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ABSTRACT Deep learning is the best machine learning algorithm for numerous analytical tasks. On a large 
data set, training a deep learning model frequently lasts several days to several months. Throughout this long 
period, it would be helpful to show a progress indicator, which continually projects the percentage of model 
training work accomplished as well as the outstanding model training time. We formerly invented the first 
method to support this function while allowing early stopping. This method assumes that the input data to the 
model have been preprocessed before model training starts. This is a limitation. In practice, online data 
preprocessing is often integrated into the model and done as part of the end-to-end model training. Ignoring 
online data preprocessing costs can cause our former method to produce inaccurate estimates. To overcome 
this limitation, this paper presents a new progress estimation method that explicitly considers online data 
preprocessing. We did a coding implementation of our new method in TensorFlow. Our tests unveil that for 
various deep learning models that integrate online data preprocessing and in comparison with our former 
method, our proposed new method produces more stable progress estimates for model training and on average 
lowers the error of the predicted outstanding model training time by 16.0%. 

INDEX TERMS Deep learning, online data preprocessing, TensorFlow, progress indicator, model training

SYMBOL LIST 
 Floor function. 
 Nearest integer function. 
 Ceiling function. 
bmax Greatest number of batches that we allow in 

training the model. 
B Quantity of training instances that we handle in 

each batch. 
c0 Upon exiting the first raw point of validation, the 

cost of model training that we have spent ignoring 
the overhead that the progress indicator has 
incurred at the inserted points of validation to 
compute validation errors. 

C Upper limit of the cost of model training that we 
have spent upon exiting the 4th point of 
validation. 

ej The model’s validation error computed at the j-th 
raw point of validation. 

g Count of batches of model training that are done 
between two sequential raw points of validation. 

K Size of the sliding window of time that we use to 
compute the speed of model training. 

me Greatest number of epochs that we allow in 
training the model. 

n0 Number of points of validation inserted ahead of 
the first raw point of validation. 

p Patience. 
P1 Greatest permitted percentage rise in the cost of 

model training caused by the progress indicator 
between the model training start time and the time 
of exiting the first raw point of validation. 

r T-V cost ratio. 
r0 Starting learning rate that the exponential decay 

approach employs. 
st Latest speed of handling training instances. 
sv Latest speed of handling validation instances. 
U Unit of work for handling the training instances. 
vmax Greatest number of raw points of validation that 

we allow in training the model. 
V Quantity of data instances the whole validation 

set contains. 
Vmin Smallest quantity of data instances that the subset 

of the whole validation set employed at each 
inserted point of validation requires. 
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V' Fixed quantity of data instances that the subset of 
the whole validation set employed at each inserted 
point of validation contains. 

W Unit of work for handling the validation 
instances. 

δ min_delta. 
ρ Constant that the exponential decay approach 

uses to decide the decay speed of the learning rate. 
 
I. INTRODUCTION 
Our former progress estimation method and its limitation 
Deep learning is the best machine learning algorithm for 
numerous analytical tasks such as artificial intelligence art 
creation, text generation, and speech recognition [1]. Yet, on a 
large data set, training a deep learning model could last several 
days to several months [2]-[7] even if a cluster of tensor 
processing unit (TPU) or graphics processing unit (GPU) 
nodes is used. Throughout this long period, it would be helpful 
to display a progress indicator, which continually projects the 
percentage of model training work accomplished as well as the 
outstanding model training time (see Fig. 1). Providing this 
information can facilitate workload management and make 
model training more user friendly [8]-[10]. 
 

 
FIGURE 1. A progress indicator displayed in training a deep learning 
model. 

 
We formerly invented the first progress estimation method 

that allows early stopping for training deep learning models 
[10], [11]. This method assumes that the input data to the deep 
learning model have been preprocessed before model training 
starts. In other words, we only do offline data preprocessing 
[12]. This is a limitation. In practice, part or all of the data 
preprocessing is often integrated into the model as online data 
preprocessing [12] and done as part of the end-to-end model 
training. Examples of online data preprocessing include 
rotating images, adjusting image contrast, adjusting image 
brightness, normalizing images, and embedding the tokens in 
textual documents. When online data preprocessing is used, it 
commonly takes a large percentage of model training time, 
e.g., 30% for an average deep learning job running in Google’s 
data centers [13]. Ignoring online data preprocessing costs can 
cause our former progress estimation method to produce 
inaccurate estimates. 

More specifically, in our former progress estimation 
method [10], [11], all operations in the deep learning model 
training job are assumed to be done on the same type of 
computer chips: central processing units (CPUs), GPUs, or 

TPUs. We define U, a unit of work, as the mean amount of 
work it requires to handle a training instance once during 
model training, which involves one forward and one backward 
propagation in the model. A validation instance is a data 
instance in the validation set. It can be shown that under the 
above assumption, the mean amount of work it requires to 
handle a validation instance once is U/3, which involves one 
forward propagation in the model. This result is the base for 
our former method to produce progress estimates. Yet, this 
result becomes invalid when online data preprocessing is used. 
In this case, handling a training instance once involves online 
data preprocessing as well as one forward and one backward 
propagation in the model. Handling a validation instance once 
typically involves both online data preprocessing and one 
forward propagation in the model. The online data 
preprocessing operation is often the same in handling either a 
training or a validation instance and can be done on CPUs. 
Forward and backward propagation in the model can be done 
on GPUs/TPUs. CPUs and GPUs/TPUs have vastly different 
processing speeds. This makes it difficult to define only one 
type of unit of work U, convert U to time in a uniform way for 
both the training and the validation instances, and produce 
good progress estimates. 

To illustrate this point, we give a concrete example. During 
deep learning model training, we alternate between the 
training cycle and the validation cycle. In the training cycle, 
we handle the training instances and calculate changes to the 
model’s parameter values. In the validation cycle, we handle 
the validation instances and calculate on the validation set the 
model’s error rate. Each training and each validation cycle can 
take quite some time to run. For instance, when using one 
Nvidia Titan Xp GPU and the ImageNet-1k data set [14] to 
train the NASNet-A-Large model [15], it takes about 15 
minutes to run one validation cycle [16]. When online data 
preprocessing is used and the model training job is the only 
job being executed in the system, the mean amount of time to 
handle a validation instance once can differ greatly from 1/3 
of that to handle a training instance once. If we keep using U/3 
as the mean amount of work it requires to handle a validation 
instance once, the speed of model training measured during 
the validation cycle can differ greatly from that measured 
during the training cycle. Consequently, during a typical 
validation cycle, the projected outstanding model training time 
can differ greatly from the genuine outstanding model training 
time. 
 
Our contributions 

To address our former progress estimation method’s [10], 
[11] limitation, we come up with a novel progress estimation 
method for end-to-end training of deep learning models with 
online data preprocessing. In our new method, we define two 
types of unit of work, one for handling the training instances 
and the other for handling the validation instances. For 
handling the training instances, we use the type of unit of work 
for it to compute its speed and estimate its cost and outstanding 

Progress Indicator 

Transformer 

  
Time passed  2d 7h 33min 
Time left   9d 6h 13min (20% done) 
Cost of model training 1,119,955,200U 
Speed of model training 1,120U/s Cancel 
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time. Handling the validation instances is done in a similar 
way. The outstanding model training time is = the outstanding 
time for handling the training instances + that for handling the 
validation instances. 

We need to overcome two technical difficulties to complete 
the remaining parts of our new progress estimation method. 
First, when online data preprocessing is used, end-to-end 
model training is often done using asynchronous pipelining. 
There, multiple batches of training/validation instances appear 
at different stages of the processing pipeline simultaneously. 
This makes it non-trivial to gauge both the latest speed of 
handling training instances and that of handling validation 
instances. To address this problem, we enumerate all possible 
cases that ≥2 batches of training/validation instances appear at 
distinct stages of the pipeline simultaneously. For each such 
case, we design a distinct speed estimation approach tailored 
to it. 

Second, our former progress estimation method [10], [11] 
inserts additional points of validation between the raw points 
of validation to more rapidly acquire decently good progress 
estimates. This insertion is controlled by several parameters, 
two of which are n0 and V'. Our former progress estimation 
method sets the ratio of the mean amount of work required to 
handle a training instance once to that to handle a validation 
instance once to 3. This ratio is used to compute n0 and V'. But 
when online data preprocessing is used, this ratio often differs 
greatly from 3 and is hard to compute. To address this 
problem, we show that regardless of this ratio’s actual value, 
we can keep using a ratio of 3 to compute n0 and V' without 
incurring any major performance problem for progress 
estimation. 

We did a coding implementation of our new progress 
estimation method in the open-source software package 
TensorFlow [17]. We report our experimental results of 
training a transformer-based model, a convolutional neural 
network, and a recurrent neural network that all integrate 
online data preprocessing. Our results unveil that in 
comparison with our former progress estimation method [11], 
our proposed new method produces more stable progress 
estimates for model training and on average lowers the error 
of the predicted outstanding model training time by 16.0%. 
 
Paper structure 

The remainder of this paper has the following structure. 
Section II recaps our former progress estimation method. 
Section III reviews online data preprocessing. Section IV 
presents our new progress estimation method. Section V gives 
the experimental results. Section VI goes over the related 
work. Section VII lists some possible directions to do future 
work. Section VIII concludes this paper. 

II. RECAP OF OUR FORMER PROGRESS ESTIMATION 
METHOD 

This section first presents some concepts and notations the 
remainder of the paper will use, and then gives a summary of 

our former progress estimation method [10], [11]. In the 
remainder of this paper, wherever we mention GPUs, the same 
also applies to TPUs. 

A. SOME CONCEPTS AND NOTATIONS 
The user training the deep learning model sets 3 positive 
integers g, B, and me and an early stopping condition. During 
model training, all training instances are handled for one or 
more rounds termed epochs. We train the model in batches. In 
every batch, we handle B training instances and compute 
changes to the model’s parameter values. Whenever g batches 
of model training are done, we arrive at a raw point of 
validation. There, we handle the validation instances and 
calculate on the whole validation set the model’s error rate 
termed the validation error. We then evaluate whether the 
early stopping condition is satisfied. If so, we are done with 
model training. me is the greatest number of epochs that we 
allow in training the model. If upon finishing the me-th epoch, 
we still have not fulfilled the early stopping condition, we 
force model training to end. Accordingly, the greatest number 
of batches that we allow in training the model is 

bmax = me × the number of data instances the training set 
contains / B. 

The greatest number of raw points of validation that we allow 
in training the model is 

vmax = bmax / g. 

 is the floor function, e.g., 5.7 = 5. 
Like our prior work [10], [11], this work does not aim to 

handle every existing early stopping condition. Rather, we 
attend to a widely adopted early stopping condition [1], [18]. 
We do a case study on it to show that by explicitly addressing 
online data preprocessing, we can obtain better progress 
estimates for end-to-end training of deep learning models. 
Using a preset positive number called the patience p and a 
preset nonnegative number called the min_delta δ, this 
condition is satisfied at the first place where the validation 
error decreases by < δ for p sequential raw points of validation. 
That is, we stop model training at the k-th raw point of 
validation if we have ek – p – ei < δ for every i from k – p + 1 to 
k. Here, ej stands for the model’s validation error that we 
compute at the j-th raw point of validation. 

B. SUMMARY OF OUR FORMER PROGRESS 
ESTIMATION METHOD 
This section gives a summary of our former progress 
estimation method for training deep learning models [10], 
[11]. The forecasted cost of model training is measured in Us. 
Each unit of work U is defined as the mean amount of work it 
requires to handle a training instance once during model 
training, which involves forward and backward propagation in 
the model in the absence of online data preprocessing. We start 
with a typically inaccurate guess of the cost of model training. 
During model training, we regularly collect statistics and use 
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them to revise the progress estimates for it. We keep 
computing the latest speed of model training = the quantity of 
Us finished per second in the previous K = 10 seconds. Each 
time we arrive at a point of validation, we use the information 
obtained at this and the prior points of validation to recompute 
the forecasted cost of model training. We keep predicting the 
outstanding model training time = the forecasted cost of model 
training left / the latest speed of model training. Every several 
seconds, the progress indicator is refreshed with the newest 
estimates. As model training continues, we keep gathering 
more accurate statistics of it and tend to obtain increasingly 
better progress estimates. 

The raw points of validation could be sparse, causing a long 
delay to gather information at enough points of validation and 
obtain decently good progress estimates. To address this issue, 
we carefully insert additional points of validation between the 
raw points of validation. To reduce the progress estimation 
overhead, at each inserted point of validation, we evaluate the 
model’s error rate, i.e., the validation error, on a subset 
randomly sampled from the whole validation set. In both the 
above paragraph and the remainder of this paper, wherever we 
speak of points of validation, we always refer to both inserted 
and raw points of validation unless we explicitly mention 
inserted or raw points of validation. 

In the following, we review some details of how our former 
progress estimation method forecasts the cost of model 
training and inserts additional points of validation between the 
raw points of validation. These details are needed later to 
describe our new progress estimation method. We refer the 
reader to our prior papers [10], [11] for the other details of our 
former progress estimation method. 
 
2) FORECASTING THE COST OF MODEL TRAINING 
The cost of model training is roughly = the total cost of 
handling the training instances + the total cost of handling the 
validation instances. The total cost of handling the training 
instances is 

= the mean amount of work it requires to handle a training 
instance once × the quantity of training instances that we 
handle in each batch × the quantity of batches it takes to 
train the model 

= B × the quantity of batches it takes to train the model. 

The total cost of handling the validation instances is 

= the cost of handling the validation instances at the raw 
points of validation + the cost of handling the validation 
instances at the inserted points of validation. 

We define the training-validation (T-V) cost ratio r = the mean 
amount of work it requires to handle a training instance once / 
the mean amount of work it requires to handle a validation 
instance once. As the numerator is 1 U, the denominator is 

= U / r. 

Let V stand for the quantity of data instances the whole 
validation set contains. The cost of handling the validation 
instances at the raw points of validation is 

= the mean amount of work it requires to handle a 
validation instance once × the quantity of data instances 
the whole validation set contains × the quantity of raw 
points of validation it takes to train the model 

= V / r × the quantity of raw points of validation it takes to 
train the model. 

At each inserted point of validation, we employ a subset 
randomly sampled from the whole validation set. Let V' stand 
for the fixed count of data instances this subset contains. The 
cost of handling the validation instances at the inserted points 
of validation is 

= V' / r × the number of inserted points of validation it 
takes to train the model. 

When training the deep learning model in the absence of 
online data preprocessing, most of the training cost is spent on 
doing multiplication operations. We handle a training instance 
once by doing one forward and one backward propagation in 
the model. We handle a validation instance once by doing one 
forward propagation in the model. It takes about two times the 
quantity of multiplication operations to do one backward 
propagation than to do one forward propagation. Accordingly, 
we set the T-V cost ratio to 3. 

In forecasting the cost of model training, the key is to 
project the quantity of raw points of validation it takes to train 
the model. We use the information obtained at the points of 
validation, maximum likelihood estimation, and Monte Carlo 
simulation to project this number. Unless early stopping 
occurs earlier, we can refine our initial and typically inaccurate 
estimate of this number for the first time only after we have 
obtained information from 4 points of validation. 
 
3) INSERTING ADDITIONAL POINTS OF VALIDATION 
BETWEEN THE RAW POINTS OF VALIDATION 
We use several parameters to control how we insert additional 
points of validation between the raw points of validation. In 
this section, we review how we set two of these parameters 
that are also used in describing our new progress estimation 
method. 
 
Setting n0 

The first parameter to set is n0, the number of points of 
validation to be inserted ahead of the first raw point of 
validation. When setting n0, we attempt to meet two 
requirements if possible: 
1) Requirement 1: Upon exiting the 4th point of validation, 

we have spent a cost of model training of ≤ C Us. C is a 
prechosen number whose default value is the quantity of 
CPUs or GPUs employed to train the model × 20,000. We 
adopt Requirement 1 to limit the amount of elapsed time 
before we wrap up at the 4th point of validation to refine 
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our initially guessed cost of model training for the first 
time. 

2) Requirement 2: From the model training start time to the 
time of exiting the first raw point of validation, we incur a 
cost of ≤ c0P1 to compute validation errors at the inserted 
points of validation. P1 is a prechosen percentage with a 
default value of 5%. c0 stands for upon exiting the first raw 
point of validation, the cost of model training that we have 
spent ignoring the overhead that the progress indicator has 
brought to compute validation errors at the inserted points 
of validation. We adopt Requirement 2 to limit this 
overhead. 

As it is not always possible to fully meet both requirements, 
we treat them as soft requirements. 
 
Setting V' 

The second parameter to set is V', the fixed quantity of data 
instances that the subset of the whole validation set employed 
at each inserted point of validation contains. V' has to be ≤ V, 
the number of data instances the whole validation set contains. 
To make one approximation used in our former progress 
estimation method accurate, we require V' to be ≥ a threshold 
Vmin. Recall that r stands for the T-V cost ratio. When setting 
V', we attempt to meet the aforementioned Requirement 2 and 
set V' = min(max(rc0P1 / n0, Vmin), V). 

III. ONLINE DATA PREPROCESSING  
In this section, we review online data preprocessing. In offline 
data preprocessing, the raw data are preprocessed and written 
to disk before we start training the deep learning model. The 
preprocessed data are usually as large as or several times larger 
than the raw data. During model training, the preprocessed 
data are read from disk and inputted to the model. When the 
raw data set (e.g., the 18-terabyte Open Images data set [19]-
[21]) is large, writing the preprocessed data to and reading 
them from disk would incur high costs. To address this issue, 
one can do online data preprocessing. There, the raw data are 
preprocessed and then directly inputted to the model without 
being written to disk. No disk input/output is needed for 
handling the preprocessed data. Major deep learning software 
packages such as TensorFlow [17] and PyTorch [22] all 
support online data preprocessing. 

Online data preprocessing can include one or more steps. 
Forward and backward (if any) propagation in the deep 
learning model is another step. One can do all these steps for 
each batch of data instances one by one. For instance, given a 
batch of training instances, we first normalize all training 
instance in it and then do forward and backward propagation 
for them in the model. After we finish handling one batch of 
training instances, we start handling the next batch. 
Alternatively, one can use asynchronous pipelining (see Fig. 
2), a common approach to improve parallelism [23]. There, 
after a step is completed for a batch of data instances, we start 
this step for the next batch once the previous step is completed 
for the next batch. 

 

 
FIGURE 2. An example of handling training instances by doing all of the 
steps one by one vs. using asynchronous pipelining. 
 

Online data preprocessing can be done on CPUs, GPUs, or 
a combination of both [24], [25]. In the last case, some online 
data preprocessing steps are done on CPUs, whereas the other 
online data preprocessing steps are done on GPUs. 

IV. OUR NEW PROGRESS ESTIMATION METHOD 
This section presents our new progress estimation method for 
end-to-end training of deep learning models with online data 
preprocessing. As in our prior paper [11], our presentation 
focuses on deep learning classification. Section IV-A shows 
how to predict the outstanding model training time. Section 
IV-B explains why we can keep using a T-V cost ratio of 3 to 
compute n0 and V', two parameters used to control how we 
insert additional points of validation between the raw points of 
validation. Section IV-C presents the other changes made to 
our former progress estimation method [10], [11]. 

A. PREDICTING THE OUTSTANDING MODEL TRAINING 
TIME 
1) OVERALL APPROACH 
To address the limitation of our former progress estimation 
method [10], [11] when online data preprocessing is used, we 
separately estimate the progress of handling the training 
instances and the progress of handling the validation instances. 
Then we merge these estimates to obtain the overall progress 
estimates of model training. 

More specifically, we use the same approach in our former 
progress estimation method [10], [11] to estimate the quantity 
of training instances and the quantity of validation instances 
needing to be handled to train the model. We define two types 
of unit of work: 
(1) U for handling the training instances. As in our former 

progress estimation method [10], [11], each U is the mean 
amount of work it requires to handle a training instance 
once during model training. 

(2) W for handling the validation instances. Each W is the 
mean amount of work it requires to handle a validation 
instance once during model training. 

For handling the training instances, we use U to compute its 
speed and estimate its cost and outstanding time. Let st stand 

Normalize 
training instances 

Forward and backward 
propagation in the model 

batch 1 of training instances 
batch 2 of training instances 
batch 3 of training instances 

batch 1 of training instances 
 batch 2 of training instances 

   batch 3 of training instances 
   

Do all of the steps one by one 

  
  

  

  
  

  

Use asynchronous pipelining 
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for the latest speed of handling training instances measured by 
the quantity of Us finished per second. The predicted 
outstanding time for handling the training instances 

= the forecasted remaining cost of handling the training 
instances / st 

= the forecasted quantity of training instances that remain to 
be handled to train the model counting multiplicity / st. 

For handling the validation instances, we use W to compute 
its speed and estimate its cost and outstanding time. Let sv 
stand for the latest speed of handling validation instances 
measured by the quantity of Ws finished per second. The 
predicted outstanding time for handling the validation 
instances 

= the forecasted remaining cost of handling the validation 
instances / sv 

= the forecasted quantity of validation instances that remain 
to be handled to train the model counting multiplicity / sv. 

At any time, the predicted outstanding model training time 
= the predicted outstanding time for handling the training 

instances + the predicted outstanding time for handling 
the validation instances. 

Online data preprocessing can include applying data 
augmentation such as randomly flipping images to training 
instances. In this case, usually in each epoch, one augmented 
training instance is produced from every raw training instance. 
Only the augmented training instance is used to do forward 
and backward propagation in the deep learning model. After 
the forward and backward propagation is done for the 
augmented training instance, we count that one training 
instance has been handled. 

Some data augmentation methods like CutMix [26] and 
MixUp [27] take multiple raw training instances as input to 
produce an augmented training instance. For instance, CutMix 
replaces a region in an image with a patch from another image. 
When such a data augmentation method is used, in each epoch, 
every raw training instance serves as the base and is combined 
with some other raw training instances to produce an 
augmented training instance exactly once. Only the 
augmented training instance is used to do forward and 
backward propagation in the deep learning model. After the 
forward and backward propagation is done for the augmented 
training instance, we count that one training instance has been 
handled. 

Ideally, we should compute the latest speed of handling 
training instances st and the latest speed of handling validation 
instances sv once every K = 10 seconds. When only training 
but no validation instances were handled in the previous K 
seconds, we compute st as the quantity of Us finished per 
second in the previous K seconds. When only validation but 
no training instances were handled in the previous K seconds, 
we compute sv as the quantity of Ws finished per second in the 
previous K seconds. In addition, we need to handle the 
following 3 cases: 
1) Estimate st when no training instance was handled in the 

previous K seconds. 

2) Estimate sv when no validation instance was handled in the 
previous K seconds. 

3) Estimate st and sv when both training and validation 
instances were handled in the previous K seconds. 

In the following, we discuss these 3 cases one by one. 
 
2) ESTIMATING st WHEN NO TRAINING INSTANCE WAS 
HANDLED IN THE PREVIOUS K SECONDS 
When no training but only validation instances were handled 
in the previous K seconds, we use the most recently estimated 
speed of handling training instances as the estimated latest 
speed of handling training instances. Taking this 
approximation will not greatly lower the accuracy of the 
predicted outstanding model training time. Typically, the 
training set is much larger than the validation set. For example, 
the ImageNet-1k data set contains ~1.3 million training 
instances and 50,000 validation instances [14]. During model 
training, we need to handle many more training instances than 
validation instances. Handling a training instance once takes 
more work than handling a validation instance once, as the 
former involves one forward and one backward propagation in 
the model, whereas the latter involves one forward 
propagation in the model. Due to these two factors, the time 
taken to handle the validation instances is much less than that 
taken to handle the training instances. In other words, the 
former is only a small fraction of the model training time. Only 
when we are handling the validation instances at a point of 
validation, the approximation used to estimate the latest speed 
of handling training instances will lead to estimation error in 
the predicted outstanding time for handling the training 
instances. But this will not last long. After a relatively short 
amount of time, we will finish handling the validation 
instances at the point of validation and move on to handling 
the training instances. At that time, we will recompute the 
correct latest speed of handling training instances. 
 
3) ESTIMATING sv WHEN NO VALIDATION INSTANCE 
WAS HANDLED IN THE PREVIOUS K SECONDS 
When no validation but only training instances were handled 
in the previous K seconds, we use the most recently estimated 
speed of handling validation instances as the estimated latest 
speed of handling validation instances. This is an 
approximation that will not greatly lower the accuracy of the 
predicted outstanding model training time. As explained 
above, the time taken to handle the validation instances is only 
a small fraction of the model training time. The approximation 
will lead to estimation error in the predicted outstanding time 
for handling the validation instances. Yet, this estimation error 
will have only a small impact on the predicted outstanding 
model training time. When we predict that model training still 
needs quite some time to finish, the impact is by a small 
percentage. When we predict that model training is close to 
finish, the impact is by a small number. 

By default, model training begins with handling the training 
instances. Before reaching the first point of validation, no 



 Author: Paper 

VOLUME XX, 2017 7 

estimated speed of handling validation instances is available, 
making it impossible to estimate the outstanding time for 
handling the validation instances. To address this issue, when 
model training begins, we first randomly sample validation 
instances with replacement to obtain 5 batches of validation 
instances. Then we handle them to compute an initial 
estimated speed of handling validation instances. We set the 
number of batches to 5 to strike a balance between obtaining 
a relatively well estimated speed of handling validation 
instances and reducing the progress estimation overhead. 
When online data preprocessing is used, end-to-end model 
training is often done using asynchronous pipelining. When 
computing the initial estimated speed of handling validation 
instances in this case, we start the timer when the first batch of 
validation instances all exits the pipeline and do not count this 
batch. In this way, the latency resulting from initially filling in 
the pipeline would not negatively impact the precision of this 
speed computation. 
 
4) ESTIMATING st AND sv WHEN BOTH TRAINING AND 
VALIDATION INSTANCES WERE HANDLED IN THE 
PREVIOUS K SECONDS 
Recall that st stands for the latest speed of handling training 
instances. sv stands for the latest speed of handling validation 
instances. This section describes our approach to estimate st 
and sv when both training and validation instances were 
handled in the previous K seconds. We first give an overview 
of our approach. Then we add some details needed in our 
approach. 
 
Overview of our speed estimation approach 
 

 
FIGURE 3. The 4 distinct scenarios in which only a few training or 
validation instances were handled in the previous K seconds. 
 

When training the deep learning model, we alternate 
between handling training instances and handling validation 
instances. When we run into the case that both training and 
validation instances were handled in the previous K seconds, 
if only a few training (or validation) instances were handled in 
these K seconds (see Fig. 3), it can be hard to use these 
instances to well estimate the latest speed of handling training 
(or validation) instances. 

To address this issue, we use a special speed estimation 
approach, in which we intentionally use no new parameter that 
needs to be set to an ad hoc number. We describe our approach 

mainly for the case of switching from handling validation 
instances to handling training instances in the previous K 
seconds (see Fig. 3(a) and 3(b)). The case of switching from 
handling training instances to handling validation instances in 
the previous K seconds (see Fig. 3(c) and 3(d)) can be handled 
similarly. Our approach includes two steps: 
1) Step 1: As shown in Fig. 4, there are two possible cases: 

a. Case 1: We reached the most recent point of validation 
over K seconds ago (see Fig. 4(a)). In this case, the most 
recently estimated speed of handling validation 
instances was computed based on a K-second time 
window, in which only validation instances were 
handled. We use that estimated speed as the estimated 
latest speed of handling validation instances. As that 
estimated speed was computed only K seconds ago, it 
is usually a good estimate of the latest speed of 
handling validation instances. 

b. Case 2: We reached the most recent point of validation 
K seconds ago (see Fig. 4(b)). In this case, we estimate 
the latest speed of handling validation instances 
= the quantity of validation instances handled in the 

previous K seconds / the time spent on handling these 
validation instances 

= the quantity of validation instances handled in the 
previous K seconds / (the time of exiting the most 
recent point of validation – the starting time of K 
seconds ago). 

2) Step 2: A timer is adopted to time the sliding time window 
employed to compute the speed of handling data instances. 
When we switch from handling validation instances to 
handling training instances, we restart the timer (see Fig. 
4). This ensures that no other possible case needs to be 
considered in Step 1. 

 

 
FIGURE 4. The two possible cases of switching from handling validation 
instances to handling training instances in the previous K seconds. 
 
Additional details of Step 2 for handling the case of switching 
from handling validation instances to handling training 
instances in the previous K seconds 

In this case, in Step 2, we do not restart the timer 
immediately upon switching from the previous round of 
handling validation instances to the current round of handling 

  

 

  Handling the training instances 
Handling the validation instances 

(a) (b) 

(c) (d) 

  

 

K seconds K seconds 

K seconds K seconds 

  Handling the training instances 
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K seconds K seconds 

  

K seconds K seconds 
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estimate sv 
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K seconds 

  

K seconds 
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training instances. When online data preprocessing is used, 
end-to-end model training is often done using asynchronous 
pipelining. In this case, the first training instance in the current 
round enters the pipeline before the last validation instance in 
the previous round exits the pipeline. To let estimating the 
latest speed of handling training instances not impacted by the 
last few validation instances in the previous round in the 
pipeline, we do not restart the timer until the first batch of 
training instances in the current round all exits the pipeline. 
When computing the latest speed of handling training 
instances, this batch of training instances is not counted. 

To make speed computation doable, we need to ensure that 
≥2 batches of training instances are handled between any two 
sequential points of validation. For this purpose, we only need 
to fulfill the requirement that ≥2 batches of model training are 
done before the first inserted point of validation, as our former 
progress estimation method [11] inserts more points of 
validation ahead of the first raw point of validation than 
between any two sequential raw points of validation. Recall 
that n0 stands for the number of points of validation to be 
inserted ahead of the first raw point of validation. g stands for 
the count of batches of model training that are done between 
two sequential raw points of validation. To fulfill the 
requirement, we ensure that n0 is ≤ g / 2 – 1. We do this by 
reusing the n0 computed in our former progress estimation 
method [11] unless that computed number is > g / 2 – 1, in 
which case we set n0 to g / 2 – 1. 

 
Additional details of Step 2 for handling the case of switching 
from handling training instances to handling validation 
instances in the previous K seconds 

In this case, in Step 2, we do not restart the timer 
immediately upon switching from the previous round of 
handling training instances to the current round of handling 
validation instances. Instead, we restart the timer when the first 
batch of validation instances in the current round all exits the 
pipeline. When computing the latest speed of handling 
validation instances, this batch of validation instances is not 
counted. 

To make speed computation doable, we need to ensure that 
≥2 batches of validation instances are handled at each point of 
validation. For this purpose, we only need to fulfill the 
requirement that ≥2 batches of validation instances are 
handled at each inserted point of validation. Recall that at each 
inserted point of validation, we use a subset of the whole 
validation set. Vmin stands for the smallest count of validation 
instances demanded in this subset. To fulfill the requirement, 
we ensure that Vmin is ≥ 2 × the number of validation instances 
handled in each batch. That is, we set Vmin to max(the Vmin 
computed in our former progress estimation method [11], 2 × 
the number of validation instances handled in each batch). 

B. WHY WE CAN KEEP USING A T-V COST RATIO OF 3 
TO COMPUTE n0 AND V' 

Recall that the T-V cost ratio is = the mean amount of work it 
requires to handle a training instance once / the mean amount 
of work it requires to handle a validation instance once. We 
use the parameters n0 and V' to control how we insert 
additional points of validation between the raw points of 
validation. In our former progress estimation method [10], 
[11], we set the T-V cost ratio to 3 and compute n0 and V' 
accordingly. But when online data preprocessing is used, the 
actual T-V cost ratio can differ greatly from 3. In our new 
progress estimation method, we keep using a T-V cost ratio of 
3 to compute n0 and V'. This can cause two issues if the actual 
T-V cost ratio is < 3: 
1) A longer time is needed before we can refine our initially 

guessed cost of model training for the first time. 
2) The progress indicator incurs a higher runtime overhead. 
Neither issue is a major one. In the following, for each of these 
two issues, we explain why it can occur but is not a major one. 
 
1) A LONGER TIME IS NEEDED BEFORE WE CAN 
REFINE OUR INITIALLY GUESSED COST OF MODEL 
TRAINING FOR THE FIRST TIME 
Recall that we can refine our initially guessed cost of model 
training for the first time only after we have obtained 
information from 4 points of validation. Upon exiting the 4th 
point of validation, we strive to incur a cost of model training 
of ≤ C Us (see Requirement 1 in Section II-B.2). When the 
actual T-V cost ratio is < 3 but we keep using a T-V cost ratio 
of 3, we underestimate the mean amount of work it requires to 
handle a validation instance once and subsequently the cost of 
handling validation instances at each point of validation. Thus, 
upon exiting the 4th point of validation, we could have spent 
a cost of model training of > C Us. This leads to the issue that 
a longer time is needed before we can refine our initially 
guessed cost of model training for the first time. This issue is 
not a major one because the T-V cost ratio has a lower bound 
of one, limiting the extent to which we underestimate the cost 
of model training that we would have spent upon exiting the 
4th point of validation. 

More specifically, when online data preprocessing is used, 
handling a training instance once involves online data 
preprocessing as well as one forward and one backward 
propagation in the model. Handling a validation instance once 
typically involves both online data preprocessing and one 
forward propagation in the model. The online data 
preprocessing steps for a training instance are often the same 
as those for a validation instance, but could include additional 
steps such as adjusting image contrast to add noise. Thus, the 
mean cost of doing online data preprocessing for a training 
instance is ≥ that for a validation instance. The T-V cost ratio 

= (the mean cost of doing online data preprocessing for a 
training instance + the mean cost of doing one forward 
propagation in the model + the mean cost of doing one 
backpropagation in the model) / (the mean cost of doing 
online data preprocessing for a validation instance + the 
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mean cost of doing one forward propagation in the 
model) 

> 1. 

The T-V cost ratio has a lower bound of one. Thus, when 
we use a T-V cost ratio of 3, the actual cost of handling 
validation instances at each point of validation is < 3 × our 
estimated cost of doing that. Upon exiting the 4th point of 
validation, we have handled both training and validation 
instances with an expected cost of ≤ C Us (see Requirement 1 
in Section II-B.2). The actual cost of model training that we 
have spent is usually < 3 × that cost, i.e., 3C Us. As is the case 
with C, 3C is a moderate number. Hence, the elapsed time 
before we wrap up at the 4th point of validation to refine our 
initially guessed cost of model training for the first time is 
relatively short, even if it is longer than what we initially 
expected. 
 
2) THE PROGRESS INDICATOR INCURS A HIGHER 
RUNTIME OVERHEAD 
When the actual T-V cost ratio is < 3 but we keep using a T-V 
cost ratio of 3, the actual cost of handling validation instances 
at each inserted point of validation is larger than our estimated 
cost of doing that. This leads to the issue that the progress 
indicator incurs a higher runtime overhead than what we 
initially expected. 

This issue is not a major one. As explained before, when we 
use a T-V cost ratio of 3, the actual cost of handling validation 
instances at each inserted point of validation is < 3 × our 
estimated cost of doing that. As reviewed in Section II-B.2, we 
set P1 to 5% as the greatest permitted percentage rise in the 
cost of model training caused by the progress indicator 
between the model training start time and the time of exiting 
the first raw point of validation. In the worst case, the progress 
indicator incurs a rise of < 3 × 5% = 15% in the cost of model 
training. In practice, the actual rise is usually much less than 
15%. For example, according to the computation done in our 
prior paper [11], in the case that at most 50 raw points of 
validation are allowed in training the model and model 
training ends at the 20th raw point of validation, we expect the 
progress indicator to incur a rise of ~1.2% in the cost of model 
training. The actual rise is < 3.7%. 

C. OTHER CHANGES MADE TO OUR FORMER 
PROGRESS ESTIMATION METHOD 
In this section, we present the other two changes made to our 
former progress estimation method [11]. In Section IV-C.1, 
we show how to set the parameter C. In Section IV-C.2, we 
discuss how to display the progress estimates. 
 
1) SETTING THE PARAMETER C 
Upon exiting the 4th point of validation, we hope to have spent 
a cost of model training of ≤ C Us (see Requirement 1 in 
Section II-B.2). This helps limit the elapsed time before we 
can refine our initially guessed cost of model training for the 
first time. In our former progress estimation method [11], we 

assume that all operations in the deep learning model training 
job are done on either CPUs or GPUs, but not both. C is set to 
be the quantity of CPUs or GPUs employed to train the model 
× 20,000. When online data preprocessing is used, the end-to-
end model training job can be done on a combination of CPUs 
and GPUs. In this case, we set C to be the total number of 
CPUs and GPUs employed to train the model × 20,000. 
 
2) DISPLAYING THE PROGRESS ESTIMATES 
In our former progress estimation method [11], at any time, we 
display one cost of model training and one speed of model 
training. In our new progress estimation method, we have one 
set of progress estimates for handling the training instances 
and another set of progress estimates for handling the 
validation instances. We display certain progress estimates in 
a different way from that in our former progress estimation 
method. 
 
Costs 

We display two costs, one of handling the training instances 
and the other of handling the validation instances. 
 
Processing speeds 

We display two speeds, one of handling training instances 
and the other of handling validation instances. When handling 
the training instances, we show the latest speed of handling 
training instances and leave the speed of handling validation 
instances empty. When handling the validation instances, we 
show the latest speed of handling validation instances and 
leave the speed of handling training instances empty. 
 
Percentage of model training work accomplished 

The percentage of model training work accomplished is 
computed as the model training work accomplished so far / the 
estimated cost of model training. The cost of model training 

= the cost of handling the training instances + the cost of 
handling the validation instances 

= the cost of handling the training instances in U + the cost 
of handling the validation instances in W / the T-V cost 
ratio. 

The actual T-V cost ratio is hard to estimate. For computing 
the percentage of model training work accomplished, we use 
a T-V cost ratio of 3 as an approximation to calculate both the 
model training work accomplished so far and the cost of model 
training. The T-V cost ratio is > 1. Typically, the training set 
is much bigger than the validation set. Hence, the cost of 
handling the training instances is much larger than the cost of 
handling the validation instances. In this case, using the 
approximation will not greatly degrade the accuracy of the 
computed accomplished percentage of model training work. 

V. PERFORMANCE 
This section shows the experimental results of our new 
progress estimation method. We did a coding implementation 
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of this method in Version 2.9.0 of TensorFlow, a major open-
source deep learning software package [17]. In every test, our 
progress indicators gave useful estimates updated once per 10 
seconds with a small overhead. This meets the 3 progress 
estimation goals listed in our previous paper [8]: small 
overhead, reasonable pacing, and continuous updates. 

A. EXPERIMENT DESCRIPTION 
We ran TensorFlow and did experiments on a Digital Storm 
workstation. This workstation has a GeForce RTX 2080 Ti 
GPU, an 8-core Intel Core i7-9800X 3.8 GHz CPU, 64 GB 
memory, a 3 TB SATA disk, and a 500 GB solid-state drive 
and runs the Ubuntu 18.04.02 operating system. We used both 
the CPU and the GPU to train each deep learning model on an 
unloaded computer. 

The Amazon reviews polarity data set [28] and ImageNet-
1k [14] are two popular benchmark data sets. For each of them, 
we used a subset of it to do our tests (see Table 1). From the 
Amazon reviews polarity data set’s training set, we randomly 
sampled 135,000 data instances. We used 130,000 of them as 
a training set and the other 5,000 as a validation set for our 
tests. For ImageNet-1k, we used a subset of it called 
ImageNet-100 [29]. This subset contains 130,000 training 
instances and 5,000 validation instances. 
 
TABLE 1. The data sets we employed to test the progress estimation 
method. 
 

Name 
Total number 
of validation 

instances 

Number of 
training 

instances 

Number of 
classes 

Data instance 
size 

Subset of the 
Amazon reviews 
polarity data set 

5,000 130,000 2 average 
number of 
tokens: 102 

ImageNet-100 5,000 130,000 100 average height 
402 × average 
width 500 

 
For the early stopping condition, we set the patience p to 9, 

an integer chosen from [3, 10] randomly, and the min_delta δ 
to 0.00820, a number chosen from [0, 0.01] randomly. 

We tested 3 major deep learning models: 
1) Bidirectional Encoder Representations from Transformers 

(BERT) [5], a transformer-based model trained on the 
subset of the Amazon reviews polarity data set. 

2) ResNet50 [30], a convolutional neural network model 
trained on ImageNet-100. 

3) A Long Short-Term Memory (LSTM) model [31] trained 
on the subset of the Amazon reviews polarity data set. 

 
BERT model 

When training the BERT model, we started from Version 2 
of the pretrained bert_en_uncased_L-8_H-256_A-4 [32] 
model [33]. We used a given learning rate of 2×10-5 and the 
adaptive moment estimation with decoupled weight decay 
(AdamW) optimization algorithm [34]. We handled 100 
training instances in each batch and allowed at most 25 

epochs. We set all other hyper-parameters to their default 
values [32]. 

In each epoch, we did the following online data 
preprocessing steps: 
1) We used the CPU to shuffle the training instances [35]. 
2) We used the GPU to do the default preprocessing steps in 

Version 1 of TensorFlow Hub’s 
bert_en_uncased_preprocess model [36] to transform the 
text in each data instance to a set of numeric vectors. 

 
ResNet50 model 

When training the ResNet50 model, we handled 50 training 
instances in each batch and allowed at most 100 epochs. We 
tested 4 major optimization algorithms: classical stochastic 
gradient descent (SGD) [37], root mean square propagation 
(RMSprop) [38], adaptive moment estimation (Adam) [39], 
and adaptive gradient (AdaGrad) [40]. For each optimization 
algorithm, we tested 3 learning rate decay approaches: 
exponential decay, step decay, and employing a given learning 
rate. In the exponential decay approach, the k-th epoch (k ≥ 1) 
uses a learning rate of r0e–(k–1)ρ. ρ is a positive constant 
specifying the decay speed of the learning rate. r0 is the starting 
learning rate that is > 0. We set ρ to 0.05 and r0 to 10-3. In the 
step decay approach, we reduced the learning rate from 10-3 to 
10-4 when the 20th epoch began and then to 10-5 when the 40th 
epoch began. We set all other hyper-parameters to their default 
values [41]. 

In each epoch, we used the CPU to do the following online 
data preprocessing steps: 
1) We shuffled the training instances [35]. 
2) We replaced each image in the training set with a 224 × 

224 pixels patch randomly cropped from the image to 
obtain an augmented training instance. 

3) We replaced each image in the validation set with a 224 × 
224 pixels patch cropped from the center of the image to 
obtain an augmented validation instance. 

4) In each patch, we normalized its pixels to have a mean of 
0 and a variance of 1. 

In the second and third steps, if the height (or width) of the 
original image is < 224 pixels, we increased the height (or 
width) to 224 pixels before we did the cropping. 
 
LSTM model 

In the LSTM model, we put a fully connected layer on top 
of 3 stacked bidirectional LSTM layers. We set each LSTM 
cell’s output dimension to 1,024 and the dimension of each 
token’s embedding vector to 128. When training the LSTM 
model, we used the exponential decay approach to control the 
learning rate and set ρ to 0.05 and r0 to 2×10-5. We used Adam, 
handled 100 training instances in each batch, and allowed at 
most 25 epochs. 

In each epoch, we did 3 online data preprocessing steps: 
1) We used the CPU to shuffle the training instances [35]. 
2) We used the CPU to tokenize the text of each data instance. 
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3) We used the GPU to map each token to an embedding 
vector. 

 
In this section, we give all experimental results of training 

the BERT model and those of training the ResNet50 model 
using Adam. The experimental results of training the 
ResNet50 model using the other 3 optimization algorithms are 
given in Section A of the Appendix. The experimental results 
of training the LSTM model are given in Section B of the 
Appendix. 

B. ACCURACY MEASURE 
As in Chaudhuri et al. [42], we employed the average 
prediction error to assess the accuracy of the progress 
estimates. The average prediction error is = the area of the 
space between a diagonal and a curve / the area of the triangle 
formed by the x-axis, the y-axis, and the diagonal (see Fig. 5). 
The diagonal depicts the genuine outstanding model training 
time. The curve depicts the forecasted outstanding model 
training time over time. The bigger the average prediction 
error, the worse the progress estimates are. 
 

 
FIGURE 5. The areas of the spaces used to compute the average 
prediction error. 

C. COMPARISON OF OUR FORMER AND NEW 
PROGRESS ESTIMATION METHODS 
We compared the accuracy of the progress estimates given by 
our former [11] and new progress estimation methods. We did 

14 tests, one for every (deep learning model, learning rate 
decay approach, optimization algorithm) combination listed in 
Section V-A. In every test, we trained the model 5 times, each 
in a different run. In every run, we employed each of our 
former and new progress estimation methods to give progress 
estimates. For every test, Table 2 lists for each of the two 
methods the mean and the standard deviation of the average 
prediction error over the 5 runs. There, we mark in bold the 
smaller mean between the two methods. Our new progress 
estimation method outperformed our former progress 
estimation method in every test. In comparison with our 
former method, on average our proposed new method cuts the 
error of the predicted outstanding model training time by 
16.0%. 

For each of the 14 tests, Table 3 lists the mean and the 
standard deviation of our new progress estimation method’s 
runtime overhead, which is represented by the percentage rise 
in the model training time induced by the progress indicator. 
The mean runtime overhead across all tests is 4.69%. 

In Section V-D, Section V-E, and the Appendix, we present 
the estimated outstanding model training time given by both 
our former and new progress estimation methods, as well as 
the other progress estimates given by our new progress 
estimation method. In each of the 14 tests, we trained the 
model 5 times. We randomly chose one of them and present 
the progress estimates given over time there. 

D. EXPERIMENTAL RESULTS OF TRAINING THE BERT 
MODEL 

This test employed a given learning rate as well as AdamW 
to train the BERT model. Fig. 6 displays the cost of handling 
the training instances forecasted over time by our new 
progress estimation method, with the horizontal dotted line 
marking the genuine cost of handling the training instances. 
Fig. 7 displays the cost of handling the validation instances 
forecasted over time by our new progress estimation method, 
with the horizontal dotted line marking the genuine cost of 
handling the validation instances. Within several hundred 
seconds after model training began, both forecasted costs 
became relatively accurate.

TABLE 2. For each combination of one of the 14 tests and one of our former and new progress estimation methods, the mean and the standard 
deviation of the average prediction error over the 5 runs. 
 

Deep learning model Learning rate decay approach Optimization 
algorithm 

Average prediction error 
Our new progress 
estimation method 

Our former progress 
estimation method 

BERT Using a given learning rate AdamW 0.48 ± 0.27 0.54 ± 0.28 
LSTM Exponential decay Adam 0.95 ± 0.23 0.99 ± 0.23 

ResNet50 

Using a given learning rate 

Adam 0.36 ± 0.08 0.48 ± 0.09 
RMSprop 0.69 ± 0.08 0.84 ± 0.09 
SGD 0.56 ± 0.19 0.67 ± 0.22 
AdaGrad 0.65 ± 0.13 0.79 ± 0.16 

Exponential decay 
Adam 0.77 ± 0.27 0.97 ± 0.31 
RMSprop 1.03 ± 0.24 1.22 ± 0.27 
SGD 0.30 ± 0.05 0.38 ± 0.05 
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AdaGrad 0.49 ± 0.19 0.60 ± 0.22 

Step decay 

Adam 0.44 ± 0.12 0.56 ± 0.14 
RMSprop 0.91 ± 0.08 1.08 ± 0.10 
SGD 0.91 ± 0.31 1.06 ± 0.35 
AdaGrad 0.99 ± 0.04 1.18 ± 0.04 

Over all runs in all tests   0.68 ± 0.30 0.81 ± 0.34 

 
TABLE 3. For each of the 14 tests, the mean and the standard deviation of our new progress estimation method’s runtime overhead over the 5 runs. 
 

Deep learning model Learning rate decay approach Optimization algorithm Runtime overhead 

BERT Using a given learning rate AdamW 2.17% ± 0.30%  
LSTM Exponential decay Adam 2.46% ± 0.09% 

ResNet50 

Using a given learning rate 

Adam 5.65% ± 0.35% 
RMSprop 5.37% ± 0.25% 
SGD 3.90% ± 0.36% 
AdaGrad 4.93% ± 0.32% 

Exponential decay 

Adam 6.47% ± 0.49% 
RMSprop 5.55% ± 0.49% 
SGD 3.45% ± 0.11% 
AdaGrad 4.53% ± 0.45% 

Step decay 

Adam 5.48% ± 0.00% 
RMSprop 5.48% ± 0.00% 
SGD 4.73% ± 0.48% 
AdaGrad 5.48% ± 0.00% 

Over all runs in all tests   4.69% ± 1.26% 

 

 
FIGURE 6. Cost of handling the training instances forecasted over time 
(employing a given learning rate as well as AdamW to train the BERT 
model). 

 

 

FIGURE 7. Cost of handling the validation instances forecasted over 
time (employing a given learning rate as well as AdamW to train the 
BERT model). 
 

Fig. 8 displays both the speed of handling training instances 
and the speed of handling validation instances estimated by 
our new progress estimation method over time. Both estimated 
speeds were decently stable throughout the whole model 
training process. 
 

 
FIGURE 8. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing a given 
learning rate as well as AdamW to train the BERT model). 

 
Fig. 9 and 10 display the outstanding model training time 

forecasted over time by our new and former progress 
estimation methods, respectively, with the dashed line 
marking the genuine outstanding model training time. For the 
reason given in the introduction, the outstanding model 
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training time forecasted by our former progress estimation 
method often differs greatly from the genuine outstanding 
model training time. Our new progress estimation method 
does not have this problem. 

 

 
FIGURE 9. Outstanding model training time forecasted by our new 
progress estimation method (employing a given learning rate as well as 
AdamW to train the BERT model). 

 

 
FIGURE 10. Outstanding model training time forecasted by our former 
progress estimation method (employing a given learning rate as well as 
AdamW to train the BERT model). 
 

Fig. 11 displays the accomplished percentage of model 
training work estimated by our new progress estimation 
method over time. The curve depicting the forecasted 
accomplished percentage is decently near the dotted diagonal 
that joins the lower left and the upper right corners. 
 

 

FIGURE 11. Accomplished percentage forecasted over time (employing 
a given learning rate as well as AdamW to train the BERT model). 

E. EXPERIMENTAL RESULTS OF TRAINING THE 
RESNET50 MODEL 
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN 
LEARNING RATE 
This test employed a given learning rate as well as Adam to 
train the ResNet50 model. Fig. 12 displays the cost of handling 
the training instances forecasted over time by our new 
progress estimation method, with the horizontal dotted line 
marking the genuine cost of handling the training instances. 
Fig. 13 displays the cost of handling the validation instances 
forecasted over time by our new progress estimation method, 
with the horizontal dotted line marking the genuine cost of 
handling the validation instances. When model training just 
started, both forecasted costs diverged notably from the 
genuine costs. Once we reached the 4th point of validation and 
was able to refine our initially guessed costs within 243 
seconds, both forecasted costs became much more accurate. 
 

 
FIGURE 12. Cost of handling the training instances forecasted over time 
(employing a given learning rate as well as Adam to train the ResNet50 
model). 

 

 
FIGURE 13. Cost of handling the validation instances forecasted over 
time (employing a given learning rate as well as Adam to train the 
ResNet50 model). 
 

Fig. 14 displays both the speed of handling training 
instances and the speed of handling validation instances 
estimated by our new progress estimation method over time. 
Both estimated speeds were decently stable throughout the 
whole model training process. 
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FIGURE 14. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing a given 
learning rate as well as Adam to train the ResNet50 model). 
 

Fig. 15 and 16 display the outstanding model training time 
forecasted over time by our new and former progress 
estimation methods, respectively, with the dashed line 
depicting the genuine outstanding model training time. For the 
reason given in the introduction, the outstanding model 
training time forecasted by our former progress estimation 
method often differs greatly from the genuine outstanding 
model training time. Our new progress estimation method 
does not have this problem. 

 

 
FIGURE 15. Outstanding model training time forecasted by our new 
progress estimation method (employing a given learning rate as well as 
Adam to train the ResNet50 model). 
 

 

FIGURE 16. Outstanding model training time forecasted by our former 
progress estimation method (employing a given learning rate as well as 
Adam to train the ResNet50 model). 
 

Fig. 17 displays the accomplished percentage of model 
training work estimated by our new progress estimation 
method over time. The curve depicting the forecasted 
accomplished percentage is decently near the dotted diagonal 
that joins the lower left and the upper right corners. 
 

 
FIGURE 17. Accomplished percentage forecasted over time (employing 
a given learning rate as well as Adam to train the ResNet50 model). 
 
2) EXPERIMENTAL RESULTS OF EMPLOYING THE 
EXPONENTIAL DECAY APPROACH TO CONTROL THE 
LEARNING RATE 
This test employed the exponential decay approach to control 
the learning rate as well as Adam to train the ResNet50 model. 
Fig. 18-23 display this test’s results. Overall, our new progress 
estimation method produced relatively good estimates of the 
cost of handling the training instances, the cost of handling the 
validation instances, and the outstanding model training time. 
Compared to our former progress estimation method, our new 
progress estimation method provided more stable estimates of 
the outstanding model training time. 
 

 
FIGURE 18. Cost of handling the training instances forecasted over time 
(employing the exponential decay approach to control the learning rate 
as well as Adam to train the ResNet50 model). 
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FIGURE 19. Cost of handling the validation instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as Adam to train the ResNet50 model). 
 

 
FIGURE 20. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the 
exponential decay approach to control the learning rate as well as Adam 
to train the ResNet50 model). 
 

 
FIGURE 21. Outstanding model training time forecasted by our new 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as Adam to train the 
ResNet50 model). 
 

 
FIGURE 22. Outstanding model training time forecasted by our former 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as Adam to train the 
ResNet50 model). 
 

 
FIGURE 23. Accomplished percentage forecasted over time (employing 
the exponential decay approach to control the learning rate as well as 
Adam to train the ResNet50 model). 
 
3) EXPERIMENTAL RESULTS OF EMPLOYING THE 
STEP DECAY APPROACH TO CONTROL THE LEARNING 
RATE 
This test employed the step decay approach to control the 
learning rate as well as Adam to train the ResNet50 model. We 
reduced the learning rate from 10-3 to 10-4 when the 20th epoch 
began and then to 10-5 when the 40th epoch began. Early 
stopping occurred between the 20th epoch and the 40th epoch. 
Fig. 24-29 display this test’s results. In each of these figures, 
we use a dash-dotted vertical line to show when the learning 
rate dropped. Overall, our new progress estimation method 
produced relatively good estimates of the cost of handling the 
training instances, the cost of handling the validation 
instances, and the outstanding model training time. Compared 
to our former progress estimation method, our new progress 
estimation method provided more stable estimates of the 
outstanding model training time. 
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FIGURE 24. Cost of handling the training instances forecasted over time 
(employing the step decay approach to control the learning rate as well 
as Adam to train the ResNet50 model). 

 

 
FIGURE 25. Cost of handling the validation instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as Adam to train the ResNet50 model). 
 

 
FIGURE 26. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the step 
decay approach to control the learning rate as well as Adam to train the 
ResNet50 model). 
 

 
FIGURE 27. Outstanding model training time forecasted by our new 
progress estimation method (employing the step decay approach to 
control the learning rate as well as Adam to train the ResNet50 model). 
 

 
FIGURE 28. Outstanding model training time forecasted by our former 
progress estimation method (employing the step decay approach to 
control the learning rate as well as Adam to train the ResNet50 model). 

 

 
FIGURE 29. Accomplished percentage forecasted over time (employing 
the step decay approach to control the learning rate as well as Adam to 
train the ResNet50 model). 

VI. RELATED WORK 
This section briefly goes over the related work. Our prior 
paper [8] discusses the related work in detail. 
 
Advanced progress indicators 

Several researchers have designed advanced progress 
indicators for program compilation [43], software model 
checking [44], static program analysis [45], automatic 
machine learning model selection [46], [47], MapReduce jobs 
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[48], [49], database queries [9], [42], [50]-[52], and subgraph 
queries [53]. We have also designed advanced progress 
indicators for building several types of machine learning 
models like neural network, decision tree, and random forest 
[8], [10], [11], [54]. 
 
Predicting the deep learning model training time 

To predict an epoch’s runtime before one starts training a 
deep learning model, Justus et al. [55] designed a meta 
learning method. This method uses several features of the 
current model, the training data set adopted to build another 
deep learning model, and the computing resources, but 
predicts neither the time nor the number of epochs it takes to 
train the current model. 

To predict the time needed to train a deep learning model 
before one starts training the model, multiple researchers have 
designed a Bayesian optimization method [56] as well as 
several meta learning methods using multivariate adaptive 
regression splines [57], polynomial regression [58], and 
support vector regression [59], respectively. The numbers 
predicted by these methods are often inaccurate, can differ a 
lot from the genuine time taken to train the model on a loaded 
computer, and are not revised continuously. In comparison, 
when our progress estimation method predicts the outstanding 
deep learning model training time, we consider the load on the 
computer and keep revising our predicted numbers. 
 
Complexity analysis for neural network training 

Multiple researchers have computed the time complexity of 
building a neural network model [60]-[62]. But, this 
information can neither give us an estimated model training 
time on a loaded computer nor help us create a progress 
indicator. Usually, time complexity disregards the data 
properties that affect the cost of model training and the lower 
order terms and the coefficients needed to predict that cost. 
During model training, a non-trivial progress indicator should 
keep revising its predicted cost of model training. 

VII. POSSIBLE DIRECTIONS TO DO FUTURE WORK 
This section lists several possible directions to do future work. 

This work derives no upper bounds on the error of the 
predicted cost of handling the training instances and that of 
handling the validation instances. In the future, we could adopt 
an approach akin to what Chaudhuri et al. [63] used for 
database query progress estimation to compute such upper 
bounds. 

As a case study, both this work and our prior work [10], [11] 
employ the same early stopping condition to show that we can 
create advanced progress indicators for deep learning model 
training. There are many other early stopping conditions [1], 
[64]-[66]. In the future, we will examine how to extend our 
current progress estimation techniques to accommodate other 
commonly used early stopping conditions. 

This work addresses deep learning classification and uses 
error rate as a model performance metric. Deep learning is also 

used for regression, where mean squared error is used as a 
model performance metric. In the future, we will extend our 
current progress estimation techniques to handle that case. 

VIII. CONCLUSION 
This paper presents a new progress estimation method to 
handle end-to-end deep learning model training with online 
data preprocessing. This new method overcomes our former 
progress estimation method’s limitation of ignoring online 
data preprocessing, which commonly takes a large percentage 
of model training time. Our tests show that when online data 
preprocessing is used and in comparison with our former 
method, our proposed new method produces more stable 
progress estimates for model training and on average lowers 
the error of the predicted outstanding model training time by 
16.0%. 

APPENDIX 

A. OTHER EXPERIMENTAL RESULTS OF TRAINING 
THE RESNET50 MODEL 
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN 
LEARNING RATE 
Employing RMSprop 

This test employed a given learning rate as well as 
RMSprop to train the ResNet50 model. Fig. A1-A6 display the 
experimental results, which resemble those displayed in Fig. 
12-17. 
 

 
FIGURE A1. Cost of handling the training instances forecasted over 
time (employing a given learning rate as well as RMSprop to train the 
ResNet50 model). 
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FIGURE A2. Cost of handling the validation instances forecasted over 
time (employing a given learning rate as well as RMSprop to train the 
ResNet50 model). 
 

 
FIGURE A3. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing a given 
learning rate as well as RMSprop to train the ResNet50 model). 
 

 
FIGURE A4. Outstanding model training time forecasted by our new 
progress estimation method (employing a given learning rate as well as 
RMSprop to train the ResNet50 model). 
 

 
FIGURE A5. Outstanding model training time forecasted by our former 
progress estimation method (employing a given learning rate as well as 
RMSprop to train the ResNet50 model). 
 

 
FIGURE A6. Accomplished percentage forecasted over time (employing 
a given learning rate as well as RMSprop to train the ResNet50 model). 
 
Employing SGD 

This test employed a given learning rate as well as SGD to 
train the ResNet50 model. Fig. A7-A12 display the 
experimental results, which resemble those displayed in Fig. 
12-17. 
 

 
FIGURE A7. Cost of handling the training instances forecasted over 
time (employing a given learning rate as well as SGD to train the 
ResNet50 model). 

 

 
FIGURE A8. Cost of handling the validation instances forecasted over 
time (employing a given learning rate as well as SGD to train the 
ResNet50 model). 
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FIGURE A9. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing a given 
learning rate as well as SGD to train the ResNet50 model). 
 

 
FIGURE A10. Outstanding model training time forecasted by our new 
progress estimation method (employing a given learning rate as well as 
SGD to train the ResNet50 model). 
 

 
FIGURE A11. Outstanding model training time forecasted by our former 
progress estimation method (employing a given learning rate as well as 
SGD to train the ResNet50 model). 
 

 
FIGURE A12. Accomplished percentage forecasted over time 
(employing a given learning rate as well as SGD to train the ResNet50 
model). 
 
Employing AdaGrad 

This test employed a given learning rate as well as AdaGrad 
to train the ResNet50 model. Fig. A13-A18 display the 
experimental results, which resemble those displayed in Fig. 
12-17. 

 

 
FIGURE A13. Cost of handling the training instances forecasted over 
time (employing a given learning rate as well as AdaGrad to train the 
ResNet50 model). 
 

 
FIGURE A14. Cost of handling the validation instances forecasted over 
time (employing a given learning rate as well as AdaGrad to train the 
ResNet50 model). 
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FIGURE A15. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing a given 
learning rate as well as AdaGrad to train the ResNet50 model). 
 

 
FIGURE A16. Outstanding model training time forecasted by our new 
progress estimation method (employing a given learning rate as well as 
AdaGrad to train the ResNet50 model). 
 

 
FIGURE A17. Outstanding model training time forecasted by our former 
progress estimation method (employing a given learning rate as well as 
AdaGrad to train the ResNet50 model). 

 

 
FIGURE A18. Accomplished percentage forecasted over time 
(employing a given learning rate as well as AdaGrad to train the 
ResNet50 model). 
 
2) EXPERIMENTAL RESULTS OF EMPLOYING THE 
EXPONENTIAL DECAY APPROACH TO CONTROL THE 
LEARNING RATE 
Employing RMSprop 

This test employed the exponential decay approach to 
control the learning rate as well as RMSprop to train the 
ResNet50 model. Fig. A19-A24 display the experimental 
results, which resemble those displayed in Fig. 18-23. 
 

 
FIGURE A19. Cost of handling the training instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as RMSprop to train the ResNet50 model). 
 

 
FIGURE A20. Cost of handling the validation instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as RMSprop to train the ResNet50 model). 
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FIGURE A21. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the 
exponential decay approach to control the learning rate as well as 
RMSprop to train the ResNet50 model). 
 

 
FIGURE A22. Outstanding model training time forecasted by our new 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as RMSprop to train the 
ResNet50 model). 
 

 
FIGURE A23. Outstanding model training time forecasted by our former 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as RMSprop to train the 
ResNet50 model). 
 

 
FIGURE A24. Accomplished percentage forecasted over time 
(employing the exponential decay approach to control the learning rate 
as well as RMSprop to train the ResNet50 model). 
 
Employing SGD 

This test employed the exponential decay approach to 
control the learning rate as well as SGD to train the ResNet50 
model. Fig. A25-A30 display the experimental results, which 
resemble those displayed in Fig. 18-23. 
 

 
FIGURE A25. Cost of handling the training instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as SGD to train the ResNet50 model). 
 

 
FIGURE A26. Cost of handling the validation instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as SGD to train the ResNet50 model). 
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FIGURE A27. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the 
exponential decay approach to control the learning rate as well as SGD 
to train the ResNet50 model). 
 

 
FIGURE A28. Outstanding model training time forecasted by our new 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as SGD to train the 
ResNet50 model). 
 

 
FIGURE A29. Outstanding model training time forecasted by our former 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as SGD to train the 
ResNet50 model). 
 

 
FIGURE A30. Accomplished percentage forecasted over time 
(employing the exponential decay approach to control the learning rate 
as well as SGD to train the ResNet50 model). 
 
Employing AdaGrad 

This test employed the exponential decay approach to 
control the learning rate as well as AdaGrad to train the 
ResNet50 model. Fig. A31-A36 display the experimental 
results, which resemble those displayed in Fig. 18-23. 
 

 
FIGURE A31. Cost of handling the training instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as AdaGrad to train the ResNet50 model). 
 

 
FIGURE A32. Cost of handling the validation instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as AdaGrad to train the ResNet50 model). 
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FIGURE A33. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the 
exponential decay approach to control the learning rate as well as 
AdaGrad to train the ResNet50 model). 
 

 
FIGURE A34. Outstanding model training time forecasted by our new 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as AdaGrad to train the 
ResNet50 model). 
 

 
FIGURE A35. Outstanding model training time forecasted by our former 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as AdaGrad to train the 
ResNet50 model). 
 

 
FIGURE A36. Accomplished percentage forecasted over time 
(employing the exponential decay approach to control the learning rate 
as well as AdaGrad to train the ResNet50 model). 
 
3) EXPERIMENTAL RESULTS OF EMPLOYING THE 
STEP DECAY APPROACH TO CONTROL THE LEARNING 
RATE 
In each test that employed the step decay approach to control 
the learning rate to train the ResNet50 model, we reduced the 
learning rate from 10-3 to 10-4 when the 20th epoch began and 
then to 10-5 when the 40th epoch began. Early stopping 
occurred between the 20th epoch and the 40th epoch. In each 
figure displayed in this section, we employ a dash-dotted 
vertical line to show when the learning rate dropped. 
 
Employing RMSprop 

This test employed the step decay approach to control the 
learning rate as well as RMSprop to train the ResNet50 model. 
Fig. A37-A42 display the experimental results. 
 

 
FIGURE A37. Cost of handling the training instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as RMSprop to train the ResNet50 model). 
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FIGURE A38. Cost of handling the validation instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as RMSprop to train the ResNet50 model). 
 

 
FIGURE A39. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the step 
decay approach to control the learning rate as well as RMSprop to train 
the ResNet50 model). 
 

 
FIGURE A40. Outstanding model training time forecasted by our new 
progress estimation method (employing the step decay approach to 
control the learning rate as well as RMSprop to train the ResNet50 
model). 
 

 
FIGURE A41. Outstanding model training time forecasted by our former 
progress estimation method (employing the step decay approach to 
control the learning rate as well as RMSprop to train the ResNet50 
model). 
 

 
FIGURE A42. Accomplished percentage forecasted over time 
(employing the step decay approach to control the learning rate as well 
as RMSprop to train the ResNet50 model). 
 
Employing SGD 

This test employed the step decay approach to control the 
learning rate as well as SGD to train the ResNet50 model. Fig. 
A43-A48 display the experimental results. 
 

 
FIGURE A43. Cost of handling the training instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as SGD to train the ResNet50 model). 
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FIGURE A44. Cost of handling the validation instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as SGD to train the ResNet50 model). 
 

 
FIGURE A45. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the step 
decay approach to control the learning rate as well as SGD to train the 
ResNet50 model). 
 

 
FIGURE A46. Outstanding model training time forecasted by our new 
progress estimation method (employing the step decay approach to 
control the learning rate as well as SGD to train the ResNet50 model). 
 

 
FIGURE A47. Outstanding model training time forecasted by our former 
progress estimation method (employing the step decay approach to 
control the learning rate as well as SGD to train the ResNet50 model). 
 

 
FIGURE A48. Accomplished percentage forecasted over time 
(employing the step decay approach to control the learning rate as well 
as SGD to train the ResNet50 model). 
 
Employing AdaGrad 

This test employed the step decay approach to control the 
learning rate as well as AdaGrad to train the ResNet50 model. 
Fig. A49-A54 display the experimental results, which 
resemble those displayed in Fig. A43-A48. 
 

 
FIGURE A49. Cost of handling the training instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as AdaGrad to train the ResNet50 model). 
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FIGURE A50. Cost of handling the validation instances forecasted over 
time (employing the step decay approach to control the learning rate as 
well as AdaGrad to train the ResNet50 model). 
 

 
FIGURE A51. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the step 
decay approach to control the learning rate as well as AdaGrad to train 
the ResNet50 model). 
 

 
FIGURE A52. Outstanding model training time forecasted by our new 
progress estimation method (employing the step decay approach to 
control the learning rate as well as AdaGrad to train the ResNet50 
model). 
 

 
FIGURE A53. Outstanding model training time forecasted by our former 
progress estimation method (employing the step decay approach to 
control the learning rate as well as AdaGrad to train the ResNet50 
model). 
 

 
FIGURE A54. Accomplished percentage forecasted over time 
(employing the step decay approach to control the learning rate as well 
as AdaGrad to train the ResNet50 model). 

B. EXPERIMENTAL RESULTS OF TRAINING THE LSTM 
MODEL 
This test employed the exponential decay approach to control 
the learning rate as well as Adam to train the LSTM model. 
Fig. A55-A60 display the experimental results. Overall, our 
new progress estimation method produced relatively good 
estimates of the cost of handling the training instances, the cost 
of handling the validation instances, and the outstanding 
model training time. Compared to our former progress 
estimation method, our new progress estimation method 
provided more stable estimates of the outstanding model 
training time. 
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FIGURE A55. Cost of handling the training instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as Adam to train the LSTM model). 
 

 
FIGURE A56. Cost of handling the validation instances forecasted over 
time (employing the exponential decay approach to control the learning 
rate as well as Adam to train the LSTM model). 
 

 
FIGURE A57. The speed of handling training instances and the speed of 
handling validation instances estimated over time (employing the 
exponential decay approach to control the learning rate as well as Adam 
to train the LSTM model). 
 

 
FIGURE A58. Outstanding model training time forecasted by our new 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as Adam to train the LSTM 
model). 
 

 
FIGURE A59. Outstanding model training time forecasted by our former 
progress estimation method (employing the exponential decay 
approach to control the learning rate as well as Adam to train the LSTM 
model). 
 

 
FIGURE A60. Accomplished percentage forecasted over time 
(employing the exponential decay approach to control the learning rate 
as well as Adam to train the LSTM model). 
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