the early stopping criterion is
unmet, we first fit a smooth regression function to the
validation curve up to this point, and then use the fitted
function to estimate the trend curve beyond this point. Since
the regression function is smooth, the estimated trend curve
does not reflect the oscillations on the validation curve. Thus,
directly applying the early stopping criterion to the estimated
trend curve often does not lead to a good estimate of the
number of validation points needed for model training. For
example, as the validation error tends to decrease over time,
we use a monotonically decreasing regression function to
estimate the trend curve. When the min_delta =0, the early
stopping criterion includes a term that the validation error
increases at some point. Thus, the criterion is never met on the
estimated trend curve, even if early stopping occurs frequently
in practice.

To address this issue, we use historical data to gauge the
random noise’s variance. Then we use a Monte Carlo
simulation approach to project the number of validation points
needed for model training. By adding simulated random noise
to the projected trend curve, we generate several synthetic
validation curves. To each of them, we apply the early
stopping criterion and obtain the number of validation points
needed. The smaller of this number and vmax, the maximum
number of validation points allowed for model training,
becomes a simulated number of validation points needed for
model training. The estimated mode of these simulated
numbers forms the basis for our projected number of
validation points needed for model training.

Fig. 3 shows the flow chart of our method for estimating
the number of validation points needed for model training.
Sections III-C to III-E present the details of this method.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

6 VOLUME XX, 2017

FIGURE 3. The flow chart of our method for estimating the number of
validation points needed for model training.

C. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A FIXED
LEARNING RATE IS USED DURING THE ENTIRE
MODEL TRAINING PROCESS
This section focuses on the case where a fixed learning rate is
used during the entire model training process. We show how
to estimate the number of validation points needed for model
training upon reaching a validation point that is after the v-th
one and at which the early stopping criterion is unmet. Section
III-C.1 shows the regression method used to estimate the trend
curve. Section III-C.2 covers how to estimate the random
noise’s variance. Section III-C.3 presents the Monte Carlo
simulation approach used to project the number of validation
points needed for model training.

1) ESTIMATING THE TREND CURVE
The validation error tends to decrease over time, whereas the
rate of decrease typically reduces over time. In keeping with
this, we use the same inverse power law function [7], [38] of
the form

f(i)=ai-b+c
as the regression function to model both the validation and
trend curves (see Fig. 2). Here, i is the sequence number of the
validation point, a>0, b>0, and c>0. We first fit the function to
the validation curve up to the current validation point, and then
use the fitted function to estimate the trend curve beyond that
point.

Intuitively, the validation points well before the current one
may not accurately reflect the validation curve’s trend beyond
the current validation point and could be unsuitable for
function fitting. Thus, we use a pre-set window size w whose
default value is 50 to skip these validation points. Let n denote
the number of validation points obtained thus far. When fitting
the regression function to the validation curve, we use the last

w'=min(w, n)
validation points instead of all of the n validation points
obtained thus far. To compute a, b, and c’s values, we solve a
constrained minimization problem:

min ∑ ሾ𝑒 െ ሺ𝑎𝑖ି 𝑐ሻሿଶ
ୀି௪ᇱାଵ (1)

the sum of the squared errors at the last w' validation points,
subject to the constraints that a>0, b>0, and c>0. Recall that ei
is the validation error at the i-th validation point. One way to
do constrained minimization is to use the truncated Newton
method [39, Ch. 7.1] and initialize a, b, and c as one, one, and
zero, respectively.

2) ESTIMATING THE RANDOM NOISE’S VARIANCE
Recall that we regard the validation curve as the sum of a
smooth trend curve and some zero-mean random noise. ei, f(i),
and ei-f(i) are the validation error, the estimated value of the
trend curve, and the estimated value of the random noise at the
i-th validation point, respectively. n is the number of validation
points obtained so far. w' is the number of validation points
used to fit the regression function. We use the last w' validation
points to estimate the random noise’s variance as

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ𝑒 െ 𝑓ሺ𝑖ሻሿଶ
ୀି௪ᇱାଵ . (2)

3) PROJECTING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING
We use a Monte Carlo simulation method to project the
number of validation points needed for model training. To the
best of our knowledge, this is the first time Monte Carlo
simulation has been used for progress indication. Our method
works as follows:
1) Step 1: For each i (n+1≤i≤vmax), compute the estimated

value f(i) of the trend curve at the i-th validation point.
Recall that n is the number of validation points obtained
thus far. vmax is the maximal number of validation points
allowed for model training. All of these f(i) (n+1≤i≤vmax)

Start

Is a step decay
schedule used

for the learning
rate with the

current
validation point
on the j-th (j≥2)
segment of the

validation
curve?

w'=min(w, n)

Do power regression on the
last w' validation points to
estimate the trend curve

w'=min(w, h(n))

Is
h(n) ≤

min(lj-1, t,
vj-1-qj-1)?

Estimate the random
noise’s variance

Do Monte Carlo simulation as listed
in Steps 1-6 in Section III-C.3

Reuse vj-1 as
the estimated

number of
validation

points needed
for model
training

End

yes

no

no

yes

Is
h(n)<v?

yes

no

Project the
current

validation
point as the

last one
needed for

model
training

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 7

form the estimated trend curve beyond the current
validation point, up to the last one allowed for model
training.

2) Step 2: For each i (n+1≤i≤vmax), randomly sample a
number ni from the normal distribution 𝑁ሺ0, 𝜎ොଶሻ as
simulated random noise at the i-th validation point. Recall
that 𝜎ොଶ is the estimated variance of the random noise.
f(i)+ni is a simulated validation error at the i-th validation
point. All of the f(i)+ni (n+1≤i≤vmax) form a synthetic
validation curve beyond the current validation point, up
to the last one allowed for model training.

3) Step 3: Connect the actual validation curve up to the
current validation point and the synthetic validation curve
beyond that point to obtain a full synthetic validation
curve, which goes from the first validation point to the last
one allowed for model training.

4) Step 4: For each i (n+1≤i≤vmax), check one by one whether
the early stopping criterion is met on the full synthetic
validation curve at the i-th validation point. If the early
stopping criterion is not met anywhere, we obtain vmax as
a simulated number of validation points needed for model
training, and bmax as a simulated number of batches
needed for model training. Recall that vmax and bmax are the
maximum number of validation points and the maximum
number of batches allowed for model training,
respectively. Otherwise, if the early stopping criterion is
met on the full synthetic validation curve for the first time
at the j-th (n+1≤j≤vmax) validation point, we obtain j as a
simulated number of validation points needed for model
training, and j×g as a simulated number of batches needed
for model training. Recall that g is the number of batches
of model training between two consecutive validation
points.

5) Step 5: Repeat Steps 2-4 k times to obtain k simulated
numbers of validation points needed for model training,
which we term simulated estimates. k is a pre-set
parameter. We choose 2,000 as its default value to obtain
enough simulated estimates for our projection purpose
without incurring excessive simulation overhead.

One could use the mode of the k simulated estimates as the
projected number of validation points needed for model
training. Compared to the mean, the mode is a more robust
statistic in the presence of outliers [40]. Yet, using the mode
directly is suboptimal. When there are ≥2 local modes with
roughly the same frequency, which one of them is the global
mode is somewhat random, resulting in instability of the
projection. Considering this, we make a projection in the
following way.
6) Step 6: By definition, every simulated estimate [n+1,

vmax]. Divide [n+1, vmax] into r disjoint intervals of equal
width. r is a pre-set parameter whose default value is 200.
Set a threshold

=k×c,
where c is a coefficient whose default value is 0.04.
Group the k simulated estimates by interval. Find every

interval containing > simulated estimates. Each such
interval is regarded as a local mode. If the number of such
intervals is ≥1, average the simulated estimates in all such
intervals as the projected number of validation points
needed for model training. Otherwise, if no such interval
exists, the k simulated estimates spread relatively evenly
across a wide range with no significant local mode. Their
mean becomes the projected number of validation points
needed for model training.

D. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A
CONTINUOUS DECAY SCHEDULE FOR THE LEARNING
RATE IS USED
This section focuses on the case where a continuous decay
schedule for the learning rate is used. We show how to
estimate the number of validation points needed for model
training upon reaching a validation point that is after the v-th
one and at which the early stopping criterion is unmet.

In a continuous decay schedule, the learning rate shrinks
continuously over epochs. For example, in an exponential
decay schedule, the learning rate used in the i-th epoch is αe-iρ
(see Fig. 4(a)). Here, α>0 is the initial learning rate. ρ>0 is a
constant controlling the learning rate’s decay speed. Fig. 4(b)
shows a typical validation curve in this case. The curve has
roughly the same shape as an inverse power law function.
Thus, we use the same method as that in Section III-C.1 to
estimate the trend curve.

(a) The learning rate over epochs.

(b) A typical validation curve.

FIGURE 4. The learning rate over epochs and a typical validation
curve when an exponential decay schedule for the learning rate is used.

To estimate the random noise’s variance, we modify the

method shown in Section III-C.2 in one respect. That method
treats the random noise’s variance as invariant over time.
However, that is not the case with a continuous decay
schedule, where the random noise’s variance tends to shrink
over time. The learning rate controls how much the neural
network’s weights and subsequently the validation error
change both over time and due to random variation. The

L
ea

rn
in

g
ra

te

Number of epochs

V
al

id
at

io
n

er
ro

r

The sequence number of the validation point

 Author Name: Preparation of Papers for IEEE Access (February 2017)

8 VOLUME XX, 2017

smaller the learning rate, the smaller the changes tend to be. If
the learning rate=0, the neural network’s weights and the
validation error never differ from their initial values over time,
and thus the random noise’s variance=0.

Based on this intuition, we regard the random noise’s
standard deviation and variance as roughly proportional to the
learning rate and its square, respectively. Let αi and 𝜎ො

ଶ denote
the learning rate and the estimated variance of the random
noise at the i-th validation point, respectively. All of the αi
(1≤i≤vmax) can be computed before model training begins.
Recall that n is the number of validation points obtained thus
far. To compute the estimated variance of the random noise 𝜎ොଶ
at the current validation point, we still use the last w' validation
points, but change formula (2) in Section III-C.2 to

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ

ିሺሻ

ఈ/ఈ
ሿଶ

ୀି௪ᇱାଵ

to factor in the changes in variance over time. For each i
(n+1≤i≤vmax), we compute

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ.

To project the number of validation points needed for model
training, we modify the method shown in Section III-C.3 at
Step 2 alone. 𝜎ො

ଶ is the estimated variance of the random noise
at the i-th validation point. For each i (n+1≤i≤vmax), we
randomly sample a number ni from the normal distribution
𝑁ሺ0, 𝜎ො

ଶሻ instead of 𝑁ሺ0, 𝜎ොଶሻ as a simulated random noise at
the i-th validation point.

E. ESTIMATING THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING WHEN A STEP DECAY
SCHEDULE FOR THE LEARNING RATE IS USED
This section focuses on the case where a step decay schedule
for the learning rate is used. We show how to estimate the
number of validation points needed for model training upon
reaching a validation point that is after the v-th one and at
which the early stopping criterion is unmet.

(a) The learning rate over epochs.

(b) A typical validation curve.

FIGURE 5. The learning rate over epochs and a typical validation
curve when a step decay schedule for the learning rate is used.

In a step decay schedule, the learning rate is reduced by a
fixed factor >1 after a certain number of epochs (see Fig. 5(a)).
This number could vary over epochs in a pre-set way. Fig. 5(b)
shows a typical validation curve in this case. We call each
validation point where the learning rate is reduced a decay
point. The decay points split the validation curve into multiple
segments. For each i≥1, the i-th decay point is the first
validation point on the (i+1)-th segment. Before model
training starts, we can easily know the position of and the
learning rate used on each segment.

We first consider the case that the current validation point
is on the first segment of the validation curve. In this case, we
use the method in Section III-C.1 to estimate the trend curve.
We use the method in Section III-C.2 to compute 𝜎ොሺଵሻ

ଶ , the
estimated variance of the random noise on the first segment.
Let i denote the learning rate on the i-th segment, and s(i)
denote the sequence number of the segment where the i-th
validation point is located. The learning rate at the i-th
validation point is αi=s(i). Recall that n is the number of
validation points obtained thus far. vmax is the maximal number
of validation points allowed for model training. For each i
(n+1≤i≤vmax), we compute the estimated variance of the
random noise at the i-th validation point as

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ
ൌ 𝜎ොሺଵሻ

ଶ ൈ ሺ௦ሺሻ/ଵሻ
ଶ.

Then we use the method mentioned in the last paragraph of
Section III-D to project the number of validation points needed
for model training.

Next, we consider the case that the current validation point
is on the j-th (j≥2) segment of the validation curve. As Fig.
5(b) shows, due to the learning rate reduction at a decay point,
the validation curve often drops suddenly at both that point and
the following several validation points. When we reach a
validation point not far after such a decay point, if we use the
method in Section III-C.1 to estimate the trend curve, this drop
could cause the estimated trend curve to be inaccurate (see Fig.
6).

FIGURE 6. When reaching a validation point not far after the most
recent decay point, using the method in Section III-C.1 to estimate the
trend curve.

To address this issue, we modify the estimation methods in

Sections III-C and III-D as follows. Let li denote the number
of validation points on the i-th segment of the validation curve.
Before model training starts, we can easily know each li.

L
ea

rn
in

g
ra

te

Number of epochs

segment 1

decay point 1 decay point 2
segment 2

segment 3

V
al

id
at

io
n

er
ro

r

The sequence number of the validation point

segment 1

decay point 1

decay point 2

segment 2 segment 3

V
al

id
at

io
n

er
ro

r

The sequence number of the validation point

validation curve obtained so far
validation curve to be obtained in the future
estimated trend curve

the most recent decay point

current validation point

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

𝑞ିଵ ൌ ∑ 𝑙
ିଵ
ୀଵ

is the sequence number of the last validation point on the
previous segment. Let vj-1 denote the number of validation
points needed for model training that is estimated at the last
validation point on the previous segment. If the estimated final
validation point needed for model training is located on the
current j-th segment, vj-1-qj-1 is the sequence number of that
validation point on the current j-th segment. Let h(n) denote
the sequence number of the current validation point on the
current j-th segment. h(n) is ≤lj. We use a pre-set threshold t
whose default value is 15 to identify the initial transient stage
of each segment, where the validation error could change
rapidly before becoming relatively stable on the later part of
the segment. We differentiate between two possible sub-cases.

In the first sub-case, h(n)≤min(lj-1, t, vj-1-qj-1). We posit the
current validation point to be at the initial transient stage of the
current segment of the validation curve. Since it is hard to use
rapidly changing validation errors to obtain a good estimate of
the number of validation points needed for model training, we
reuse vj-1 as the estimate of this number. As t is small, we
typically pass the initial transient stage in a relatively short
amount of time.

In the second sub-case, h(n)>min(lj-1, t, vj-1-qj-1). We
consider ourselves to have passed the initial transient stage and
have reached the relatively stable stage of the current segment
of the validation curve. Recall that to use the validation curve
to refine the projected number of validation points needed for
model training, we need at least v validation points. v’s
default value is three. Typically, lj-1≥v and t≥v. If h(n)<v,
which can occur if vj-1-qj-1<v, we project the current validation
point as the last one needed for model training. Otherwise, if
h(n)≥v, we refine the projected number of validation points
needed for model training in the following way. As Fig. 5(b)
shows, if shifted to the left by qj-1 validation points, the current
segment has roughly the same shape as an inverse power law
function. Accordingly, we use the same shifted inverse power
law function of the form

f(i)=a(i-qj-1)-b+c
as the regression function to model the current segment of both
the validation and trend curves. Recall that w is the maximum
number of validation points allowed to fit the regression
function. n is the number of validation points obtained thus far.
h(n) is the sequence number of the current validation point on
the current segment. We use the last

w'=min(w, h(n))
validation points on the current segment to fit the regression
function to the validation curve, as well as to estimate the
variance of the random noise at the current validation point as

𝜎ොଶ ൌ
ଵ

௪ᇱ
∑ ሾ𝑒 െ 𝑓ሺ𝑖ሻሿଶ
ୀି௪ᇱାଵ .

Recall that vmax is the maximal number of validation points
allowed for model training. i is the learning rate on the i-th
segment. s(i) is the sequence number of the segment where the
i-th validation point is located. The learning rate at the i-th
validation point is αi=s(i). For each i (n+1≤i≤vmax), we

compute the estimated variance of the random noise at the i-th
validation point as

𝜎ො
ଶ ൌ 𝜎ොଶ ൈ ሺ𝛼/𝛼ሻଶ
ൌ 𝜎ොଶ ൈ ሺ௦ሺሻ/ሻ

ଶ.

Then we use the method mentioned in the last paragraph of
Section III-D to project the number of validation points needed
for model training.

F. COMPLEXITY ANALYSIS FOR ESTIMATING THE
NUMBER OF VALIDATION POINTS NEEDED FOR
MODEL TRAINING
The key and most time-consuming step of our progress
indication method is to estimate the number of validation
points needed for model training. In this section, we discuss
the worst-case computational complexity of this step, by
defining each unit of computation as doing a basic (e.g.,
arithmetic) operation or computing an elementary (e.g.,
exponential or logarithmic) function.

As Fig. 3 shows, this estimation step typically involves
three actions: 1) a power regression to estimate the trend
curve, 2) estimating the random noise’s variance, and 3) a
Monte Carlo simulation to project the number of validation
points needed for model training. When a step decay schedule
is used for the learning rate and the current validation point is
on the j-th (j≥2) segment of the validation curve, one of two
exceptions could occur. First, if h(n) is ≤min(lj-1, t, vj-1-qj-1),
we reuse vj-1 as the estimated number of validation points
needed for model training. Second, if h(n) is >min(lj-1, t, vj-1-
qj-1) and h(n) is <v, we project the current validation point as
the last one needed for model training. In the case of either
exception, our estimation step has a computational complexity
of O(1).

In the rest of this section, we focus on the case that neither
exception occurs. We first give the worst-case computational
complexity of each of the three actions. Then we show the
worst-case computational complexity of our estimation step.

1) THE WORST-CASE COMPUTATIONAL COMPLEXITY
OF ACTION 1: DOING POWER REGRESSION TO
ESTIMATE THE TREND CURVE
In this section, we give the worst-case computational
complexity of using the truncated Newton method to do power
regression to estimate the trend curve. As detailed in Nocedal
and Wright [39, Ch. 7.1], to find the optimal point minimizing
the objective function, this method starts from an initial point
and uses a two-level nested loop to move the point towards the
optimal point iteratively. The inner loop produces a search
direction. In each round of the outer loop, the point is moved
along the search direction.

Either loop could be terminated in one of two ways:
1) We preset a tolerance . The loop is terminated when a

specific variable’s value becomes <.
2) We preset and Rmax, the maximum number of rounds

allowed for the loop. The loop is terminated when a

 Author Name: Preparation of Papers for IEEE Access (February 2017)

10 VOLUME XX, 2017

specific variable’s value becomes < or the loop has run
for Rmax rounds, whichever occurs the first.

To the best of our knowledge, when the first way is used for
both loops, the computational complexity of the truncated
Newton method has not been given in any prior study nor can
it be computed in an easy manner.

In the rest of this section, we focus on the second way that
is often used in practice [41], [42]. Let Tmax≥1 denote the
maximum number of rounds allowed for the outer loop, and
Imax≥1 denote the maximum number of rounds allowed for the
inner loop in each round of the outer loop. In the worst case,
the outer loop runs for Tmax rounds, in each of which the inner
loop runs for Imax rounds. From the description of the truncated
Newton method in Nocedal and Wright [39, Ch. 7.1], we see
that each round of the inner loop computes O(1) Hessian-
vector products, vector products, and gradients. Excluding the
inner loop, the rest of each round of the outer loop computes
O(1) gradients. Putting these two parts together, each round of
the outer loop computes

O(Imax)+O(1)=O(Imax)
Hessian-vector products, vector products, and gradients.
Using the truncated Newton method to do power regression
requires computing O(Tmax×Imax) Hessian-vector products,
vector products, and gradients.

Computing a vector product involves O(d) basic operations,
where d is the number of input variables of the objective
function. For our objective function shown in formula (1) with
three input variables a, b, and c, d=3.

To calculate a Hessian-vector product or a gradient, we can
use finite differencing [39, Ch. 8.1] that involves computing
our objective function O(d) times. Each such computation
requires doing O(w') basic operations and calculating O(w')
elementary functions. Recall w' is the number of validation
points used to fit the regression function.

Putting everything together, calculating a Hessian-vector
product or a gradient has a computational complexity of

O(d)×O(w')=O(w').
The worst-case computational complexity of using the
truncated Newton method to do power regression is

O(Tmax×Imax)×(O(d)+O(w'))
=O(Tmax×Imax×w').

2) THE COMPUTATIONAL COMPLEXITY OF ACTION 2:
ESTIMATING THE RANDOM NOISE’S VARIANCE
The last w' validation points are used to estimate the random
noise’s variance, with a computational complexity of O(w').

3) THE WORST-CASE COMPUTATIONAL COMPLEXITY
OF ACTION 3: DOING MONTE CARLO SIMULATION TO
PROJECT THE NUMBER OF VALIDATION POINTS
NEEDED FOR MODEL TRAINING
In this section, we give the worst-case computational
complexity of doing Monte Carlo simulation to project the
number of validation points needed for model training. As
shown in Section III-C.3, this simulation is done in six steps.

We compute each step’s computational complexity and sum
them to obtain the final result.

In Step 1, the estimated value f(i) of the trend curve is
computed at vmax-n validation points. Recall vmax is the
maximum number of validation points allowed for model
training. n is the number of validation points obtained thus far.
Computing f(i) at a single validation point has a computational
complexity of O(1). Thus, Step 1 has a computational
complexity of O(vmax-n).

In Step 2, we generate vmax-n random samples ni
(n+1≤i≤vmax) from a normal distribution and compute f(i)+ni.
Each sample can be obtained via the Box-Muller transform
[43], which has a computational complexity of O(1).
Generating the vmax-n random samples ni (n+1≤i≤vmax) has a
computational complexity of O(vmax-n). Computing f(i)+ni
(n+1≤i≤vmax) has the same computational complexity. Putting
these two parts together, Step 2 has a computational
complexity of O(vmax-n).

In Step 3, vmax-n points on the synthetic validation curve are
connected with the actual validation curve to obtain the full
synthetic validation curve. This has a computational
complexity of O(vmax-n).

In Step 4, for each i (n+1≤i≤vmax), we check one by one
whether the early stopping criterion is met on the full synthetic
validation curve at the i-th validation point. In the worst case,
we go over all of these vmax-n points and find out the early
stopping criterion is not met anywhere. Thus, Step 4 has a
worst-case computational complexity of O(vmax-n).

Summing Steps 2-4, we get a worst-case computational
complexity of O(vmax-n). In Step 5, Steps 2-4 are repeated k
times, with a worst-case computational complexity of
O(k(vmax-n)).

In Step 6, we divide [n+1, vmax] into r disjoint intervals of
equal width, group the k simulated estimates by interval, and
compute the projected number of validation points needed for
model training. This has a computational complexity of
O(r)+O(k).

Summing the six steps, we obtain the worst-case
computational complexity of doing Monte Carlo simulation as

O(vmax-n)+O(k(vmax-n))+O(r)+O(k)
=O(max{k(vmax-n), r}).

The above derivation uses the fact that k>1 and vmax-n≥1. If
n=vmax, we are at the last validation point ever allowed for
model training. Monte Carlo simulation is not needed there.

4) THE WORST-CASE COMPUTATIONAL COMPLEXITY
OF OUR ESTIMATION STEP
Summing the three actions, we obtain the worst-case
computational complexity of estimating the number of
validation points needed for model training as

O(Tmax×Imax×w')+O(w')+O(max{k(vmax-n), r})
=O(max{Tmax×Imax×w', k(vmax-n), r}).

The above derivation uses the fact that Tmax×Imax×w'≥w'
because Tmax≥1 and Imax≥1.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 11

IV. PERFORMANCE
In this section, we report the performance results of our
progress indicators for deep learning model training. We
implemented our techniques given in Section III in
TensorFlow Version 1.13.1. TensorFlow is a widely used
open-source deep learning software package developed by
Google [13]. In all of our tests, the progress indicators could
provide useful estimates and revise them every 10 seconds
with negligible overhead. We regard this as having fulfilled
the three progress indication goals set out in our prior paper
[7]: continuously revised estimates, acceptable pacing, and
minimal overhead.

A. EXPERIMENT DESCRIPTION
We conducted the experiments by running TensorFlow on a
Digital Storm workstation with one GeForce RTX 2080 Ti
GPU, one eight-core Intel Core i7-9800X 3.8GHz central
processing unit, 64GB memory, one 500GB solid-state drive,
one 3TB SATA disk, and running the Ubuntu 18.04.02
operating system. All of the deep learning models were trained
on the GPU.

We tested two popular deep learning models: GoogLeNet
[44], a convolutional neural network, and the Gated Recurrent
Unit (GRU) model in Purushotham et al. [45], a recurrent
neural network. Except for the learning rate schedule, the
number of training instances in each batch, and the maximum
number of epochs allowed for model training, all of the hyper-
parameters were set to their default values used in the two
models’ open source code [46], [47]. For each model, we
tested three learning rate schedules: with a fixed learning rate,
an exponential decay, and a step decay, respectively. For each
model, we also tested four widely used optimization methods
for deep learning model training: adaptive moment estimation
(Adam) [48], classical stochastic gradient descent (SGD) [49],
root mean square propagation (RMSprop) [50], and adaptive
gradient (AdaGrad) [51]. We show the test results for Adam
and RMSprop. The test results for SGD and AdaGrad are
similar and put in the Appendix. For RMSprop, we show the
test results when a fixed learning rate is used to train
GoogLeNet. The test results for the other cases of RMSprop
are similar and put in the Appendix. All of the other test results
shown in Section IV are for the case using the Adam
optimization method.

We used two well-known benchmark data sets: CIFAR-10
[52] and MIMIC-III [53] (Table I). Each data instance in
CIFAR-10 is an image whose size is shown in Table I. We
trained GoogLeNet on CIFAR-10, by splitting CIFAR-10 into
a training set and a validation set in the same way as that in
Krizhevsky [52]. We trained the GRU model on a subset of
the MIMIC-III data set, which Purushotham et al. [45] termed
the “Feature Set A, 48-h data,” for the mortality prediction
task. Each data instance in this subset is a sequence whose
length is shown in Table I. This subset was split into a training
set and a validation set in the same way as that in Purushotham
et al. [45].

TABLE I

THE DATA SETS USED FOR TESTING OUR PROGRESS INDICATION METHOD

Name
of data

instances in the
training set

of data
instances in the
validation set

data instance
size

of
classes

CIFAR-10 50,000 10,000 image size:
32×32

10

Feature Set
A, 48-h data

19,146 6,382 sequence
length: 48

2

We ran two kinds of tests:

1) Unloaded system test: The model was trained on an
unloaded system.

2) Workload interference test: We began model training
on an unloaded system. In the middle of model training,
we started another model training task that competed with
the first model training task for GPU resources.

For the unloaded system test, we report the test results for
each combination of a learning rate schedule and a deep
learning model. The only exception is that for the step decay
schedule, we show the test results for training GoogLeNet.
The test results for training the GRU model are similar and put
in the Appendix. For the workload interference test, we
present the test results of using a fixed learning rate to train
GoogLeNet. The test results for the other cases of the
workload interference test provide no extra information and
are omitted.

In each test, the number of training instances in each batch
was set to 128. The number of batches of model training
between two consecutive validation points was set to 200 and
50 for GoogLeNet and the GRU model, respectively. The
maximum number of epochs allowed for model training was
set to 150. The initial learning rate was set to 0.001, regardless
of which learning rate schedule was used. The patience p was
set to 39, an integer randomly chosen from the range [5, 50].
The min_delta was set to 0.00207, a number randomly
chosen from the range [0, 0.01].

B. ACCURACY MEASURE
We adopted the average estimation error used in Chaudhuri et
al. [14] to measure the accuracy of the estimates provided by
the progress indicator. As shown in Fig. 7, the average
estimation error is defined as the ratio of two numbers. The
numerator is the area of the region between a curve and a
straight diagonal line. The curve gives the remaining model
training time projected by the progress indicator over time.
The straight diagonal line depicts the actual remaining model
training time. The denominator is the area of the right triangle
formed by the straight diagonal line, the x-axis, and the y-axis.
The smaller the average estimation error, the more accurate
the estimates provided by the progress indicator.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

12 VOLUME XX, 2017

FIGURE 7. The numerator and denominator used to compute the
average estimation error.

For each combination of a deep learning model, a learning

rate schedule, a test type, and an optimization method, we
trained the model five times, each in a separate run. We
randomly choose one of these five runs and show the progress
indicator’s outputs over time in that run in Sections IV-C to
IV-E and Sections A to C of the Appendix. In addition, we
show the mean and the standard deviation of the average
estimation error across the five runs in Section IV-F and
Section D of the Appendix.

C. TEST RESULTS OF USING A FIXED LEARNING RATE
DURING THE ENTIRE MODEL TRAINING PROCESS
In this section, we show the test results of using a fixed
learning rate during the entire model training process.

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET
In this test, GoogLeNet was trained on an unloaded system.
The test’s purpose is to show that when training GoogLeNet
on an unloaded system using a fixed learning rate during the
entire model training process, the progress indicator’s
estimates can be reasonably accurate for various optimization
methods.

Using the Adam optimization method

We first consider the case that GoogLeNet was trained
using the Adam optimization method. Fig. 8 shows the model
training cost projected by the progress indicator over time,
with the actual model training cost given by the horizontal
dotted line. At the beginning of model training with no extra
information, the progress indicator projected the model
training cost based on the maximum number of validation
points allowed for model training, which differed significantly
from the actual number of validation points needed. Hence,
the projected model training cost differed greatly from the
actual model training cost. After reaching at least v=3
validation points within 152 seconds, the progress indicator
was able to revise the projected model training cost and make
it more accurate.

FIGURE 8. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and Adam).

Fig. 9 shows the model training speed monitored by the

progress indicator over time. During the entire model training
process, the monitored model training speed was relatively
stable.

FIGURE 9. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and Adam).

FIGURE 10. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning
rate and Adam).

Fig. 10 shows the remaining model training time projected

by the progress indicator over time, with the actual remaining
model training time given by the dashed line. At the beginning
of model training, the progress indicator’s projected model
training cost differed greatly from the actual model training
cost. Thus, the remaining model training time projected by the
progress indicator differed significantly from the actual one.
Within 152 seconds, once the progress indicator was able to

Pr
oj

ec
te

d
re

m
ai

ni
ng

m

od
el

 tr
ai

ni
ng

 ti
m

e

Time

actual remaining model training time
projected remaining model training time

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 2000 4000 6000 8000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 13

revise the projected model training cost and improve its
accuracy, the projected remaining model training time became
more precise.

Recall that the patience p was set to 39. By 4,392 seconds,
the validation error had improved by ≤ the min_delta for
eight validation points consecutively. From 4,392 to 5,690
seconds, the number of consecutive validation points for
which the validation error had improved by ≤ kept rising,
causing the progress indicator to mistakenly project that model
training could finish by ~5,800 seconds. Yet, the reality is that
model training continued until 7,685 seconds. At 5,739
seconds, the validation error improved by >, making the
progress indicator realize that model training would take much
longer than 5,800 seconds and revise its projections
accordingly.

Fig. 11 shows the progress indicator’s estimated percentage
of model training work completed over time. Most of the time,
the completed percentage curve is relatively close to the dotted
diagonal line connecting the lower left corner and the upper
right corner. A non-trivial deviation between the completed
percentage curve and the diagonal line exists between 4,392
and 5,739 seconds for the reason given above.

FIGURE 11. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a fixed learning rate and
Adam).

Using the RMSprop optimization method

Next, we consider the case that GoogLeNet was trained
using the RMSprop optimization method. The performance
results are shown in Fig. 12-15 and are similar to those shown
in Fig. 8-11.

FIGURE 12. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and RMSprop).

FIGURE 13. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and RMSprop).

FIGURE 14. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning
rate and RMSprop).

FIGURE 15. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a fixed learning rate and
RMSprop).

In the rest of Section IV, all of the test results shown were

for training the deep learning model using the Adam
optimization method.

2) WORKLOAD INTERFERENCE TEST RESULTS FOR
TRAINING GOOGLENET
In the workload interference test, we began training
GoogLeNet on an unloaded system using the same hyper-
parameter values as those used in Section IV-C.1. In the
middle of model training (at 3,600 seconds), we started
another GoogLeNet training task that competed with the first
model training task for GPU resources throughout the rest of
the first task’s execution. This extended the first task’s running
time. We present the performance results of the first task. This

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 1500 3000 4500 6000 7500 9000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 1500 3000 4500 6000 7500 9000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 1500 3000 4500 6000 7500 9000
P

ro
je

ct
ed

 r
em

ai
ni

ng
 m

od
el

tr

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)
Time (seconds)

0%

20%

40%

60%

80%

100%

0 1500 3000 4500 6000 7500 9000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

14 VOLUME XX, 2017

test’s purpose is to show that our progress indicator can adjust
to varying run-time system loads. In each figure of Section IV-
C.2, we use a vertical dash-dotted line to give the point in time
when the second GoogLeNet training task started running.

Fig. 16 shows the model training speed monitored by the
progress indicator over time. Before the second model training
task started running at 3,600 seconds, the shape of the curve in
Fig. 16 is similar to that in Fig. 9. Once the second task started
running, the monitored model training speed of the first task
dropped roughly by half, as the second task was competing for
GPU resources.

FIGURE 16. Model training speed over time (workload interference
test for training GoogLeNet using a fixed learning rate and Adam).

Fig. 17 shows the remaining model training time projected

by the progress indicator over time, with the actual remaining
model training time given by the dashed line. Before the
second model training task started running at 3,600 seconds,
the shape of the curve in Fig. 17 is similar to that in Fig. 10.
The progress indicator’s projection error for the remaining
model training time is mainly due to the unexpected large rise
in system load starting from 3,600 seconds. After 3,600
seconds, the remaining model training time projected by the
progress indicator became much more precise. The curve
showing the projected remaining model training time becomes
reasonably close to the dashed line.

FIGURE 17. Remaining model training time projected over time
(workload interference test for training GoogLeNet using a fixed
learning rate and Adam).

Fig. 18 shows the progress indicator’s estimated percentage

of model training work completed over time. The estimated
percentage tends to increase over time. The impact of running

the second model training task is apparent starting at 3,600
seconds.

FIGURE 18. Completed percentage estimated over time (workload
interference test for training GoogLeNet using a fixed learning rate and
Adam).

3) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
THE GRU MODEL
In this test, the GRU model was trained on an unloaded
system. The test’s purpose is to show that the progress
indicator’s estimates can be reasonably accurate for different
types of neural networks.

Fig. 19 shows the model training cost projected by the
progress indicator over time, with the actual model training
cost given by the horizontal dotted line. After reaching at least
v=3 validation points within 12 seconds, the progress
indicator was able to project the model training cost
reasonably accurately.

FIGURE 19. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and Adam).

Fig. 20 shows the model training speed monitored by the

progress indicator over time. Compared to that in Fig. 9, the
curve in Fig. 20 is closer to a horizontal line, showing a more
stable model training speed over time. The model training
speed is computed based on the amount of work done in the
past K=10 seconds. As mentioned in Section III-B, we regard
the average amount of work needed for processing a validation
instance one time to be U/3, as a rough approximation. Yet,
this is not fully accurate, resulting in estimation errors on the
amount of work done. In training the GRU model, it took
about 3.5 seconds to go from one validation point to the next.
As roughly the same number of validation instances were

0

200

400

600

800

0 3000 6000 9000 12000 15000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

5000

10000

15000

0 3000 6000 9000 12000 15000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 3000 6000 9000 12000 15000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 15

processed in each 10-second period, the estimation error of the
amount of work completed is approximately the same across
different 10-second periods, leading to a stable model training
speed over time. By comparison, in training GoogLeNet, it
took about 50 seconds to go from one validation point to the
next one. The number of validation instances processed, and
subsequently the estimation error of the amount of work
completed, varies significantly across different 10-second
periods, causing the monitored model training speed to vary
more over time.

FIGURE 20. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and Adam).

Fig. 21 shows the remaining model training time projected

by the progress indicator over time, with the actual remaining
model training time given by the dashed line. The projected
remaining model training time is reasonably accurate.

FIGURE 21. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and Adam).

Fig. 22 shows the progress indicator’s estimated percentage

of model training work completed over time. The completed
percentage curve is relatively close to the dotted diagonal line
connecting the lower left corner and the upper right corner.

FIGURE 22. Completed percentage estimated over time (unloaded
system test for training the GRU model using a fixed learning rate and
Adam).

D. TEST RESULTS OF USING AN EXPONENTIAL
DECAY SCHEDULE FOR THE LEARNING RATE
In this section, we show the test results of using an exponential
decay schedule for the learning rate. Here, the constant
controlling the learning rate’s decay speed was set to 0.05. The
test’s purpose is to show that the progress indicator’s estimates
can be reasonably accurate when an exponential decay
schedule for the learning rate is used.

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET
In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate. The
performance results are shown in Fig. 23-26. From 0 to 3,945
seconds, the projected model training cost differed
significantly from the actual one, leading to inaccurate
projections of the remaining model training time and the
percentage of model training work completed. Much of this
inaccuracy results from the imprecise approximation we make
in handling the exponential decay schedule, by treating the
random noise’s variance as roughly proportional to the square
of the learning rate. After 3,945 seconds, the projections given
by the progress indicator became much more accurate.

FIGURE 23. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and Adam).

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300 350

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

100

200

300

400

500

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 1500 3000 4500 6000 7500

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

16 VOLUME XX, 2017

FIGURE 24. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the
learning rate and Adam).

FIGURE 25. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential
decay schedule for the learning rate and Adam).

FIGURE 26. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using an exponential decay
schedule for the learning rate and Adam).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
THE GRU MODEL
In this test, the GRU model was trained on an unloaded system
using an exponential decay schedule for the learning rate. The
performance results are plotted in Fig. 27-30, showing the
progress indicator made reasonably accurate projections.

FIGURE 27. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and Adam).

FIGURE 28. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and Adam).

FIGURE 29. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and Adam).

FIGURE 30. Completed percentage estimated over time (unloaded
system test for training the GRU model using an exponential decay
schedule for the learning rate and Adam).

0

200

400

600

800

0 1500 3000 4500 6000 7500

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 1500 3000 4500 6000 7500

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 1500 3000 4500 6000 7500

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 100 200 300 400

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 100 200 300 400
M

od
el

 tr
ai

ni
ng

 s
pe

ed
 (

U
s

pe
r

se
co

nd
)

Time (seconds)

0

100

200

300

400

0 100 200 300 400

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 100 200 300 400

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 17

E. UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET USING A STEP DECAY SCHEDULE FOR
THE LEARNING RATE
In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay
schedule for the learning rate. Here, the learning rate was cut
from 10-3 to 10-4 and 10-5 at the beginning of the 64-th and the
115-th epoch, respectively. The test’s purpose is to show the
progress indicator’s estimates can be reasonably accurate
when a step decay schedule for the learning rate is used.

In the test, early stopping occurred on the second segment
of the validation curve, i.e., after the first decay point (see Fig.
5). The performance results are shown in Fig. 31-34 and
similar to those shown in Fig. 8-11. In each figure of this
section, we use a vertical dash-dotted line to give the time
when the learning rate decay occurred.

FIGURE 31. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and Adam).

FIGURE 32. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and Adam).

FIGURE 33. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and Adam).

FIGURE 34. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a step decay schedule for the
learning rate and Adam).

F. SUMMARY STATISTICS OF THE AVERAGE
ESTIMATION ERROR ACROSS THE FIVE RUNS
Recall that for each combination of a deep learning model, a
learning rate schedule, a test type, and an optimization
method, we trained the model five times, each in a separate
run. For each combination presented in Sections IV-C to IV-
E, we show the mean and the standard deviation of the
average estimation error across the five runs in Table II.
Except for one case, the average estimation error is ≤0.417
for every combination, indicating that our progress indicator
offered reasonably accurate estimates of the remaining
model training time.

TABLE II

FOR EACH COMBINATION OF A DEEP LEARNING MODEL, A LEARNING RATE SCHEDULE, A TEST TYPE, AND AN OPTIMIZATION METHOD PRESENTED IN SECTIONS

IV-C TO IV-E, THE SUMMARY STATISTICS OF THE AVERAGE ESTIMATION ERROR ACROSS THE FIVE RUNS

Deep learning model Learning rate schedule Test type Optimization method Average estimation error

GoogLeNet

fixed learning rate unloaded system test Adam 0.272±0.060
fixed learning rate unloaded system test RMSprop 0.417±0.140
fixed learning rate workload interference test Adam 0.400±0.074
exponential decay unloaded system test Adam 1.033±0.169
step decay unloaded system test Adam 0.372±0.028

GRU
fixed learning rate unloaded system test Adam 0.362±0.034
exponential decay unloaded system test Adam 0.303±0.074

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000 10000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

18 VOLUME XX, 2017

G. SELECTING THE DEFAULT VALUES OF w, r, AND c
Our progress indication method uses three key parameters: 1)
w, the maximum number of validation points allowed to fit the
regression function; 2) r, the number of disjoint intervals into
which the possible range [n+1, vmax] of the simulated number
of validation points needed for model training is divided; and
3) c, the coefficient used to compute the threshold . In this
section, we show how we selected these parameters’ default
values by minimizing the mean of the average estimation
errors of our progress indicator across several deep learning
model training processes.

To do this selection, we used three popular deep learning
models: VGG19 [54], a convolutional neural network, the
long short-term memory (LSTM) model [55], a recurrent
neural network, and the GRU model. We used three
benchmark data sets: ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) [56], the Large
Movie Review Dataset [57], and THUCNews [58] (Table III).

TABLE III
THE DATA SETS USED FOR SELECTING THE DEFAULT VALUES OF w, r, AND

c

Name
of data

instances in the
training set

of data
instances in the
validation set

data instance
size

of
classes

Subset of
ILSVRC2012

44,570 1,750 image size:
32×32

35

Large Movie
Review Dataset

23,000 2,000 sequence length:
10-2,470 (234 on
average)

2

Subset of
THUCNews

50,000 5,000 sequence length:
8-26,849 (903 on
average)

10

We trained VGG19 on a subset of ILSVRC2012.

ILSVRC2012 has 1,000 image classes, ~1.2 million images
intended for model training, and 50,000 images intended for
model validation. We randomly chose 35 image classes and
resized each image in them to 32×32 to make it suitable for
training VGG19. All of the 44,570 images intended for model
training in these classes were put into the training set. All of
the 1,750 images intended for model validation in these
classes were put into the validation set.

We trained the LSTM model on the Large Movie Review
Dataset. Each data instance in this data set is a sequence. Table
III shows the length distribution of all of these sequences. This
data set includes 25,000 data instances that can be used for
model training and validation. We randomly chose 2,000 of
them to put into the validation set. The rest of them were put
into the training set.

THUCNews has 14 classes and 740,000 data instances.
Each data instance in this data set is a sequence. We trained
the GRU model on a subset of THUCNews used in the
model’s open source code [59]. This subset includes ten
classes, each with 5,000 data instances for training and 500
data instances for validation. Table III shows the length
distribution of all of the sequences in this subset.

When training VGG19 and the LSTM model, the number of
batches of model training between two consecutive validation
points was set to 200. When training the GRU model, the
number of batches of model training between two consecutive
validation points was set to 10. For all of the three models, the
patience p was set to 27, an integer randomly chosen from the
range [5, 50]. The min_delta was set to 0.00443, a number
randomly chosen from the range [0, 0.01]. Moreover, we used
the same hyper-parameter values, learning rate schedule, and
optimization method as those used in the three model’s open
source code [59-61]:
1) When training VGG19, the Adam optimization method

and a step decay schedule for the learning rate were used.
The initial learning rate was set to 10-3. The learning rate
was reduced to 10-4 and 10-5 at the beginning of the 50-th
and the 70-th epoch, respectively. The number of training
instances in each batch was set to 128. The maximum
number of epochs allowed for model training was set to
100.

2) When training the LSTM model, the Adam optimization
method and a fixed learning rate of 10-3 were used. The
number of training instances in each batch was set to 24.
The maximum number of epochs allowed for model
training was set to 104.

3) When training the GRU model, the Adam optimization
method and a fixed learning rate of 10-3 were used. The
number of training instances in each batch was set to 128.
The maximum number of epochs allowed for model
training was set to 10.

On an unloaded system, we trained VGG19 five times, the
LSTM model five times, and the GRU model five times, each
in a separate run. We found for our progress indication
method, the mean of the average estimation errors across the
15 runs was minimized when w=50, r=200, and c=0.04.
These values were chosen as the default values of w, r, and c.

H. SENSITIVITY ANALYSIS OF w, r, AND c
In this section, we use several experiments to evaluate the
impact of w, r, and c on the accuracy of the estimates provided
by the progress indicator. In each experiment, we varied one
parameter’s value while keeping the other parameters’ values
constant. The mean of the average estimation errors across all
runs of all of the unloaded system tests shown in Sections IV-
C to IV-E and Sections A-C in the Appendix served as the
accuracy measure for the estimates provided by the progress
indicator.

w (the maximum number of validation points allowed to fit the
regression function)

The first experiment concerns w, the maximum number of
validation points allowed to fit the regression function. The
default value of w is 50. We varied w from 3 to 90. Fig. 35
shows w’s impact on the mean of the average estimation
errors. When w=10, 20, 30, 40, or 60, the accuracy measures
are approximately the same as when w=50. When w is too

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 19

small, not enough validation points are used to fit the
regression function. When w is too large, many validation
points that are too old to properly reflect the validation curve’s
future trend are used to fit the regression function. In either
case, the fitted regression function may not reflect the
validation curve’s future trend well, degrading the accuracy of
the estimates provided by the progress indicator. The safe
range for w is between 10 and 60. If w is outside of this safe
range, the accuracy of the estimates provided by the progress
indicator will drop.

FIGURE 35. The mean of the average estimation errors vs. w.

r (the number of disjoint intervals into which the possible
range of the simulated number of validation points needed for
model training is divided)

FIGURE 36. The mean of the average estimation errors vs. r.

The second experiment concerns r, the number of disjoint

intervals into which the possible range [n+1, vmax] of the
simulated number of validation points needed for model
training is divided (see Section III-C.3). The default value of r
is 200. We varied r from 75 to 550. Fig. 36 shows r’s impact
on the mean of the average estimation errors. When r=150,
250, 300, 350, 400, or 450, the accuracy measures are
approximately the same as when r=200. Recall that the
projected number of validation points needed for model
training is computed based on the intervals identified as local
modes. When r is too small, each of the r divided intervals is
large. An interval regarded as a local mode can contain much
more than the actual local mode, introducing noise in
estimating the number of validation points needed for model
training. When r is too large, each of the r divided intervals is
small. None of the r intervals may contain enough simulated
numbers of validation points needed for model training and
pass the threshold of being regarded as a local mode, even if

some relevant local modes do indeed exist. In either case, the
accuracy of the estimates provided by the progress indicator
can degrade. The safe range for r is between 150 and 450.

c (the coefficient used to compute)

The third experiment concerns c, the coefficient used to
compute the threshold . Recall that is used to decide whether
an interval split from [n+1, vmax] is a local mode or not. The
projected number of validation points needed for model
training is computed based on the identified local modes. The
default value of c is 0.04. We varied c from 0.01 to 0.11. Fig.
37 shows c’s impact on the mean of the average estimation
errors. When c=0.03, 0.05, 0.06, or 0.07, the accuracy
measures are roughly the same as when c=0.04. When c is
too large, some relevant local modes may be excluded. When
c is too small, some intervals regarded as local modes may
not be real local modes. In either case, the accuracy of the
estimates provided by the progress indicator can degrade. The
safe range for c is between 0.03 and 0.07.

FIGURE 37. The mean of the average estimation errors vs. c .

In summary, each of the parameters has a reasonably large

safe range, within which the accuracy of the estimates
provided by the progress indicator is insensitive to parameter
value changes. For each parameter, its default value is within
its safe range. If a parameter is outside of its safe range, the
accuracy of the estimates provided by the progress indicator
may drop.

V. DISCUSSION
This work focuses on developing system techniques to support
progress indicators for deep learning model training. In this
section, we describe several theoretical issues as being
potentially interesting areas for future work.

When a fixed learning rate is used during the entire model
training process, the method for estimating the number of
validation points needed for model training in Section III-C
treats the random noise’s variance as invariant over time. Yet,
in reality, as the validation error tends to decrease more slowly
over time, the random noise’s variance tends to reduce over
time. Factoring this into our estimation method could improve
its accuracy. One way to do this is to use a decay factor to
model the reduction of the random noise’s variance over time.
Ideally, the decay factor should be derived based on a
theoretical underpinning.

0.48

0.50

0.52

0.54

0.56

0 10 20 30 40 50 60 70 80 90

M
ea

n
of

 th
e

av
er

ag
e

es
ti

m
at

io
n

er
ro

rs

w

0.48

0.49

0.50

0.51

100 200 300 400 500

M
ea

n
of

 th
e

av
er

ag
e

es
ti

m
at

io
n

er
ro

rs

r

0.48

0.49

0.50

0.51

0.52

0.01 0.03 0.05 0.07 0.09 0.11

M
ea

n
of

 th
e

av
er

ag
e

es
ti

m
at

io
n

er
ro

rs

c

 Author Name: Preparation of Papers for IEEE Access (February 2017)

20 VOLUME XX, 2017

This work gives no upper bound on the progress indicator’s
estimation errors for the model training cost. It would be
interesting to derive such upper bounds, possibly under certain
conditions, similar to what Chaudhuri et al. [62] did for
database query progress indicators.

This work uses only the data collected from the current
model training process to estimate the regression function and
the random noise’s variance. In practice, a lot of data from the
previous model building processes are often available. Meta-
learning can be done on these data to improve the progress
indicator’s estimates for the current model training process.
One way to do this is to compute weights based on the
similarities of the validation curves from the previous model
training processes and the current validation curve [63]. Then
a weighted likelihood approach [64] is used to estimate the
regression function and the random noise’s variance for the
current model training process.

In estimating the model training cost, as a rough
approximation, we regard the cost of going backwards through
the neural network once to be twice that of going forward
through the neural network once. Yet, this is not fully accurate,
resulting in estimation errors. To improve the estimation
accuracy, we can develop more precise cost estimation models
based on the type and architecture of the deep neural network
and the activation functions used.

VI. CONCLUSIONS
In this paper, we present a detailed progress indicator
implementation method for deep learning model training
when early stopping is allowed. Our main idea is to use the
validation curve to project the number of batches needed for
model training. During model training, we keep refining the
projected model training cost and checking the current model
training speed. Periodically, we revise the projected fraction
of model training work completed and the projected remaining
model training time displayed to the user. Our experiments
show that the resulting progress indicator can offer useful
information even if the run-time system load varies over time.
In addition, the progress indicator can self-correct its initial
estimation errors, if any, over time. This demonstrates for the
first time the feasibility of providing non-trivial progress
indicators for deep learning model training when early
stopping is allowed.

APPENDIX
In the appendix, we show the performance results not included
in Section IV.

A. ADDITIONAL TEST RESULTS OF USING A FIXED
LEARNING RATE DURING THE ENTIRE MODEL
TRAINING PROCESS

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET
Using the SGD optimization method

In this test, GoogLeNet was trained on an unloaded system
using the SGD optimization method and a fixed learning rate

during the entire model training process. The performance
results are shown in Fig. 38-41. The early stopping criterion
was never satisfied during the whole model training process.
The progress indicator figured this out correctly and made
accurate projections.

FIGURE 38. Model training cost projected over time (unloaded system
test for training GoogLeNet using a fixed learning rate and SGD).

FIGURE 39. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and SGD).

FIGURE 40. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning
rate and SGD).

0E+00

3E+06

6E+06

9E+06

0 3000 6000 9000 12000 15000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 3000 6000 9000 12000 15000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

5000

10000

15000

0 3000 6000 9000 12000 15000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 21

FIGURE 41. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a fixed learning rate and
SGD).

Using the AdaGrad optimization method

In this test, GoogLeNet was trained on an unloaded system
using the AdaGrad optimization method and a fixed learning
rate during the entire model training process. The performance
results are shown in Fig. 42-45 and are similar to those shown
in Fig. 38-41.

FIGURE 42. Model training cost projected over time (unloaded
system test for training GoogLeNet using a fixed learning rate and
AdaGrad).

FIGURE 43. Model training speed over time (unloaded system test for
training GoogLeNet using a fixed learning rate and AdaGrad).

FIGURE 44. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a fixed learning
rate and AdaGrad).

FIGURE 45. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a fixed learning rate and
AdaGrad).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
THE GRU MODEL
Using the RMSprop optimization method

In this test, the GRU model was trained on an unloaded
system using the RMSprop optimization method and a fixed
learning rate during the entire model training process. The
performance results are shown in Fig. 46-49 and are similar to
those shown in Fig. 19-22.

FIGURE 46. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and
RMSprop).

0%

20%

40%

60%

80%

100%

0 3000 6000 9000 12000 15000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 3000 6000 9000 12000 15000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 3000 6000 9000 12000 15000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

5000

10000

15000

0 3000 6000 9000 12000 15000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 3000 6000 9000 12000 15000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150 200 250 300

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

22 VOLUME XX, 2017

FIGURE 47. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and RMSprop).

FIGURE 48. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and RMSprop).

FIGURE 49. Completed percentage estimated over time (unloaded
system test for training the GRU model using a fixed learning rate and
RMSprop).

Using the SGD optimization method

In this test, the GRU model was trained on an unloaded
system using the SGD optimization method and a fixed
learning rate during the entire model training process. The
performance results are shown in Fig. 50-53. From 163 to 388
seconds, the projected model training cost differed
significantly from the actual one, leading to inaccurate
projections of the remaining model training time and the
percentage of model training work completed. Much of this
inaccuracy results from power regression’s inability to
accurately estimate the trend curve during this time period.

FIGURE 50. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and SGD).

FIGURE 51. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and SGD).

FIGURE 52. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
rate and SGD).

FIGURE 53. Completed percentage estimated over time (unloaded
system test for training the GRU model using a fixed learning rate and
SGD).

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

1E+06

2E+06

3E+06

4E+06

0 100 200 300 400 500

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 100 200 300 400 500
M

od
el

 tr
ai

ni
ng

 s
pe

ed
 (

U
s

pe
r

se
co

nd
)

Time (seconds)

0

300

600

900

0 100 200 300 400 500

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 23

Using the AdaGrad optimization method
In this test, the GRU model was trained on an unloaded

system using the AdaGrad optimization method and a fixed
learning rate during the entire model training process. The
performance results are shown in Fig. 54-57. At 10 seconds,
only three validation points were available, making it difficult
to estimate the trend curve accurately. Hence, the progress
indicator made inaccurate projections. After 20 seconds, the
projections given by the progress indicator became much more
accurate as more validation points became available.

FIGURE 54. Model training cost projected over time (unloaded system
test for training the GRU model using a fixed learning rate and
AdaGrad).

FIGURE 55. Model training speed over time (unloaded system test for
training the GRU model using a fixed learning rate and AdaGrad).

FIGURE 56. Remaining model training time projected over time
(unloaded system test for training the GRU model using a fixed learning
and AdaGrad).

FIGURE 57. Completed percentage estimated over time (unloaded
system test for training the GRU model using a fixed learning rate and
AdaGrad).

B. ADDITIONAL TEST RESULTS OF USING AN
EXPONENTIAL DECAY SCHEDULE FOR THE
LEARNING RATE

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET
Using the RMSprop optimization method

In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate and
the RMSprop optimization method. The performance results
are shown in Fig. 58-61 and are similar to those shown in Fig.
23-26.

FIGURE 58. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and RMSprop).

FIGURE 59. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the
learning rate and RMSprop).

0.0E+00

4.0E+05

8.0E+05

1.2E+06

0 30 60 90 120 150

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 30 60 90 120 150

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

100

200

300

400

500

0 30 60 90 120 150

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 30 60 90 120 150

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 1000 2000 3000 4000 5000 6000 7000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

24 VOLUME XX, 2017

FIGURE 60. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential
decay schedule for the learning rate and RMSprop).

FIGURE 61. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using an exponential decay
schedule for the learning rate and RMSprop).

Using the SGD optimization method

In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate and
the SGD optimization method. The performance results are
shown in Fig. 62-65 and are similar to those shown in Fig. 23-
26.

FIGURE 62. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and SGD).

FIGURE 63. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the
learning rate and SGD).

FIGURE 64. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential
decay schedule for the learning rate and SGD).

FIGURE 65. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using an exponential decay
schedule for the learning rate and SGD).

Using the AdaGrad optimization method

In this test, GoogLeNet was trained on an unloaded system
using an exponential decay schedule for the learning rate and
the AdaGrad optimization method. The performance results
are shown in Fig. 66-69 and are similar to those shown in Fig.
23-26.

0

4000

8000

12000

16000

0 1000 2000 3000 4000 5000 6000 7000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000 5000 6000 7000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

4000

8000

12000

16000

0 2000 4000 6000 8000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 25

FIGURE 66. Model training cost projected over time (unloaded system
test for training GoogLeNet using an exponential decay schedule for the
learning rate and AdaGrad).

FIGURE 67. Model training speed over time (unloaded system test for
training GoogLeNet using an exponential decay schedule for the
learning rate and AdaGrad).

FIGURE 68. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using an exponential
decay schedule for the learning rate and AdaGrad).

FIGURE 69. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using an exponential decay
schedule for the learning rate and AdaGrad).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
THE GRU MODEL
Using the RMSprop optimization method

In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the RMSprop optimization method. The performance
results are shown in Fig. 70-73 and are similar to those shown
in Fig. 27-30.

FIGURE 70. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and RMSprop).

FIGURE 71. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and RMSprop).

FIGURE 72. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and RMSprop).

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000 10000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

5000

10000

15000

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150 200 250 300

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

100

200

300

0 50 100 150 200 250 300

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

26 VOLUME XX, 2017

FIGURE 73. Completed percentage estimated over time (unloaded
system test for training the GRU model using an exponential decay
schedule for the learning rate and RMSprop).

Using the SGD optimization method

In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the SGD optimization method. The performance
results are shown in Fig. 74-77 and are similar to those shown
in Fig. 23-26.

FIGURE 74. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and SGD).

FIGURE 75. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and SGD).

FIGURE 76. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and SGD).

FIGURE 77. Completed percentage estimated over time (unloaded
system test for training the GRU model using an exponential decay
schedule for the learning rate and SGD).

Using the AdaGrad optimization method

In this test, the GRU model was trained on an unloaded
system using an exponential decay schedule for the learning
rate and the AdaGrad optimization method. The performance
results are plotted in Fig. 78-81, showing the progress
indicator made reasonably accurate projections.

FIGURE 78. Model training cost projected over time (unloaded system
test for training the GRU model using an exponential decay schedule for
the learning rate and AdaGrad).

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

1E+06

2E+06

3E+06

4E+06

5E+06

0 200 400 600 800

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 200 400 600 800

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

500

1000

1500

2000

0 200 400 600 800

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 200 400 600 800

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

0 25 50 75 100 125

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 27

FIGURE 79. Model training speed over time (unloaded system test for
training the GRU model using an exponential decay schedule for the
learning rate and AdaGrad).

FIGURE 80. Remaining model training time projected over time
(unloaded system test for training the GRU model using an exponential
decay schedule for the learning rate and AdaGrad).

FIGURE 81. Completed percentage estimated over time (unloaded
system test for training the GRU model using an exponential decay
schedule for the learning rate and AdaGrad).

C. ADDITIONAL TEST RESULTS OF USING A STEP
DECAY SCHEDULE FOR THE LEARNING RATE

1) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
GOOGLENET
In this section, we show the test results for model training
using a step decay schedule for the learning rate. In each figure
of this section, we use a vertical dash-dotted line to give the
time when a learning rate decay occurred.

Using the RMSprop optimization method

In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay
schedule for the learning rate and the RMSprop optimization
method. The performance results are shown in Fig. 82-85 and
are similar to those shown in Fig. 31-34.

FIGURE 82. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and RMSprop).

FIGURE 83. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and RMSprop).

FIGURE 84. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and RMSprop).

FIGURE 85. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a step decay schedule for the
learning rate and RMSprop).

0

1,000

2,000

3,000

4,000

0 25 50 75 100 125

M
od

el
 tr

ai
ni

ng
 s

pe
ed

(U

s
pe

r
se

co
nd

)

Time (seconds)

0

50

100

150

200

0 25 50 75 100 125

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 25 50 75 100 125

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000 10000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 2000 4000 6000 8000 10000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

28 VOLUME XX, 2017

Using the SGD optimization method

In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay
schedule for the learning rate and the SGD optimization
method. The performance results are plotted in Fig. 86-89,
showing the progress indicator made reasonably accurate
projections.

FIGURE 86. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and SGD).

FIGURE 87. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and SGD).

FIGURE 88. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and SGD).

FIGURE 89. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a step decay schedule for the
learning rate and SGD).

Using the AdaGrad optimization method

In this section, we show the test results for training
GoogLeNet on an unloaded system using a step decay
schedule for the learning rate and the AdaGrad optimization
method. The performance results are shown in Fig. 90-93 and
are similar to those shown in Fig. 86-89.

FIGURE 90. Model training cost projected over time (unloaded system
test for training GoogLeNet using a step decay schedule for the learning
rate and AdaGrad).

FIGURE 91. Model training speed over time (unloaded system test for
training GoogLeNet using a step decay schedule for the learning rate
and AdaGrad).

0E+00

3E+06

6E+06

9E+06

0 2000 4000 6000 8000 10000 12000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 2000 4000 6000 8000 10000 12000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

3000

6000

9000

12000

15000

0 2000 4000 6000 8000 10000 12000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

3E+06

6E+06

9E+06

0 3000 6000 9000 12000

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

200

400

600

800

0 3000 6000 9000 12000

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 29

FIGURE 92. Remaining model training time projected over time
(unloaded system test for training GoogLeNet using a step decay
schedule for the learning rate and AdaGrad).

FIGURE 93. Completed percentage estimated over time (unloaded
system test for training GoogLeNet using a step decay schedule for the
learning rate and AdaGrad).

2) UNLOADED SYSTEM TEST RESULTS FOR TRAINING
THE GRU MODEL
In each test shown in this section, early stopping occurred
before the first decay point (see Fig. 5).

Using the Adam optimization method

In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the Adam optimization method. The
performance results are plotted in Fig. 94-97, showing the
progress indicator made reasonably accurate projections.

FIGURE 94. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and Adam).

FIGURE 95. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning
rate and Adam).

FIGURE 96. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and Adam).

FIGURE 97. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and Adam).

Using the RMSprop optimization method

In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the RMSprop optimization method. The
performance results are shown in Fig. 98-101 and are similar
to those shown in Fig. 94-97.

0

3000

6000

9000

12000

15000

0 3000 6000 9000 12000

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 3000 6000 9000 12000

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300 350

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

30 VOLUME XX, 2017

FIGURE 98. Model training cost projected over time (unloaded system
test for training the GRU model using a step decay schedule on the
learning rate and RMSprop).

FIGURE 99. Model training speed over time (unloaded system test for
training the GRU model using a step decay schedule on the learning
rate and RMSprop).

FIGURE 100. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and RMSprop).

FIGURE 101. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and RMSprop).

Using the SGD optimization method
In this section, we show the test results for training the GRU

model on an unloaded system using a step decay schedule for
the learning rate and the SGD optimization method. The
performance results are shown in Fig. 102-105. At 10 seconds,
only three validation points were available, making it difficult
to estimate the trend curve accurately. Hence, the progress
indicator made inaccurate projections. After 20 seconds, the
projections given by the progress indicator became much more
accurate as more validation points became available.

FIGURE 102. Model training cost projected over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and SGD).

FIGURE 103. Model training speed over time (unloaded system test
for training the GRU model using a step decay schedule on the learning
rate and SGD).

FIGURE 104. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and SGD).

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 50 100 150 200 250 300 350

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

0 50 100 150

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 50 100 150

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

100

200

300

400

500

0 50 100 150

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 31

FIGURE 105. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and SGD).

Using the AdaGrad optimization method

In this section, we show the test results for training the GRU
model on an unloaded system using a step decay schedule for
the learning rate and the AdaGrad optimization method. The
performance results are plotted in Fig. 106-109, showing the
progress indicator made reasonably accurate projections.

FIGURE 106. Model training cost projected over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and AdaGrad).

FIGURE 107. Model training speed over time (unloaded system test
for training the GRU model using a step decay schedule on the learning
rate and AdaGrad).

FIGURE 108. Remaining model training time projected over time
(unloaded system test for training the GRU model using a step decay
schedule on the learning rate and AdaGrad).

FIGURE 109. Completed percentage estimated over time (unloaded
system test for training the GRU model using a step decay schedule on
the learning rate and AdaGrad).

D. SUMMARY STATISTICS OF THE AVERAGE
ESTIMATION ERROR ACROSS THE FIVE RUNS

TABLE IV
FOR EACH COMBINATION OF A DEEP LEARNING MODEL, A LEARNING RATE

SCHEDULE, AND AN OPTIMIZATION METHOD IN THE UNLOADED SYSTEM

TEST PRESENTED IN SECTIONS A TO C, THE SUMMARY STATISTICS OF THE

AVERAGE ESTIMATION ERROR ACROSS THE FIVE RUNS

Deep learning
model

Learning rate
schedule

Optimization
method

Average estimation
error

GoogLeNet

fixed learning rate SGD 0.093±0.012
fixed learning rate AdaGrad 0.093±0.008
exponential decay RMSprop 0.990±0.282
exponential decay SGD 0.897±0.274
exponential decay AdaGrad 0.632±0.197
step decay RMSprop 0.364±0.025
step decay SGD 0.540±0.160
step decay AdaGrad 0.552±0.196

GRU

fixed learning rate RMSprop 0.275±0.101
fixed learning rate SGD 0.793±0.326
fixed learning rate AdaGrad 0.536±0.226
exponential decay RMSprop 0.284±0.046
exponential decay SGD 0.695±0.530
exponential decay AdaGrad 0.631±0.360
step decay Adam 0.333±0.050
step decay RMSprop 0.384±0.133
step decay SGD 0.568±0.217

 step decay AdaGrad 0.304±0.169

Recall that for each combination of a deep learning model, a
learning rate schedule, and an optimization method in the
unloaded system test, we trained the model five times, each in

0%

20%

40%

60%

80%

100%

0 50 100 150

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

0E+00

2E+05

4E+05

6E+05

0 20 40 60 80 100 120

P
ro

je
ct

ed
 m

od
el

 tr
ai

ni
ng

co

st
 (

U
s)

Time (seconds)

0

1,000

2,000

3,000

4,000

0 20 40 60 80 100 120

M
od

el
 tr

ai
ni

ng
 s

pe
ed

 (
U

s
pe

r
se

co
nd

)

Time (seconds)

0

50

100

150

200

0 20 40 60 80 100 120

P
ro

je
ct

ed
 r

em
ai

ni
ng

 m
od

el

tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120

E
st

im
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

Time (seconds)

 Author Name: Preparation of Papers for IEEE Access (February 2017)

32 VOLUME XX, 2017

a separate run. For each combination presented in Sections A
to C, we show the mean and the standard deviation of the
average estimation error across the five runs in Table IV.

ACKNOWLEDGMENT
We thank Philip J. Brewster for helpful discussions.

AUTHORS’ CONTRIBUTIONS
QD participated in designing the study and conducting
literature review, wrote the paper’s first draft, did the computer
coding implementation, and performed experiments. GL
conceptualized and designed the study, conducted literature
review, and rewrote the whole paper. Both authors read and
approved the final manuscript.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

Cambridge, MA, USA: MIT Press, 2016.
[2] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting

unreasonable effectiveness of data in deep learning era,” in Proc.
ICCV, 2017, pp. 843-852.

[3] T. Weyand, I. Kostrikov, and J. Philbin, “Planet-photo geolocation
with convolutional neural networks,” in Proc. ECCV, 2016, pp. 37-55.

[4] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch SGD:
training ResNet-50 on ImageNet in 15 minutes,” in Proc. NIPS
Workshop on Deep Learning at Supercomputer Scale, 2017.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet:
a large-scale hierarchical image database,” in Proc. CVPR, 2009, pp.
248-255.

[6] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann, 1993.

[7] G. Luo. “Toward a progress indicator for machine learning model
building and data mining algorithm execution: a position paper,”
SIGKDD Explorations, vol. 19, no. 2, pp. 13-24, Dec. 2017.

[8] G. Luo, J. F. Naughton, and P. S. Yu, “Multi-query SQL progress
indicators,” in Proc. EDBT, 2006, pp. 921-941.

[9] “Keras integration with TQDM progress bars.” GitHub.
 https://github.com/bstriner/keras-tqdm (accessed Feb. 10, 2020).
[10] “TensorBoard: visualization learning.” GitHub.
 https://www.tensorflow.org/tensorboard/r1/summaries (accessed Feb.

10, 2020).
[11] G. Luo, “Progress indication for machine learning model building: a

feasibility demonstration,” SIGKDD Explorations, vol. 20, no. 2, pp.
1-12, Dec. 2018.

[12] S. Lau. “Learning rate schedules and adaptive learning rate methods
for deep learning.” Towards data science.

 https://towardsdatascience.com/learning-rate-schedules-and-
adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
(accessed Feb. 10, 2020).

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R.
Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: a system for large-scale machine learning,” in Proc.
OSDI, 2016, pp. 265-283.

[14] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Estimating
progress of execution for SQL queries,” in Proc. SIGMOD, 2004, pp.
803-814.

[15] K. Lee, A. C. König, V. R. Narasayya, B. Ding, S. Chaudhuri, B.
Ellwein, A. Eksarevskiy, M. Kohli, J. Wyant, P. Prakash, R. V.
Nehme, J. Li, and J. F. Naughton, “Operator and query progress
estimation in Microsoft SQL Server Live Query Statistics,” in Proc.
SIGMOD, 2016, pp. 1753-1764.

[16] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Increasing the
accuracy and coverage of SQL progress indicators,” in Proc. ICDE,
2005, pp. 853-864.

[17] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Toward a
progress indicator for database queries,” in Proc. SIGMOD, 2004, pp.
791-802.

[18] W. Lee, H. Oh, and K. Yi, “A progress bar for static analyzers,” in
Proc. SAS, 2014, pp. 184-200.

[19] G. Luo, T. Chen, and H. Yu, “Toward a progress indicator for program
compilation,” Softw.: Pract. and Experience, vol. 37, no. 9, pp. 909-
933, July 2007.

[20] X. Xie, Z. Fan, B. Choi, P. Yi, S. S. Bhowmick, and S. Zhou,
“PIGEON: progress indicator for subgraph queries,” in Proc. ICDE,
2015, pp. 1492-1495.

[21] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: a progress
indicator for MapReduce DAGs,” in Proc. SIGMOD, 2010, pp. 507-
518.

[22] K. Morton, A. L. Friesen, M. Balazinska, and D. Grossman,
“Estimating the progress of MapReduce pipelines,” in Proc. ICDE,
2010, pp. 681-684.

[23] G. Luo, “PredicT-ML: a tool for automating machine learning model
building with big clinical data,” Health Inf. Sci. Syst., vol. 4, Article 5,
Dec. 2016.

[24] G. Luo, B. L. Stone, M. D. Johnson, P. Tarczy-Hornoch, A. B. Wilcox,
S. D. Mooney, X. Sheng, P. J. Haug, and F. L. Nkoy, “Automating
construction of machine learning models with clinical big data:
proposal rationale and methods,” JMIR Res. Protoc., vol. 6, no. 8, pp.
e175, Aug. 2017.

[25] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proc. BigData, 2018,
pp. 3873-3882.

[26] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. NIPS, 2012,
pp. 2960-2968.

[27] T. Doan and J. Kalita, “Predicting run time of classification algorithms
using meta-learning,” Int. J. Mach. Learn. and Cybern., vol. 8, no. 6,
pp. 1929-1943, Dec. 2017.

[28] M. Reif, F. Shafait, and A. Dengel, “Prediction of classifier training
time including parameter optimization,” in Proc. KI, 2011, pp. 260-
271.

[29] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “OBOE:
collaborative filtering for AutoML model selection,” in Proc. KDD,
2019, pp. 1173-1183.

[30] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical
Foundations. New York, NY, USA: Cambridge Univ. Press, 2002.

[31] K. Fredenslund. “Computational complexity of neural networks.”
kasperfred.com.

 https://kasperfred.com/series/computational-
complexity/computational-complexity-of-neural-networks (accessed
Feb. 10, 2020).

[32] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. NIPS, 2014, pp. 855-
863.

[33] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks
of the Trade. Berlin, Germany: Springer, 1996, pp. 55-69.

[34] D. Duvenaud, D. Maclaurin, and R. P. Adams, “Early stopping as
nonparametric variational inference,” in Proc. AISTATS, 2016, pp.
1070-1077.

[35] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig, “Early stopping
without a validation set,” 2017, arXiv: 1703.09580.

[36] D.A. Berque and M. K. Goldberg, “Monitoring an algorithm's
execution,” in Proc. DIMACS Workshop on Comput. Support for
Discrete Math., USA, 1992, pp. 153-163.

[37] “EarlyStopping.” TensorFlow.
 https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/

callbacks/EarlyStopping (accessed Feb. 10, 2020).
[38] R. L. Figueroa, Q. Zeng-Treitler, S. Kandula, and L. H. Ngo,

“Predicting sample size required for classification performance,”
BMC Med. Inform. Decis. Mak., vol. 12, Article 8, Feb. 2012.

[39] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[40] P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. Hoboken,
NJ, USA: Wiley, 2011.

[41] “SciPy.optimize.minimize.” SciPy.org.

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 33

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
minimize.html#scipy.optimize.minimize (accessed Mar. 20, 2020).

[42] “Optimize-minimize-TNC.” SciPy.org.
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
tnc.html#optimize-minimize-tnc (accessed Mar. 20, 2020).

[43] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates.” Ann. Math. Statist., vol. 29, no. 2, pp. 610-611,
1958.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. CVPR, 2015, pp. 1-9.

[45] S. Purushotham, C. Meng, Z. Che, and Y. Liu, “Benchmarking deep
learning models on large healthcare datasets,” J. Biomed. Inform., vol.
83, pp. 112-134, July 2018.

[46] “GoogLeNet-Inception.” GitHub.
 https://github.com/conan7882/GoogLeNet-Inception (accessed Feb.

10, 2020).
[47] “Benchmarking_DL_MIMICIII.” GitHub.
 https://github.com/USC-Melady/Benchmarking_DL_MIMICIII

(accessed Feb. 10, 2020).
[48] D. P. Kingma and J. Ba, “Adam: a method for stochastic

optimization.” in Proc. ICLR, 2015.
[49] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proc. COMPSTAT, 2010, pp. 177-186.
[50] S. Ruder, “An overview of gradient descent optimization algorithms,”

2016, arXiv:1609.04747.
[51] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” JMLR, vol. 12, pp.
2121-2159, Feb. 2011.

[52] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” M.S. thesis, Dept. Comput. Sci., Univ. of Toronto, Toronto,
Canada, 2009.

[53] A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M.
Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark,
“MIMIC-III, a freely accessible critical care database,” Scientific
Data, vol. 3, Article 160035, May 2016.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. ICLR, 2015.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[56] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F.
Li, “ImageNet large scale visual recognition challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.

[57] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proc. ACL, 2011,
pp. 142-150.

[58] M. Sun, J. Li, Z. Guo, Y. Zhao, Y. Zheng, X. Si, and Z. Liu.
“THUCTC: an efficient Chinese text classifier.”
http://thuctc.thunlp.org (accessed Mar. 27, 2020).

[59] “Text-classification-cnn-rnn.” GitHub.
https://github.com/gaussic/text-classification-cnn-rnn (accessed Mar.
27, 2020).

[60] “VGG-cifar,” GitHub.
https://github.com/conan7882/VGG-cifar (accessed Mar. 8, 2020).

[61] “LSTM-Sentiment-Analysis,” GitHub.
https://github.com/adeshpande3/LSTM-Sentiment-Analysis
(accessed Mar. 8, 2020).

[62] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “When can we trust
progress estimators for SQL queries?” in Proc. SIGMOD, 2005, pp.
575-586.

[63] A. Efrat, Q. Fan, and S. Venkatasubramanian, “Curve matching, time
warping, and light fields: new algorithms for computing similarity
between curves,” J. Math. Imag. and Vision, vol. 27, no. 3, pp. 203-
216, Apr. 2007.

[64] F. Hu and J. V. Zidek, “The weighted likelihood,” Can. J. Statist., vol.
30, no. 3, pp. 347-371, Sep. 2002.

QIFEI DONG received the B.S degree in
electrical engineering from Zhejiang University,
Hangzhou, Zhejiang Province, P.R. China, in 2016
and the M.S degree in electrical and computer
engineering from the University of Michigan, Ann
Arbor, MI, USA, in 2018. He is currently pursuing
the Ph.D. degree in biomedical informatics and
medical education at the University of
Washington, Seattle, WA, USA.

Since 2018, he has been a Research Assistant
with the University of Washington Clinical Learning, Evidence and
Research Center for Musculoskeletal Disorders. His research interests
include machine learning, computer vision, natural language processing,
and clinical informatics.

GANG LUO received the B.S. degree in computer
science from Shanghai Jiaotong University,
Shanghai, P.R. China, in 1998, and the PhD degree
in computer science from the University of
Wisconsin-Madison, Madison, WI, USA, in 2004.

From 2004 to 2012, he was a Research Staff
Member at IBM T.J. Watson Research Center,
Hawthorne, NY, USA. From 2012 to 2016, he was
an Assistant Professor in the Department of
Biomedical Informatics at the University of Utah,

Salt Lake City, UT, USA. He is currently an Associate Professor in the
Department of Biomedical Informatics and Medical Education at the
University of Washington, Seattle, WA, USA. He is the author of over 70
papers. His research interests include machine learning, information
retrieval, database systems, and health informatics.

