
 Author: Paper

VOLUME XX, 2017 1

1) DATE OF PUBLICATION XX 0, 2024, DATE OF CURRENT VERSION XX 0, 2024.
Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Progress Estimation for End-to-End Training of
Deep Learning Models with Online Data
Preprocessing
Qifei Dong and Gang Luo

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA

Corresponding author: Gang Luo (luogang@uw.edu).

ABSTRACT Deep learning is the best machine learning algorithm for numerous analytical tasks. On a large
data set, training a deep learning model frequently lasts several days to several months. Throughout this long
period, it would be helpful to show a progress indicator, which continually projects the percentage of model
training work accomplished as well as the outstanding model training time. We formerly invented the first
method to support this function while allowing early stopping. This method assumes that the input data to the
model have been preprocessed before model training starts. This is a limitation. In practice, online data
preprocessing is often integrated into the model and done as part of the end-to-end model training. Ignoring
online data preprocessing costs can cause our former method to produce inaccurate estimates. To overcome
this limitation, this paper presents a new progress estimation method that explicitly considers online data
preprocessing. We did a coding implementation of our new method in TensorFlow. Our tests unveil that for
various deep learning models that integrate online data preprocessing and in comparison with our former
method, our proposed new method produces more stable progress estimates for model training and on average
lowers the error of the predicted outstanding model training time by 16.0%.

INDEX TERMS Deep learning, online data preprocessing, TensorFlow, progress indicator, model training

SYMBOL LIST
 Floor function.
 Nearest integer function.
 Ceiling function.
bmax Greatest number of batches that we allow in

training the model.
B Quantity of training instances that we handle in

each batch.
c0 Upon exiting the first raw point of validation, the

cost of model training that we have spent ignoring
the overhead that the progress indicator has
incurred at the inserted points of validation to
compute validation errors.

C Upper limit of the cost of model training that we
have spent upon exiting the 4th point of
validation.

ej The model’s validation error computed at the j-th
raw point of validation.

g Count of batches of model training that are done
between two sequential raw points of validation.

K Size of the sliding window of time that we use to
compute the speed of model training.

me Greatest number of epochs that we allow in
training the model.

n0 Number of points of validation inserted ahead of
the first raw point of validation.

p Patience.
P1 Greatest permitted percentage rise in the cost of

model training caused by the progress indicator
between the model training start time and the time
of exiting the first raw point of validation.

r T-V cost ratio.
r0 Starting learning rate that the exponential decay

approach employs.
st Latest speed of handling training instances.
sv Latest speed of handling validation instances.
U Unit of work for handling the training instances.
vmax Greatest number of raw points of validation that

we allow in training the model.
V Quantity of data instances the whole validation

set contains.
Vmin Smallest quantity of data instances that the subset

of the whole validation set employed at each
inserted point of validation requires.

 Author: Paper

VOLUME XX, 2017 2

V' Fixed quantity of data instances that the subset of
the whole validation set employed at each inserted
point of validation contains.

W Unit of work for handling the validation
instances.

δ min_delta.
ρ Constant that the exponential decay approach

uses to decide the decay speed of the learning rate.

I. INTRODUCTION
Our former progress estimation method and its limitation
Deep learning is the best machine learning algorithm for
numerous analytical tasks such as artificial intelligence art
creation, text generation, and speech recognition [1]. Yet, on a
large data set, training a deep learning model could last several
days to several months [2]-[7] even if a cluster of tensor
processing unit (TPU) or graphics processing unit (GPU)
nodes is used. Throughout this long period, it would be helpful
to display a progress indicator, which continually projects the
percentage of model training work accomplished as well as the
outstanding model training time (see Fig. 1). Providing this
information can facilitate workload management and make
model training more user friendly [8]-[10].

FIGURE 1. A progress indicator displayed in training a deep learning
model.

We formerly invented the first progress estimation method

that allows early stopping for training deep learning models
[10], [11]. This method assumes that the input data to the deep
learning model have been preprocessed before model training
starts. In other words, we only do offline data preprocessing
[12]. This is a limitation. In practice, part or all of the data
preprocessing is often integrated into the model as online data
preprocessing [12] and done as part of the end-to-end model
training. Examples of online data preprocessing include
rotating images, adjusting image contrast, adjusting image
brightness, normalizing images, and embedding the tokens in
textual documents. When online data preprocessing is used, it
commonly takes a large percentage of model training time,
e.g., 30% for an average deep learning job running in Google’s
data centers [13]. Ignoring online data preprocessing costs can
cause our former progress estimation method to produce
inaccurate estimates.

More specifically, in our former progress estimation
method [10], [11], all operations in the deep learning model
training job are assumed to be done on the same type of
computer chips: central processing units (CPUs), GPUs, or

TPUs. We define U, a unit of work, as the mean amount of
work it requires to handle a training instance once during
model training, which involves one forward and one backward
propagation in the model. A validation instance is a data
instance in the validation set. It can be shown that under the
above assumption, the mean amount of work it requires to
handle a validation instance once is U/3, which involves one
forward propagation in the model. This result is the base for
our former method to produce progress estimates. Yet, this
result becomes invalid when online data preprocessing is used.
In this case, handling a training instance once involves online
data preprocessing as well as one forward and one backward
propagation in the model. Handling a validation instance once
typically involves both online data preprocessing and one
forward propagation in the model. The online data
preprocessing operation is often the same in handling either a
training or a validation instance and can be done on CPUs.
Forward and backward propagation in the model can be done
on GPUs/TPUs. CPUs and GPUs/TPUs have vastly different
processing speeds. This makes it difficult to define only one
type of unit of work U, convert U to time in a uniform way for
both the training and the validation instances, and produce
good progress estimates.

To illustrate this point, we give a concrete example. During
deep learning model training, we alternate between the
training cycle and the validation cycle. In the training cycle,
we handle the training instances and calculate changes to the
model’s parameter values. In the validation cycle, we handle
the validation instances and calculate on the validation set the
model’s error rate. Each training and each validation cycle can
take quite some time to run. For instance, when using one
Nvidia Titan Xp GPU and the ImageNet-1k data set [14] to
train the NASNet-A-Large model [15], it takes about 15
minutes to run one validation cycle [16]. When online data
preprocessing is used and the model training job is the only
job being executed in the system, the mean amount of time to
handle a validation instance once can differ greatly from 1/3
of that to handle a training instance once. If we keep using U/3
as the mean amount of work it requires to handle a validation
instance once, the speed of model training measured during
the validation cycle can differ greatly from that measured
during the training cycle. Consequently, during a typical
validation cycle, the projected outstanding model training time
can differ greatly from the genuine outstanding model training
time.

Our contributions

To address our former progress estimation method’s [10],
[11] limitation, we come up with a novel progress estimation
method for end-to-end training of deep learning models with
online data preprocessing. In our new method, we define two
types of unit of work, one for handling the training instances
and the other for handling the validation instances. For
handling the training instances, we use the type of unit of work
for it to compute its speed and estimate its cost and outstanding

Progress Indicator

Transformer

Time passed 2d 7h 33min
Time left 9d 6h 13min (20% done)
Cost of model training 1,119,955,200U
Speed of model training 1,120U/s Cancel

 Author: Paper

VOLUME XX, 2017 3

time. Handling the validation instances is done in a similar
way. The outstanding model training time is = the outstanding
time for handling the training instances + that for handling the
validation instances.

We need to overcome two technical difficulties to complete
the remaining parts of our new progress estimation method.
First, when online data preprocessing is used, end-to-end
model training is often done using asynchronous pipelining.
There, multiple batches of training/validation instances appear
at different stages of the processing pipeline simultaneously.
This makes it non-trivial to gauge both the latest speed of
handling training instances and that of handling validation
instances. To address this problem, we enumerate all possible
cases that ≥2 batches of training/validation instances appear at
distinct stages of the pipeline simultaneously. For each such
case, we design a distinct speed estimation approach tailored
to it.

Second, our former progress estimation method [10], [11]
inserts additional points of validation between the raw points
of validation to more rapidly acquire decently good progress
estimates. This insertion is controlled by several parameters,
two of which are n0 and V'. Our former progress estimation
method sets the ratio of the mean amount of work required to
handle a training instance once to that to handle a validation
instance once to 3. This ratio is used to compute n0 and V'. But
when online data preprocessing is used, this ratio often differs
greatly from 3 and is hard to compute. To address this
problem, we show that regardless of this ratio’s actual value,
we can keep using a ratio of 3 to compute n0 and V' without
incurring any major performance problem for progress
estimation.

We did a coding implementation of our new progress
estimation method in the open-source software package
TensorFlow [17]. We report our experimental results of
training a transformer-based model, a convolutional neural
network, and a recurrent neural network that all integrate
online data preprocessing. Our results unveil that in
comparison with our former progress estimation method [11],
our proposed new method produces more stable progress
estimates for model training and on average lowers the error
of the predicted outstanding model training time by 16.0%.

Paper structure

The remainder of this paper has the following structure.
Section II recaps our former progress estimation method.
Section III reviews online data preprocessing. Section IV
presents our new progress estimation method. Section V gives
the experimental results. Section VI goes over the related
work. Section VII lists some possible directions to do future
work. Section VIII concludes this paper.

II. RECAP OF OUR FORMER PROGRESS ESTIMATION
METHOD

This section first presents some concepts and notations the
remainder of the paper will use, and then gives a summary of

our former progress estimation method [10], [11]. In the
remainder of this paper, wherever we mention GPUs, the same
also applies to TPUs.

A. SOME CONCEPTS AND NOTATIONS
The user training the deep learning model sets 3 positive
integers g, B, and me and an early stopping condition. During
model training, all training instances are handled for one or
more rounds termed epochs. We train the model in batches. In
every batch, we handle B training instances and compute
changes to the model’s parameter values. Whenever g batches
of model training are done, we arrive at a raw point of
validation. There, we handle the validation instances and
calculate on the whole validation set the model’s error rate
termed the validation error. We then evaluate whether the
early stopping condition is satisfied. If so, we are done with
model training. me is the greatest number of epochs that we
allow in training the model. If upon finishing the me-th epoch,
we still have not fulfilled the early stopping condition, we
force model training to end. Accordingly, the greatest number
of batches that we allow in training the model is

bmax = me × the number of data instances the training set
contains / B.

The greatest number of raw points of validation that we allow
in training the model is

vmax = bmax / g.

 is the floor function, e.g., 5.7 = 5.
Like our prior work [10], [11], this work does not aim to

handle every existing early stopping condition. Rather, we
attend to a widely adopted early stopping condition [1], [18].
We do a case study on it to show that by explicitly addressing
online data preprocessing, we can obtain better progress
estimates for end-to-end training of deep learning models.
Using a preset positive number called the patience p and a
preset nonnegative number called the min_delta δ, this
condition is satisfied at the first place where the validation
error decreases by < δ for p sequential raw points of validation.
That is, we stop model training at the k-th raw point of
validation if we have ek – p – ei < δ for every i from k – p + 1 to
k. Here, ej stands for the model’s validation error that we
compute at the j-th raw point of validation.

B. SUMMARY OF OUR FORMER PROGRESS
ESTIMATION METHOD
This section gives a summary of our former progress
estimation method for training deep learning models [10],
[11]. The forecasted cost of model training is measured in Us.
Each unit of work U is defined as the mean amount of work it
requires to handle a training instance once during model
training, which involves forward and backward propagation in
the model in the absence of online data preprocessing. We start
with a typically inaccurate guess of the cost of model training.
During model training, we regularly collect statistics and use

 Author: Paper

VOLUME XX, 2017 4

them to revise the progress estimates for it. We keep
computing the latest speed of model training = the quantity of
Us finished per second in the previous K = 10 seconds. Each
time we arrive at a point of validation, we use the information
obtained at this and the prior points of validation to recompute
the forecasted cost of model training. We keep predicting the
outstanding model training time = the forecasted cost of model
training left / the latest speed of model training. Every several
seconds, the progress indicator is refreshed with the newest
estimates. As model training continues, we keep gathering
more accurate statistics of it and tend to obtain increasingly
better progress estimates.

The raw points of validation could be sparse, causing a long
delay to gather information at enough points of validation and
obtain decently good progress estimates. To address this issue,
we carefully insert additional points of validation between the
raw points of validation. To reduce the progress estimation
overhead, at each inserted point of validation, we evaluate the
model’s error rate, i.e., the validation error, on a subset
randomly sampled from the whole validation set. In both the
above paragraph and the remainder of this paper, wherever we
speak of points of validation, we always refer to both inserted
and raw points of validation unless we explicitly mention
inserted or raw points of validation.

In the following, we review some details of how our former
progress estimation method forecasts the cost of model
training and inserts additional points of validation between the
raw points of validation. These details are needed later to
describe our new progress estimation method. We refer the
reader to our prior papers [10], [11] for the other details of our
former progress estimation method.

2) FORECASTING THE COST OF MODEL TRAINING
The cost of model training is roughly = the total cost of
handling the training instances + the total cost of handling the
validation instances. The total cost of handling the training
instances is

= the mean amount of work it requires to handle a training
instance once × the quantity of training instances that we
handle in each batch × the quantity of batches it takes to
train the model

= B × the quantity of batches it takes to train the model.

The total cost of handling the validation instances is

= the cost of handling the validation instances at the raw
points of validation + the cost of handling the validation
instances at the inserted points of validation.

We define the training-validation (T-V) cost ratio r = the mean
amount of work it requires to handle a training instance once /
the mean amount of work it requires to handle a validation
instance once. As the numerator is 1 U, the denominator is

= U / r.

Let V stand for the quantity of data instances the whole
validation set contains. The cost of handling the validation
instances at the raw points of validation is

= the mean amount of work it requires to handle a
validation instance once × the quantity of data instances
the whole validation set contains × the quantity of raw
points of validation it takes to train the model

= V / r × the quantity of raw points of validation it takes to
train the model.

At each inserted point of validation, we employ a subset
randomly sampled from the whole validation set. Let V' stand
for the fixed count of data instances this subset contains. The
cost of handling the validation instances at the inserted points
of validation is

= V' / r × the number of inserted points of validation it
takes to train the model.

When training the deep learning model in the absence of
online data preprocessing, most of the training cost is spent on
doing multiplication operations. We handle a training instance
once by doing one forward and one backward propagation in
the model. We handle a validation instance once by doing one
forward propagation in the model. It takes about two times the
quantity of multiplication operations to do one backward
propagation than to do one forward propagation. Accordingly,
we set the T-V cost ratio to 3.

In forecasting the cost of model training, the key is to
project the quantity of raw points of validation it takes to train
the model. We use the information obtained at the points of
validation, maximum likelihood estimation, and Monte Carlo
simulation to project this number. Unless early stopping
occurs earlier, we can refine our initial and typically inaccurate
estimate of this number for the first time only after we have
obtained information from 4 points of validation.

3) INSERTING ADDITIONAL POINTS OF VALIDATION
BETWEEN THE RAW POINTS OF VALIDATION
We use several parameters to control how we insert additional
points of validation between the raw points of validation. In
this section, we review how we set two of these parameters
that are also used in describing our new progress estimation
method.

Setting n0

The first parameter to set is n0, the number of points of
validation to be inserted ahead of the first raw point of
validation. When setting n0, we attempt to meet two
requirements if possible:
1) Requirement 1: Upon exiting the 4th point of validation,

we have spent a cost of model training of ≤ C Us. C is a
prechosen number whose default value is the quantity of
CPUs or GPUs employed to train the model × 20,000. We
adopt Requirement 1 to limit the amount of elapsed time
before we wrap up at the 4th point of validation to refine

 Author: Paper

VOLUME XX, 2017 5

our initially guessed cost of model training for the first
time.

2) Requirement 2: From the model training start time to the
time of exiting the first raw point of validation, we incur a
cost of ≤ c0P1 to compute validation errors at the inserted
points of validation. P1 is a prechosen percentage with a
default value of 5%. c0 stands for upon exiting the first raw
point of validation, the cost of model training that we have
spent ignoring the overhead that the progress indicator has
brought to compute validation errors at the inserted points
of validation. We adopt Requirement 2 to limit this
overhead.

As it is not always possible to fully meet both requirements,
we treat them as soft requirements.

Setting V'

The second parameter to set is V', the fixed quantity of data
instances that the subset of the whole validation set employed
at each inserted point of validation contains. V' has to be ≤ V,
the number of data instances the whole validation set contains.
To make one approximation used in our former progress
estimation method accurate, we require V' to be ≥ a threshold
Vmin. Recall that r stands for the T-V cost ratio. When setting
V', we attempt to meet the aforementioned Requirement 2 and
set V' = min(max(rc0P1 / n0, Vmin), V).

III. ONLINE DATA PREPROCESSING
In this section, we review online data preprocessing. In offline
data preprocessing, the raw data are preprocessed and written
to disk before we start training the deep learning model. The
preprocessed data are usually as large as or several times larger
than the raw data. During model training, the preprocessed
data are read from disk and inputted to the model. When the
raw data set (e.g., the 18-terabyte Open Images data set [19]-
[21]) is large, writing the preprocessed data to and reading
them from disk would incur high costs. To address this issue,
one can do online data preprocessing. There, the raw data are
preprocessed and then directly inputted to the model without
being written to disk. No disk input/output is needed for
handling the preprocessed data. Major deep learning software
packages such as TensorFlow [17] and PyTorch [22] all
support online data preprocessing.

Online data preprocessing can include one or more steps.
Forward and backward (if any) propagation in the deep
learning model is another step. One can do all these steps for
each batch of data instances one by one. For instance, given a
batch of training instances, we first normalize all training
instance in it and then do forward and backward propagation
for them in the model. After we finish handling one batch of
training instances, we start handling the next batch.
Alternatively, one can use asynchronous pipelining (see Fig.
2), a common approach to improve parallelism [23]. There,
after a step is completed for a batch of data instances, we start
this step for the next batch once the previous step is completed
for the next batch.

FIGURE 2. An example of handling training instances by doing all of the
steps one by one vs. using asynchronous pipelining.

Online data preprocessing can be done on CPUs, GPUs, or
a combination of both [24], [25]. In the last case, some online
data preprocessing steps are done on CPUs, whereas the other
online data preprocessing steps are done on GPUs.

IV. OUR NEW PROGRESS ESTIMATION METHOD
This section presents our new progress estimation method for
end-to-end training of deep learning models with online data
preprocessing. As in our prior paper [11], our presentation
focuses on deep learning classification. Section IV-A shows
how to predict the outstanding model training time. Section
IV-B explains why we can keep using a T-V cost ratio of 3 to
compute n0 and V', two parameters used to control how we
insert additional points of validation between the raw points of
validation. Section IV-C presents the other changes made to
our former progress estimation method [10], [11].

A. PREDICTING THE OUTSTANDING MODEL TRAINING
TIME
1) OVERALL APPROACH
To address the limitation of our former progress estimation
method [10], [11] when online data preprocessing is used, we
separately estimate the progress of handling the training
instances and the progress of handling the validation instances.
Then we merge these estimates to obtain the overall progress
estimates of model training.

More specifically, we use the same approach in our former
progress estimation method [10], [11] to estimate the quantity
of training instances and the quantity of validation instances
needing to be handled to train the model. We define two types
of unit of work:
(1) U for handling the training instances. As in our former

progress estimation method [10], [11], each U is the mean
amount of work it requires to handle a training instance
once during model training.

(2) W for handling the validation instances. Each W is the
mean amount of work it requires to handle a validation
instance once during model training.

For handling the training instances, we use U to compute its
speed and estimate its cost and outstanding time. Let st stand

Normalize
training instances

Forward and backward
propagation in the model

batch 1 of training instances
batch 2 of training instances
batch 3 of training instances

batch 1 of training instances
 batch 2 of training instances

 batch 3 of training instances

Do all of the steps one by one

Use asynchronous pipelining

 Author: Paper

VOLUME XX, 2017 6

for the latest speed of handling training instances measured by
the quantity of Us finished per second. The predicted
outstanding time for handling the training instances

= the forecasted remaining cost of handling the training
instances / st

= the forecasted quantity of training instances that remain to
be handled to train the model counting multiplicity / st.

For handling the validation instances, we use W to compute
its speed and estimate its cost and outstanding time. Let sv
stand for the latest speed of handling validation instances
measured by the quantity of Ws finished per second. The
predicted outstanding time for handling the validation
instances

= the forecasted remaining cost of handling the validation
instances / sv

= the forecasted quantity of validation instances that remain
to be handled to train the model counting multiplicity / sv.

At any time, the predicted outstanding model training time
= the predicted outstanding time for handling the training

instances + the predicted outstanding time for handling
the validation instances.

Online data preprocessing can include applying data
augmentation such as randomly flipping images to training
instances. In this case, usually in each epoch, one augmented
training instance is produced from every raw training instance.
Only the augmented training instance is used to do forward
and backward propagation in the deep learning model. After
the forward and backward propagation is done for the
augmented training instance, we count that one training
instance has been handled.

Some data augmentation methods like CutMix [26] and
MixUp [27] take multiple raw training instances as input to
produce an augmented training instance. For instance, CutMix
replaces a region in an image with a patch from another image.
When such a data augmentation method is used, in each epoch,
every raw training instance serves as the base and is combined
with some other raw training instances to produce an
augmented training instance exactly once. Only the
augmented training instance is used to do forward and
backward propagation in the deep learning model. After the
forward and backward propagation is done for the augmented
training instance, we count that one training instance has been
handled.

Ideally, we should compute the latest speed of handling
training instances st and the latest speed of handling validation
instances sv once every K = 10 seconds. When only training
but no validation instances were handled in the previous K
seconds, we compute st as the quantity of Us finished per
second in the previous K seconds. When only validation but
no training instances were handled in the previous K seconds,
we compute sv as the quantity of Ws finished per second in the
previous K seconds. In addition, we need to handle the
following 3 cases:
1) Estimate st when no training instance was handled in the

previous K seconds.

2) Estimate sv when no validation instance was handled in the
previous K seconds.

3) Estimate st and sv when both training and validation
instances were handled in the previous K seconds.

In the following, we discuss these 3 cases one by one.

2) ESTIMATING st WHEN NO TRAINING INSTANCE WAS
HANDLED IN THE PREVIOUS K SECONDS
When no training but only validation instances were handled
in the previous K seconds, we use the most recently estimated
speed of handling training instances as the estimated latest
speed of handling training instances. Taking this
approximation will not greatly lower the accuracy of the
predicted outstanding model training time. Typically, the
training set is much larger than the validation set. For example,
the ImageNet-1k data set contains ~1.3 million training
instances and 50,000 validation instances [14]. During model
training, we need to handle many more training instances than
validation instances. Handling a training instance once takes
more work than handling a validation instance once, as the
former involves one forward and one backward propagation in
the model, whereas the latter involves one forward
propagation in the model. Due to these two factors, the time
taken to handle the validation instances is much less than that
taken to handle the training instances. In other words, the
former is only a small fraction of the model training time. Only
when we are handling the validation instances at a point of
validation, the approximation used to estimate the latest speed
of handling training instances will lead to estimation error in
the predicted outstanding time for handling the training
instances. But this will not last long. After a relatively short
amount of time, we will finish handling the validation
instances at the point of validation and move on to handling
the training instances. At that time, we will recompute the
correct latest speed of handling training instances.

3) ESTIMATING sv WHEN NO VALIDATION INSTANCE
WAS HANDLED IN THE PREVIOUS K SECONDS
When no validation but only training instances were handled
in the previous K seconds, we use the most recently estimated
speed of handling validation instances as the estimated latest
speed of handling validation instances. This is an
approximation that will not greatly lower the accuracy of the
predicted outstanding model training time. As explained
above, the time taken to handle the validation instances is only
a small fraction of the model training time. The approximation
will lead to estimation error in the predicted outstanding time
for handling the validation instances. Yet, this estimation error
will have only a small impact on the predicted outstanding
model training time. When we predict that model training still
needs quite some time to finish, the impact is by a small
percentage. When we predict that model training is close to
finish, the impact is by a small number.

By default, model training begins with handling the training
instances. Before reaching the first point of validation, no

 Author: Paper

VOLUME XX, 2017 7

estimated speed of handling validation instances is available,
making it impossible to estimate the outstanding time for
handling the validation instances. To address this issue, when
model training begins, we first randomly sample validation
instances with replacement to obtain 5 batches of validation
instances. Then we handle them to compute an initial
estimated speed of handling validation instances. We set the
number of batches to 5 to strike a balance between obtaining
a relatively well estimated speed of handling validation
instances and reducing the progress estimation overhead.
When online data preprocessing is used, end-to-end model
training is often done using asynchronous pipelining. When
computing the initial estimated speed of handling validation
instances in this case, we start the timer when the first batch of
validation instances all exits the pipeline and do not count this
batch. In this way, the latency resulting from initially filling in
the pipeline would not negatively impact the precision of this
speed computation.

4) ESTIMATING st AND sv WHEN BOTH TRAINING AND
VALIDATION INSTANCES WERE HANDLED IN THE
PREVIOUS K SECONDS
Recall that st stands for the latest speed of handling training
instances. sv stands for the latest speed of handling validation
instances. This section describes our approach to estimate st
and sv when both training and validation instances were
handled in the previous K seconds. We first give an overview
of our approach. Then we add some details needed in our
approach.

Overview of our speed estimation approach

FIGURE 3. The 4 distinct scenarios in which only a few training or
validation instances were handled in the previous K seconds.

When training the deep learning model, we alternate
between handling training instances and handling validation
instances. When we run into the case that both training and
validation instances were handled in the previous K seconds,
if only a few training (or validation) instances were handled in
these K seconds (see Fig. 3), it can be hard to use these
instances to well estimate the latest speed of handling training
(or validation) instances.

To address this issue, we use a special speed estimation
approach, in which we intentionally use no new parameter that
needs to be set to an ad hoc number. We describe our approach

mainly for the case of switching from handling validation
instances to handling training instances in the previous K
seconds (see Fig. 3(a) and 3(b)). The case of switching from
handling training instances to handling validation instances in
the previous K seconds (see Fig. 3(c) and 3(d)) can be handled
similarly. Our approach includes two steps:
1) Step 1: As shown in Fig. 4, there are two possible cases:

a. Case 1: We reached the most recent point of validation
over K seconds ago (see Fig. 4(a)). In this case, the most
recently estimated speed of handling validation
instances was computed based on a K-second time
window, in which only validation instances were
handled. We use that estimated speed as the estimated
latest speed of handling validation instances. As that
estimated speed was computed only K seconds ago, it
is usually a good estimate of the latest speed of
handling validation instances.

b. Case 2: We reached the most recent point of validation
K seconds ago (see Fig. 4(b)). In this case, we estimate
the latest speed of handling validation instances
= the quantity of validation instances handled in the

previous K seconds / the time spent on handling these
validation instances

= the quantity of validation instances handled in the
previous K seconds / (the time of exiting the most
recent point of validation – the starting time of K
seconds ago).

2) Step 2: A timer is adopted to time the sliding time window
employed to compute the speed of handling data instances.
When we switch from handling validation instances to
handling training instances, we restart the timer (see Fig.
4). This ensures that no other possible case needs to be
considered in Step 1.

FIGURE 4. The two possible cases of switching from handling validation
instances to handling training instances in the previous K seconds.

Additional details of Step 2 for handling the case of switching
from handling validation instances to handling training
instances in the previous K seconds

In this case, in Step 2, we do not restart the timer
immediately upon switching from the previous round of
handling validation instances to the current round of handling

 Handling the training instances
Handling the validation instances

(a) (b)

(c) (d)

K seconds K seconds

K seconds K seconds

 Handling the training instances
Handling the validation instances

(a) Case 1

K seconds K seconds

K seconds K seconds

Not used to
estimate sv

(b) Case 2

K seconds

K seconds

Used to
estimate sv

Restart
the timer

Restart
the timer

 Author: Paper

VOLUME XX, 2017 8

training instances. When online data preprocessing is used,
end-to-end model training is often done using asynchronous
pipelining. In this case, the first training instance in the current
round enters the pipeline before the last validation instance in
the previous round exits the pipeline. To let estimating the
latest speed of handling training instances not impacted by the
last few validation instances in the previous round in the
pipeline, we do not restart the timer until the first batch of
training instances in the current round all exits the pipeline.
When computing the latest speed of handling training
instances, this batch of training instances is not counted.

To make speed computation doable, we need to ensure that
≥2 batches of training instances are handled between any two
sequential points of validation. For this purpose, we only need
to fulfill the requirement that ≥2 batches of model training are
done before the first inserted point of validation, as our former
progress estimation method [11] inserts more points of
validation ahead of the first raw point of validation than
between any two sequential raw points of validation. Recall
that n0 stands for the number of points of validation to be
inserted ahead of the first raw point of validation. g stands for
the count of batches of model training that are done between
two sequential raw points of validation. To fulfill the
requirement, we ensure that n0 is ≤ g / 2 – 1. We do this by
reusing the n0 computed in our former progress estimation
method [11] unless that computed number is > g / 2 – 1, in
which case we set n0 to g / 2 – 1.

Additional details of Step 2 for handling the case of switching
from handling training instances to handling validation
instances in the previous K seconds

In this case, in Step 2, we do not restart the timer
immediately upon switching from the previous round of
handling training instances to the current round of handling
validation instances. Instead, we restart the timer when the first
batch of validation instances in the current round all exits the
pipeline. When computing the latest speed of handling
validation instances, this batch of validation instances is not
counted.

To make speed computation doable, we need to ensure that
≥2 batches of validation instances are handled at each point of
validation. For this purpose, we only need to fulfill the
requirement that ≥2 batches of validation instances are
handled at each inserted point of validation. Recall that at each
inserted point of validation, we use a subset of the whole
validation set. Vmin stands for the smallest count of validation
instances demanded in this subset. To fulfill the requirement,
we ensure that Vmin is ≥ 2 × the number of validation instances
handled in each batch. That is, we set Vmin to max(the Vmin
computed in our former progress estimation method [11], 2 ×
the number of validation instances handled in each batch).

B. WHY WE CAN KEEP USING A T-V COST RATIO OF 3
TO COMPUTE n0 AND V'

Recall that the T-V cost ratio is = the mean amount of work it
requires to handle a training instance once / the mean amount
of work it requires to handle a validation instance once. We
use the parameters n0 and V' to control how we insert
additional points of validation between the raw points of
validation. In our former progress estimation method [10],
[11], we set the T-V cost ratio to 3 and compute n0 and V'
accordingly. But when online data preprocessing is used, the
actual T-V cost ratio can differ greatly from 3. In our new
progress estimation method, we keep using a T-V cost ratio of
3 to compute n0 and V'. This can cause two issues if the actual
T-V cost ratio is < 3:
1) A longer time is needed before we can refine our initially

guessed cost of model training for the first time.
2) The progress indicator incurs a higher runtime overhead.
Neither issue is a major one. In the following, for each of these
two issues, we explain why it can occur but is not a major one.

1) A LONGER TIME IS NEEDED BEFORE WE CAN
REFINE OUR INITIALLY GUESSED COST OF MODEL
TRAINING FOR THE FIRST TIME
Recall that we can refine our initially guessed cost of model
training for the first time only after we have obtained
information from 4 points of validation. Upon exiting the 4th
point of validation, we strive to incur a cost of model training
of ≤ C Us (see Requirement 1 in Section II-B.2). When the
actual T-V cost ratio is < 3 but we keep using a T-V cost ratio
of 3, we underestimate the mean amount of work it requires to
handle a validation instance once and subsequently the cost of
handling validation instances at each point of validation. Thus,
upon exiting the 4th point of validation, we could have spent
a cost of model training of > C Us. This leads to the issue that
a longer time is needed before we can refine our initially
guessed cost of model training for the first time. This issue is
not a major one because the T-V cost ratio has a lower bound
of one, limiting the extent to which we underestimate the cost
of model training that we would have spent upon exiting the
4th point of validation.

More specifically, when online data preprocessing is used,
handling a training instance once involves online data
preprocessing as well as one forward and one backward
propagation in the model. Handling a validation instance once
typically involves both online data preprocessing and one
forward propagation in the model. The online data
preprocessing steps for a training instance are often the same
as those for a validation instance, but could include additional
steps such as adjusting image contrast to add noise. Thus, the
mean cost of doing online data preprocessing for a training
instance is ≥ that for a validation instance. The T-V cost ratio

= (the mean cost of doing online data preprocessing for a
training instance + the mean cost of doing one forward
propagation in the model + the mean cost of doing one
backpropagation in the model) / (the mean cost of doing
online data preprocessing for a validation instance + the

 Author: Paper

VOLUME XX, 2017 9

mean cost of doing one forward propagation in the
model)

> 1.

The T-V cost ratio has a lower bound of one. Thus, when
we use a T-V cost ratio of 3, the actual cost of handling
validation instances at each point of validation is < 3 × our
estimated cost of doing that. Upon exiting the 4th point of
validation, we have handled both training and validation
instances with an expected cost of ≤ C Us (see Requirement 1
in Section II-B.2). The actual cost of model training that we
have spent is usually < 3 × that cost, i.e., 3C Us. As is the case
with C, 3C is a moderate number. Hence, the elapsed time
before we wrap up at the 4th point of validation to refine our
initially guessed cost of model training for the first time is
relatively short, even if it is longer than what we initially
expected.

2) THE PROGRESS INDICATOR INCURS A HIGHER
RUNTIME OVERHEAD
When the actual T-V cost ratio is < 3 but we keep using a T-V
cost ratio of 3, the actual cost of handling validation instances
at each inserted point of validation is larger than our estimated
cost of doing that. This leads to the issue that the progress
indicator incurs a higher runtime overhead than what we
initially expected.

This issue is not a major one. As explained before, when we
use a T-V cost ratio of 3, the actual cost of handling validation
instances at each inserted point of validation is < 3 × our
estimated cost of doing that. As reviewed in Section II-B.2, we
set P1 to 5% as the greatest permitted percentage rise in the
cost of model training caused by the progress indicator
between the model training start time and the time of exiting
the first raw point of validation. In the worst case, the progress
indicator incurs a rise of < 3 × 5% = 15% in the cost of model
training. In practice, the actual rise is usually much less than
15%. For example, according to the computation done in our
prior paper [11], in the case that at most 50 raw points of
validation are allowed in training the model and model
training ends at the 20th raw point of validation, we expect the
progress indicator to incur a rise of ~1.2% in the cost of model
training. The actual rise is < 3.7%.

C. OTHER CHANGES MADE TO OUR FORMER
PROGRESS ESTIMATION METHOD
In this section, we present the other two changes made to our
former progress estimation method [11]. In Section IV-C.1,
we show how to set the parameter C. In Section IV-C.2, we
discuss how to display the progress estimates.

1) SETTING THE PARAMETER C
Upon exiting the 4th point of validation, we hope to have spent
a cost of model training of ≤ C Us (see Requirement 1 in
Section II-B.2). This helps limit the elapsed time before we
can refine our initially guessed cost of model training for the
first time. In our former progress estimation method [11], we

assume that all operations in the deep learning model training
job are done on either CPUs or GPUs, but not both. C is set to
be the quantity of CPUs or GPUs employed to train the model
× 20,000. When online data preprocessing is used, the end-to-
end model training job can be done on a combination of CPUs
and GPUs. In this case, we set C to be the total number of
CPUs and GPUs employed to train the model × 20,000.

2) DISPLAYING THE PROGRESS ESTIMATES
In our former progress estimation method [11], at any time, we
display one cost of model training and one speed of model
training. In our new progress estimation method, we have one
set of progress estimates for handling the training instances
and another set of progress estimates for handling the
validation instances. We display certain progress estimates in
a different way from that in our former progress estimation
method.

Costs

We display two costs, one of handling the training instances
and the other of handling the validation instances.

Processing speeds

We display two speeds, one of handling training instances
and the other of handling validation instances. When handling
the training instances, we show the latest speed of handling
training instances and leave the speed of handling validation
instances empty. When handling the validation instances, we
show the latest speed of handling validation instances and
leave the speed of handling training instances empty.

Percentage of model training work accomplished

The percentage of model training work accomplished is
computed as the model training work accomplished so far / the
estimated cost of model training. The cost of model training

= the cost of handling the training instances + the cost of
handling the validation instances

= the cost of handling the training instances in U + the cost
of handling the validation instances in W / the T-V cost
ratio.

The actual T-V cost ratio is hard to estimate. For computing
the percentage of model training work accomplished, we use
a T-V cost ratio of 3 as an approximation to calculate both the
model training work accomplished so far and the cost of model
training. The T-V cost ratio is > 1. Typically, the training set
is much bigger than the validation set. Hence, the cost of
handling the training instances is much larger than the cost of
handling the validation instances. In this case, using the
approximation will not greatly degrade the accuracy of the
computed accomplished percentage of model training work.

V. PERFORMANCE
This section shows the experimental results of our new
progress estimation method. We did a coding implementation

 Author: Paper

VOLUME XX, 2017 10

of this method in Version 2.9.0 of TensorFlow, a major open-
source deep learning software package [17]. In every test, our
progress indicators gave useful estimates updated once per 10
seconds with a small overhead. This meets the 3 progress
estimation goals listed in our previous paper [8]: small
overhead, reasonable pacing, and continuous updates.

A. EXPERIMENT DESCRIPTION
We ran TensorFlow and did experiments on a Digital Storm
workstation. This workstation has a GeForce RTX 2080 Ti
GPU, an 8-core Intel Core i7-9800X 3.8 GHz CPU, 64 GB
memory, a 3 TB SATA disk, and a 500 GB solid-state drive
and runs the Ubuntu 18.04.02 operating system. We used both
the CPU and the GPU to train each deep learning model on an
unloaded computer.

The Amazon reviews polarity data set [28] and ImageNet-
1k [14] are two popular benchmark data sets. For each of them,
we used a subset of it to do our tests (see Table 1). From the
Amazon reviews polarity data set’s training set, we randomly
sampled 135,000 data instances. We used 130,000 of them as
a training set and the other 5,000 as a validation set for our
tests. For ImageNet-1k, we used a subset of it called
ImageNet-100 [29]. This subset contains 130,000 training
instances and 5,000 validation instances.

TABLE 1. The data sets we employed to test the progress estimation
method.

Name
Total number
of validation

instances

Number of
training

instances

Number of
classes

Data instance
size

Subset of the
Amazon reviews
polarity data set

5,000 130,000 2 average
number of
tokens: 102

ImageNet-100 5,000 130,000 100 average height
402 × average
width 500

For the early stopping condition, we set the patience p to 9,

an integer chosen from [3, 10] randomly, and the min_delta δ
to 0.00820, a number chosen from [0, 0.01] randomly.

We tested 3 major deep learning models:
1) Bidirectional Encoder Representations from Transformers

(BERT) [5], a transformer-based model trained on the
subset of the Amazon reviews polarity data set.

2) ResNet50 [30], a convolutional neural network model
trained on ImageNet-100.

3) A Long Short-Term Memory (LSTM) model [31] trained
on the subset of the Amazon reviews polarity data set.

BERT model

When training the BERT model, we started from Version 2
of the pretrained bert_en_uncased_L-8_H-256_A-4 [32]
model [33]. We used a given learning rate of 2×10-5 and the
adaptive moment estimation with decoupled weight decay
(AdamW) optimization algorithm [34]. We handled 100
training instances in each batch and allowed at most 25

epochs. We set all other hyper-parameters to their default
values [32].

In each epoch, we did the following online data
preprocessing steps:
1) We used the CPU to shuffle the training instances [35].
2) We used the GPU to do the default preprocessing steps in

Version 1 of TensorFlow Hub’s
bert_en_uncased_preprocess model [36] to transform the
text in each data instance to a set of numeric vectors.

ResNet50 model

When training the ResNet50 model, we handled 50 training
instances in each batch and allowed at most 100 epochs. We
tested 4 major optimization algorithms: classical stochastic
gradient descent (SGD) [37], root mean square propagation
(RMSprop) [38], adaptive moment estimation (Adam) [39],
and adaptive gradient (AdaGrad) [40]. For each optimization
algorithm, we tested 3 learning rate decay approaches:
exponential decay, step decay, and employing a given learning
rate. In the exponential decay approach, the k-th epoch (k ≥ 1)
uses a learning rate of r0e–(k–1)ρ. ρ is a positive constant
specifying the decay speed of the learning rate. r0 is the starting
learning rate that is > 0. We set ρ to 0.05 and r0 to 10-3. In the
step decay approach, we reduced the learning rate from 10-3 to
10-4 when the 20th epoch began and then to 10-5 when the 40th
epoch began. We set all other hyper-parameters to their default
values [41].

In each epoch, we used the CPU to do the following online
data preprocessing steps:
1) We shuffled the training instances [35].
2) We replaced each image in the training set with a 224 ×

224 pixels patch randomly cropped from the image to
obtain an augmented training instance.

3) We replaced each image in the validation set with a 224 ×
224 pixels patch cropped from the center of the image to
obtain an augmented validation instance.

4) In each patch, we normalized its pixels to have a mean of
0 and a variance of 1.

In the second and third steps, if the height (or width) of the
original image is < 224 pixels, we increased the height (or
width) to 224 pixels before we did the cropping.

LSTM model

In the LSTM model, we put a fully connected layer on top
of 3 stacked bidirectional LSTM layers. We set each LSTM
cell’s output dimension to 1,024 and the dimension of each
token’s embedding vector to 128. When training the LSTM
model, we used the exponential decay approach to control the
learning rate and set ρ to 0.05 and r0 to 2×10-5. We used Adam,
handled 100 training instances in each batch, and allowed at
most 25 epochs.

In each epoch, we did 3 online data preprocessing steps:
1) We used the CPU to shuffle the training instances [35].
2) We used the CPU to tokenize the text of each data instance.

 Author: Paper

VOLUME XX, 2017 11

3) We used the GPU to map each token to an embedding
vector.

In this section, we give all experimental results of training

the BERT model and those of training the ResNet50 model
using Adam. The experimental results of training the
ResNet50 model using the other 3 optimization algorithms are
given in Section A of the Appendix. The experimental results
of training the LSTM model are given in Section B of the
Appendix.

B. ACCURACY MEASURE
As in Chaudhuri et al. [42], we employed the average
prediction error to assess the accuracy of the progress
estimates. The average prediction error is = the area of the
space between a diagonal and a curve / the area of the triangle
formed by the x-axis, the y-axis, and the diagonal (see Fig. 5).
The diagonal depicts the genuine outstanding model training
time. The curve depicts the forecasted outstanding model
training time over time. The bigger the average prediction
error, the worse the progress estimates are.

FIGURE 5. The areas of the spaces used to compute the average
prediction error.

C. COMPARISON OF OUR FORMER AND NEW
PROGRESS ESTIMATION METHODS
We compared the accuracy of the progress estimates given by
our former [11] and new progress estimation methods. We did

14 tests, one for every (deep learning model, learning rate
decay approach, optimization algorithm) combination listed in
Section V-A. In every test, we trained the model 5 times, each
in a different run. In every run, we employed each of our
former and new progress estimation methods to give progress
estimates. For every test, Table 2 lists for each of the two
methods the mean and the standard deviation of the average
prediction error over the 5 runs. There, we mark in bold the
smaller mean between the two methods. Our new progress
estimation method outperformed our former progress
estimation method in every test. In comparison with our
former method, on average our proposed new method cuts the
error of the predicted outstanding model training time by
16.0%.

For each of the 14 tests, Table 3 lists the mean and the
standard deviation of our new progress estimation method’s
runtime overhead, which is represented by the percentage rise
in the model training time induced by the progress indicator.
The mean runtime overhead across all tests is 4.69%.

In Section V-D, Section V-E, and the Appendix, we present
the estimated outstanding model training time given by both
our former and new progress estimation methods, as well as
the other progress estimates given by our new progress
estimation method. In each of the 14 tests, we trained the
model 5 times. We randomly chose one of them and present
the progress estimates given over time there.

D. EXPERIMENTAL RESULTS OF TRAINING THE BERT
MODEL

This test employed a given learning rate as well as AdamW
to train the BERT model. Fig. 6 displays the cost of handling
the training instances forecasted over time by our new
progress estimation method, with the horizontal dotted line
marking the genuine cost of handling the training instances.
Fig. 7 displays the cost of handling the validation instances
forecasted over time by our new progress estimation method,
with the horizontal dotted line marking the genuine cost of
handling the validation instances. Within several hundred
seconds after model training began, both forecasted costs
became relatively accurate.

TABLE 2. For each combination of one of the 14 tests and one of our former and new progress estimation methods, the mean and the standard
deviation of the average prediction error over the 5 runs.

Deep learning model Learning rate decay approach Optimization
algorithm

Average prediction error
Our new progress
estimation method

Our former progress
estimation method

BERT Using a given learning rate AdamW 0.48 ± 0.27 0.54 ± 0.28
LSTM Exponential decay Adam 0.95 ± 0.23 0.99 ± 0.23

ResNet50

Using a given learning rate

Adam 0.36 ± 0.08 0.48 ± 0.09
RMSprop 0.69 ± 0.08 0.84 ± 0.09
SGD 0.56 ± 0.19 0.67 ± 0.22
AdaGrad 0.65 ± 0.13 0.79 ± 0.16

Exponential decay
Adam 0.77 ± 0.27 0.97 ± 0.31
RMSprop 1.03 ± 0.24 1.22 ± 0.27
SGD 0.30 ± 0.05 0.38 ± 0.05

Fo
re

ca
st

ed
 o

ut
st

an
di

ng

m
od

el
 tr

ai
ni

ng
 ti

m
e

Time

Genuine outstanding model training time
Forecasted outstanding model training time

 Author: Paper

VOLUME XX, 2017 12

AdaGrad 0.49 ± 0.19 0.60 ± 0.22

Step decay

Adam 0.44 ± 0.12 0.56 ± 0.14
RMSprop 0.91 ± 0.08 1.08 ± 0.10
SGD 0.91 ± 0.31 1.06 ± 0.35
AdaGrad 0.99 ± 0.04 1.18 ± 0.04

Over all runs in all tests 0.68 ± 0.30 0.81 ± 0.34

TABLE 3. For each of the 14 tests, the mean and the standard deviation of our new progress estimation method’s runtime overhead over the 5 runs.

Deep learning model Learning rate decay approach Optimization algorithm Runtime overhead

BERT Using a given learning rate AdamW 2.17% ± 0.30%
LSTM Exponential decay Adam 2.46% ± 0.09%

ResNet50

Using a given learning rate

Adam 5.65% ± 0.35%
RMSprop 5.37% ± 0.25%
SGD 3.90% ± 0.36%
AdaGrad 4.93% ± 0.32%

Exponential decay

Adam 6.47% ± 0.49%
RMSprop 5.55% ± 0.49%
SGD 3.45% ± 0.11%
AdaGrad 4.53% ± 0.45%

Step decay

Adam 5.48% ± 0.00%
RMSprop 5.48% ± 0.00%
SGD 4.73% ± 0.48%
AdaGrad 5.48% ± 0.00%

Over all runs in all tests 4.69% ± 1.26%

FIGURE 6. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as AdamW to train the BERT
model).

FIGURE 7. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as AdamW to train the
BERT model).

Fig. 8 displays both the speed of handling training instances
and the speed of handling validation instances estimated by
our new progress estimation method over time. Both estimated
speeds were decently stable throughout the whole model
training process.

FIGURE 8. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as AdamW to train the BERT model).

Fig. 9 and 10 display the outstanding model training time

forecasted over time by our new and former progress
estimation methods, respectively, with the dashed line
marking the genuine outstanding model training time. For the
reason given in the introduction, the outstanding model

0.0E+00

7.0E+05

1.4E+06

2.1E+06

2.8E+06

3.5E+06

0 3500 7000 10500 14000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

6.0E+04

1.2E+05

1.8E+05

0 3500 7000 10500 14000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

90

180

270

0 3500 7000 10500 14000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

 Author: Paper

VOLUME XX, 2017 13

training time forecasted by our former progress estimation
method often differs greatly from the genuine outstanding
model training time. Our new progress estimation method
does not have this problem.

FIGURE 9. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
AdamW to train the BERT model).

FIGURE 10. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
AdamW to train the BERT model).

Fig. 11 displays the accomplished percentage of model
training work estimated by our new progress estimation
method over time. The curve depicting the forecasted
accomplished percentage is decently near the dotted diagonal
that joins the lower left and the upper right corners.

FIGURE 11. Accomplished percentage forecasted over time (employing
a given learning rate as well as AdamW to train the BERT model).

E. EXPERIMENTAL RESULTS OF TRAINING THE
RESNET50 MODEL
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN
LEARNING RATE
This test employed a given learning rate as well as Adam to
train the ResNet50 model. Fig. 12 displays the cost of handling
the training instances forecasted over time by our new
progress estimation method, with the horizontal dotted line
marking the genuine cost of handling the training instances.
Fig. 13 displays the cost of handling the validation instances
forecasted over time by our new progress estimation method,
with the horizontal dotted line marking the genuine cost of
handling the validation instances. When model training just
started, both forecasted costs diverged notably from the
genuine costs. Once we reached the 4th point of validation and
was able to refine our initially guessed costs within 243
seconds, both forecasted costs became much more accurate.

FIGURE 12. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as Adam to train the ResNet50
model).

FIGURE 13. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as Adam to train the
ResNet50 model).

Fig. 14 displays both the speed of handling training
instances and the speed of handling validation instances
estimated by our new progress estimation method over time.
Both estimated speeds were decently stable throughout the
whole model training process.

0

5000

10000

15000

20000

0 3500 7000 10500 14000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

7000

14000

21000

28000

0 3500 7000 10500 14000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 3500 7000 10500 14000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 14

FIGURE 14. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as Adam to train the ResNet50 model).

Fig. 15 and 16 display the outstanding model training time
forecasted over time by our new and former progress
estimation methods, respectively, with the dashed line
depicting the genuine outstanding model training time. For the
reason given in the introduction, the outstanding model
training time forecasted by our former progress estimation
method often differs greatly from the genuine outstanding
model training time. Our new progress estimation method
does not have this problem.

FIGURE 15. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
Adam to train the ResNet50 model).

FIGURE 16. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
Adam to train the ResNet50 model).

Fig. 17 displays the accomplished percentage of model
training work estimated by our new progress estimation
method over time. The curve depicting the forecasted
accomplished percentage is decently near the dotted diagonal
that joins the lower left and the upper right corners.

FIGURE 17. Accomplished percentage forecasted over time (employing
a given learning rate as well as Adam to train the ResNet50 model).

2) EXPERIMENTAL RESULTS OF EMPLOYING THE
EXPONENTIAL DECAY APPROACH TO CONTROL THE
LEARNING RATE
This test employed the exponential decay approach to control
the learning rate as well as Adam to train the ResNet50 model.
Fig. 18-23 display this test’s results. Overall, our new progress
estimation method produced relatively good estimates of the
cost of handling the training instances, the cost of handling the
validation instances, and the outstanding model training time.
Compared to our former progress estimation method, our new
progress estimation method provided more stable estimates of
the outstanding model training time.

FIGURE 18. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as Adam to train the ResNet50 model).

0

100

200

300

0 5000 10000 15000 20000 25000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 6000 12000 18000 24000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 15

FIGURE 19. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as Adam to train the ResNet50 model).

FIGURE 20. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as Adam
to train the ResNet50 model).

FIGURE 21. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay
approach to control the learning rate as well as Adam to train the
ResNet50 model).

FIGURE 22. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay
approach to control the learning rate as well as Adam to train the
ResNet50 model).

FIGURE 23. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
Adam to train the ResNet50 model).

3) EXPERIMENTAL RESULTS OF EMPLOYING THE
STEP DECAY APPROACH TO CONTROL THE LEARNING
RATE
This test employed the step decay approach to control the
learning rate as well as Adam to train the ResNet50 model. We
reduced the learning rate from 10-3 to 10-4 when the 20th epoch
began and then to 10-5 when the 40th epoch began. Early
stopping occurred between the 20th epoch and the 40th epoch.
Fig. 24-29 display this test’s results. In each of these figures,
we use a dash-dotted vertical line to show when the learning
rate dropped. Overall, our new progress estimation method
produced relatively good estimates of the cost of handling the
training instances, the cost of handling the validation
instances, and the outstanding model training time. Compared
to our former progress estimation method, our new progress
estimation method provided more stable estimates of the
outstanding model training time.

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 6000 12000 18000 24000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

100

200

300

0 6000 12000 18000 24000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 6000 12000 18000 24000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 6000 12000 18000 24000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 6000 12000 18000 24000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

 Author: Paper

VOLUME XX, 2017 16

FIGURE 24. Cost of handling the training instances forecasted over time
(employing the step decay approach to control the learning rate as well
as Adam to train the ResNet50 model).

FIGURE 25. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as Adam to train the ResNet50 model).

FIGURE 26. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as Adam to train the
ResNet50 model).

FIGURE 27. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as Adam to train the ResNet50 model).

FIGURE 28. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as Adam to train the ResNet50 model).

FIGURE 29. Accomplished percentage forecasted over time (employing
the step decay approach to control the learning rate as well as Adam to
train the ResNet50 model).

VI. RELATED WORK
This section briefly goes over the related work. Our prior
paper [8] discusses the related work in detail.

Advanced progress indicators

Several researchers have designed advanced progress
indicators for program compilation [43], software model
checking [44], static program analysis [45], automatic
machine learning model selection [46], [47], MapReduce jobs

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

100

200

300

0 5000 10000 15000 20000 25000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

 Author: Paper

VOLUME XX, 2017 17

[48], [49], database queries [9], [42], [50]-[52], and subgraph
queries [53]. We have also designed advanced progress
indicators for building several types of machine learning
models like neural network, decision tree, and random forest
[8], [10], [11], [54].

Predicting the deep learning model training time

To predict an epoch’s runtime before one starts training a
deep learning model, Justus et al. [55] designed a meta
learning method. This method uses several features of the
current model, the training data set adopted to build another
deep learning model, and the computing resources, but
predicts neither the time nor the number of epochs it takes to
train the current model.

To predict the time needed to train a deep learning model
before one starts training the model, multiple researchers have
designed a Bayesian optimization method [56] as well as
several meta learning methods using multivariate adaptive
regression splines [57], polynomial regression [58], and
support vector regression [59], respectively. The numbers
predicted by these methods are often inaccurate, can differ a
lot from the genuine time taken to train the model on a loaded
computer, and are not revised continuously. In comparison,
when our progress estimation method predicts the outstanding
deep learning model training time, we consider the load on the
computer and keep revising our predicted numbers.

Complexity analysis for neural network training

Multiple researchers have computed the time complexity of
building a neural network model [60]-[62]. But, this
information can neither give us an estimated model training
time on a loaded computer nor help us create a progress
indicator. Usually, time complexity disregards the data
properties that affect the cost of model training and the lower
order terms and the coefficients needed to predict that cost.
During model training, a non-trivial progress indicator should
keep revising its predicted cost of model training.

VII. POSSIBLE DIRECTIONS TO DO FUTURE WORK
This section lists several possible directions to do future work.

This work derives no upper bounds on the error of the
predicted cost of handling the training instances and that of
handling the validation instances. In the future, we could adopt
an approach akin to what Chaudhuri et al. [63] used for
database query progress estimation to compute such upper
bounds.

As a case study, both this work and our prior work [10], [11]
employ the same early stopping condition to show that we can
create advanced progress indicators for deep learning model
training. There are many other early stopping conditions [1],
[64]-[66]. In the future, we will examine how to extend our
current progress estimation techniques to accommodate other
commonly used early stopping conditions.

This work addresses deep learning classification and uses
error rate as a model performance metric. Deep learning is also

used for regression, where mean squared error is used as a
model performance metric. In the future, we will extend our
current progress estimation techniques to handle that case.

VIII. CONCLUSION
This paper presents a new progress estimation method to
handle end-to-end deep learning model training with online
data preprocessing. This new method overcomes our former
progress estimation method’s limitation of ignoring online
data preprocessing, which commonly takes a large percentage
of model training time. Our tests show that when online data
preprocessing is used and in comparison with our former
method, our proposed new method produces more stable
progress estimates for model training and on average lowers
the error of the predicted outstanding model training time by
16.0%.

APPENDIX

A. OTHER EXPERIMENTAL RESULTS OF TRAINING
THE RESNET50 MODEL
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN
LEARNING RATE
Employing RMSprop

This test employed a given learning rate as well as
RMSprop to train the ResNet50 model. Fig. A1-A6 display the
experimental results, which resemble those displayed in Fig.
12-17.

FIGURE A1. Cost of handling the training instances forecasted over
time (employing a given learning rate as well as RMSprop to train the
ResNet50 model).

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 18

FIGURE A2. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as RMSprop to train the
ResNet50 model).

FIGURE A3. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as RMSprop to train the ResNet50 model).

FIGURE A4. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE A5. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE A6. Accomplished percentage forecasted over time (employing
a given learning rate as well as RMSprop to train the ResNet50 model).

Employing SGD

This test employed a given learning rate as well as SGD to
train the ResNet50 model. Fig. A7-A12 display the
experimental results, which resemble those displayed in Fig.
12-17.

FIGURE A7. Cost of handling the training instances forecasted over
time (employing a given learning rate as well as SGD to train the
ResNet50 model).

FIGURE A8. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as SGD to train the
ResNet50 model).

0

100

200

300

0 9000 18000 27000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling taining instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 9000 18000 27000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 19

FIGURE A9. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as SGD to train the ResNet50 model).

FIGURE A10. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
SGD to train the ResNet50 model).

FIGURE A11. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
SGD to train the ResNet50 model).

FIGURE A12. Accomplished percentage forecasted over time
(employing a given learning rate as well as SGD to train the ResNet50
model).

Employing AdaGrad

This test employed a given learning rate as well as AdaGrad
to train the ResNet50 model. Fig. A13-A18 display the
experimental results, which resemble those displayed in Fig.
12-17.

FIGURE A13. Cost of handling the training instances forecasted over
time (employing a given learning rate as well as AdaGrad to train the
ResNet50 model).

FIGURE A14. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as AdaGrad to train the
ResNet50 model).

0

100

200

300

0 10000 20000 30000 40000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 20

FIGURE A15. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as AdaGrad to train the ResNet50 model).

FIGURE A16. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE A17. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE A18. Accomplished percentage forecasted over time
(employing a given learning rate as well as AdaGrad to train the
ResNet50 model).

2) EXPERIMENTAL RESULTS OF EMPLOYING THE
EXPONENTIAL DECAY APPROACH TO CONTROL THE
LEARNING RATE
Employing RMSprop

This test employed the exponential decay approach to
control the learning rate as well as RMSprop to train the
ResNet50 model. Fig. A19-A24 display the experimental
results, which resemble those displayed in Fig. 18-23.

FIGURE A19. Cost of handling the training instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as RMSprop to train the ResNet50 model).

FIGURE A20. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as RMSprop to train the ResNet50 model).

0

100

200

300

0 9000 18000 27000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 9000 18000 27000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 21

FIGURE A21. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE A22. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay
approach to control the learning rate as well as RMSprop to train the
ResNet50 model).

FIGURE A23. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay
approach to control the learning rate as well as RMSprop to train the
ResNet50 model).

FIGURE A24. Accomplished percentage forecasted over time
(employing the exponential decay approach to control the learning rate
as well as RMSprop to train the ResNet50 model).

Employing SGD

This test employed the exponential decay approach to
control the learning rate as well as SGD to train the ResNet50
model. Fig. A25-A30 display the experimental results, which
resemble those displayed in Fig. 18-23.

FIGURE A25. Cost of handling the training instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as SGD to train the ResNet50 model).

FIGURE A26. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as SGD to train the ResNet50 model).

0

100

200

300

0 9000 18000 27000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 9000 18000 27000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 22

FIGURE A27. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as SGD
to train the ResNet50 model).

FIGURE A28. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay
approach to control the learning rate as well as SGD to train the
ResNet50 model).

FIGURE A29. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay
approach to control the learning rate as well as SGD to train the
ResNet50 model).

FIGURE A30. Accomplished percentage forecasted over time
(employing the exponential decay approach to control the learning rate
as well as SGD to train the ResNet50 model).

Employing AdaGrad

This test employed the exponential decay approach to
control the learning rate as well as AdaGrad to train the
ResNet50 model. Fig. A31-A36 display the experimental
results, which resemble those displayed in Fig. 18-23.

FIGURE A31. Cost of handling the training instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as AdaGrad to train the ResNet50 model).

FIGURE A32. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as AdaGrad to train the ResNet50 model).

0

100

200

300

0 10000 20000 30000 40000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 10000 20000 30000 40000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 23

FIGURE A33. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE A34. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay
approach to control the learning rate as well as AdaGrad to train the
ResNet50 model).

FIGURE A35. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay
approach to control the learning rate as well as AdaGrad to train the
ResNet50 model).

FIGURE A36. Accomplished percentage forecasted over time
(employing the exponential decay approach to control the learning rate
as well as AdaGrad to train the ResNet50 model).

3) EXPERIMENTAL RESULTS OF EMPLOYING THE
STEP DECAY APPROACH TO CONTROL THE LEARNING
RATE
In each test that employed the step decay approach to control
the learning rate to train the ResNet50 model, we reduced the
learning rate from 10-3 to 10-4 when the 20th epoch began and
then to 10-5 when the 40th epoch began. Early stopping
occurred between the 20th epoch and the 40th epoch. In each
figure displayed in this section, we employ a dash-dotted
vertical line to show when the learning rate dropped.

Employing RMSprop

This test employed the step decay approach to control the
learning rate as well as RMSprop to train the ResNet50 model.
Fig. A37-A42 display the experimental results.

FIGURE A37. Cost of handling the training instances forecasted over
time (employing the step decay approach to control the learning rate as
well as RMSprop to train the ResNet50 model).

0

100

200

300

0 7000 14000 21000 28000 35000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 24

FIGURE A38. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as RMSprop to train the ResNet50 model).

FIGURE A39. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as RMSprop to train
the ResNet50 model).

FIGURE A40. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as RMSprop to train the ResNet50
model).

FIGURE A41. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as RMSprop to train the ResNet50
model).

FIGURE A42. Accomplished percentage forecasted over time
(employing the step decay approach to control the learning rate as well
as RMSprop to train the ResNet50 model).

Employing SGD

This test employed the step decay approach to control the
learning rate as well as SGD to train the ResNet50 model. Fig.
A43-A48 display the experimental results.

FIGURE A43. Cost of handling the training instances forecasted over
time (employing the step decay approach to control the learning rate as
well as SGD to train the ResNet50 model).

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 9000 18000 27000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

100

200

300

0 9000 18000 27000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 9000 18000 27000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 9000 18000 27000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 25

FIGURE A44. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as SGD to train the ResNet50 model).

FIGURE A45. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as SGD to train the
ResNet50 model).

FIGURE A46. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as SGD to train the ResNet50 model).

FIGURE A47. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as SGD to train the ResNet50 model).

FIGURE A48. Accomplished percentage forecasted over time
(employing the step decay approach to control the learning rate as well
as SGD to train the ResNet50 model).

Employing AdaGrad

This test employed the step decay approach to control the
learning rate as well as AdaGrad to train the ResNet50 model.
Fig. A49-A54 display the experimental results, which
resemble those displayed in Fig. A43-A48.

FIGURE A49. Cost of handling the training instances forecasted over
time (employing the step decay approach to control the learning rate as
well as AdaGrad to train the ResNet50 model).

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

100

200

300

0 7000 14000 21000 28000 35000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 7000 14000 21000 28000 35000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

 Author: Paper

VOLUME XX, 2017 26

FIGURE A50. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as AdaGrad to train the ResNet50 model).

FIGURE A51. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as AdaGrad to train
the ResNet50 model).

FIGURE A52. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as AdaGrad to train the ResNet50
model).

FIGURE A53. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as AdaGrad to train the ResNet50
model).

FIGURE A54. Accomplished percentage forecasted over time
(employing the step decay approach to control the learning rate as well
as AdaGrad to train the ResNet50 model).

B. EXPERIMENTAL RESULTS OF TRAINING THE LSTM
MODEL
This test employed the exponential decay approach to control
the learning rate as well as Adam to train the LSTM model.
Fig. A55-A60 display the experimental results. Overall, our
new progress estimation method produced relatively good
estimates of the cost of handling the training instances, the cost
of handling the validation instances, and the outstanding
model training time. Compared to our former progress
estimation method, our new progress estimation method
provided more stable estimates of the outstanding model
training time.

0.0E+00

1.4E+05

2.8E+05

4.2E+05

5.6E+05

7.0E+05

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

100

200

300

0 5000 10000 15000 20000 25000

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

17000

34000

51000

68000

85000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

60000

120000

180000

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

 Author: Paper

VOLUME XX, 2017 27

FIGURE A55. Cost of handling the training instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as Adam to train the LSTM model).

FIGURE A56. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as Adam to train the LSTM model).

FIGURE A57. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as Adam
to train the LSTM model).

FIGURE A58. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay
approach to control the learning rate as well as Adam to train the LSTM
model).

FIGURE A59. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay
approach to control the learning rate as well as Adam to train the LSTM
model).

FIGURE A60. Accomplished percentage forecasted over time
(employing the exponential decay approach to control the learning rate
as well as Adam to train the LSTM model).

ACKNOWLEDGMENT
We thank Brian Kelly for useful discussions.

AUTHORS’ CONTRIBUTIONS
QD participated in the study design, wrote the initial draft of
the paper and the computer code, and did the literature review
and the experiments. GL participated in the study design and

0.0E+00

7.0E+05

1.4E+06

2.1E+06

2.8E+06

3.5E+06

0 1400 2800 4200

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
tra

in
in

g
in

st
an

ce
s (

U
s)

Time (seconds)

0.0E+00

6.0E+04

1.2E+05

1.8E+05

0 1400 2800 4200

Fo
re

ca
st

ed
 c

os
t o

f h
an

dl
in

g
th

e
va

lid
at

io
n

in
st

an
ce

s (
W

s)

Time (seconds)

0

300

600

900

1200

1500

0 1400 2800 4200

H
an

dl
in

g
sp

ee
d

Time (seconds)

Estimated speed of handling training instances
(Us per second)
Estimated speed of handling validation
instances (Ws per second)

0

3000

6000

9000

0 1400 2800 4200

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0

2500

5000

7500

10000

0 1400 2800 4200

Fo
re

ca
st

ed
 o

ut
st

an
di

ng
 m

od
el

tra

in
in

g
tim

e
(s

ec
on

ds
)

Time (seconds)

0%

20%

40%

60%

80%

100%

0 1400 2800 4200

Fo
re

ca
st

ed
 a

cc
om

pl
is

he
d

pe
rc

en
ta

ge

Time (seconds)

 Author: Paper

VOLUME XX, 2017 28

rewrote the entire paper. Both authors read and approved the
final version of the paper.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

Cambridge, MA, USA: MIT Press, 2016.
[2] C. Li. “OpenAI’s GPT-3 language model: a technical overview.”

Lambda. https://lambdalabs.com/blog/demystifying-gpt-3 (accessed
Dec. 10, 2023).

[3] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Commun. ACM, vol. 63, no. 12, pp. 54-63, Dec. 2020.

[4] K. Ni, R. A. Pearce, K. Boakye, B. Van Essen, D. Borth, B. Chen, and
E. X. Wang, “Large-scale deep learning on the YFCC100M dataset,”
2015, arXiv: 1502.03409.

[5] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: pre-
training of deep bidirectional transformers for language
understanding,” in Proc. NAACL-HLT, 2019, pp. 4171-4186.

[6] J. Hui. “How to scale the BERT training with Nvidia GPUs?” Nvidia.
https://medium.com/nvidia-ai/how-to-scale-the-bert-training-with-
nvidia-gpus-c1575e8eaf71 (accessed Dec. 10, 2023).

[7] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting
unreasonable effectiveness of data in deep learning era,” in Proc.
ICCV, 2017, pp. 843-852.

[8] G. Luo, “Toward a progress indicator for machine learning model
building and data mining algorithm execution: a position paper,”
SIGKDD Explorations, vol. 19, no. 2, pp. 13-24, Dec. 2017.

[9] G. Luo, J. F. Naughton, and P. S. Yu, “Multi-query SQL progress
indicators,” in Proc. EDBT, 2006, pp. 921-941.

[10] Q. Dong and G. Luo, “Progress indication for deep learning model
training: a feasibility demonstration,” IEEE Access, vol. 8, pp. 79811-
79843, Apr. 2020.

[11] Q. Dong, X. Zhang, and G. Luo, “Improving the accuracy of progress
indication for constructing deep learning models,” IEEE Access, vol.
10, pp. 63754-63781, Jun. 2022.

[12] A. Klimovic. “Rethinking data storage and preprocessing for ML.”
ACM SIGARCH.
https://www.sigarch.org/rethinking-data-storage-and-preprocessing-
for-ml (accessed Dec. 10, 2023).

[13] D. G. Murray, J. Šimša, A. Klimovic, and I. Indyk, “tf.data: a machine
learning data processing framework,” Proc. VLDB Endow., vol. 14,
no. 12, pp. 2945-2958, Jul. 2021.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F.
Li, “ImageNet large scale visual recognition challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.

[15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in Proc.
CVPR, 2018, pp. 8697-8710.

[16] S. Bianco, R. Cadène, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64270-64277, Oct. 2018.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R.
Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: a system for large-scale machine learning,” in Proc.
OSDI, 2016, pp. 265-283.

[18] “tf.keras.callbacks.EarlyStopping.” TensorFlow.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/
callbacks/EarlyStopping (accessed Dec. 10, 2023).

[19] A. Kuznetsova, H. Rom, N. Alldrin, J. R. R. Uijlings, I. Krasin, J.
Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T.
Duerig, and V. Ferrari, “The Open Images Dataset V4,” Int. J.
Comput. Vis., vol. 128, no. 7, pp. 1956-1981, Jul. 2020.

[20] “Open Images Dataset V7 and extensions.”
https://storage.googleapis.com/openimages/web/index.html (accessed
Dec. 10, 2023).

[21] “Open Images Dataset.” GitHub.
https://github.com/cvdfoundation/open-images-dataset (accessed
Dec. 10, 2023).

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E.
Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B.
Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: an imperative
style, high-performance deep learning library,” in Proc. NeurIPS,
2019, pp. 8024-8035.

[23] M. A. Franklin and T. Pan, “Clocked and asynchronous instruction
pipelines,” in Proc. MICRO, 1993, pp. 177-184.

[24] “tf.data: build TensorFlow input pipelines.” TensorFlow.
https://www.tensorflow.org/guide/data (accessed Dec. 10, 2023).

[25] “NVIDIA data loading library.” Nvidia.
https://developer.nvidia.com/dali (accessed Dec. 10, 2023).

[26] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “CutMix:
regularization strategy to train strong classifiers with localizable
features,” in Proc. ICCV, 2019, pp. 6022-6031.

[27] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
beyond empirical risk minimization,” in Proc. ICLR, 2018.

[28] X. Zhang, J. J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in NIPS, 2015, pp. 649-657.

[29] A. Shekhar. “ImageNet100: a sample of ImageNet classes.” Kaggle.
https://www.kaggle.com/datasets/ambityga/imagenet100 (accessed
Dec. 10, 2023).

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770-778.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput, vol. 9, no. 8, pp. 1735-1780, 1997.

[32] “bert/bert-en-uncased-l-8-h-256-a-4.” kaggle/Models.
https://www.kaggle.com/models/tensorflow/bert/frameworks/tensorF
low2/variations/bert-en-uncased-l-8-h-256-a-4/versions/2 (accessed
Dec. 10, 2023).

[33] “TensorFlow Hub.” Tensorflow.
https://www.tensorflow.org/hub (accessed Dec. 10, 2023).

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Proc. ICLR, 2019.

[35] “tf.data.Dataset/shuffle.” Tensorflow.
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
(accessed Dec. 10, 2023).

[36] “bert/en_uncased_preprocess.” Kaggle.
https://www.kaggle.com/models/tensorflow/bert/frameworks/tensorF
low2/variations/en-uncased-preprocess/versions/1 (accessed Dec. 10,
2023).

[37] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, 2010, pp. 177-186.

[38] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747.

[39] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in Proc. ICLR, 2015.

[40] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121-2159, 2011.

[41] “tf.keras.applications.resnet50.ResNet50.” TensorFlow.
https://www.tensorflow.org/api_docs/python/tf/keras/applications/res
net50/ResNet50 (accessed Dec. 10, 2023).

[42] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Estimating
progress of execution for SQL queries,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2004, pp. 803-814.

[43] G. Luo, T. Chen, and H. Yu, “Toward a progress indicator for program
compilation,” Softw.: Pract. and Experience, vol. 37, no. 9, pp. 909-
933, July 2007.

[44] K. Wang, H. Converse, M. Gligoric, S. Misailovic, and S. Khurshid,
“A progress bar for the JPF search using program executions,” in Proc.
Java PathFinder Workshop at ESEC/FSE, 2018.

[45] W. Lee, H. Oh, and K. Yi, “A progress bar for static analyzers,” in
Proc. SAS, 2014, pp. 184-200.

[46] G. Luo, “PredicT-ML: a tool for automating machine learning model
building with big clinical data,” Health Inf. Sci. Syst., vol. 4, Article 5,
Dec. 2016.

[47] G. Luo, B. L. Stone, M. D. Johnson, P. Tarczy-Hornoch, A. B. Wilcox,
S. D. Mooney, X. Sheng, P. J. Haug, and F. L. Nkoy, “Automating
construction of machine learning models with clinical big data:
proposal rationale and methods,” JMIR Res. Protoc., vol. 6, no. 8, pp.
e175, Aug. 2017.

 Author: Paper

VOLUME XX, 2017 29

[48] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: a progress
indicator for MapReduce DAGs,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2010, pp. 507-518.

[49] K. Morton, A. L. Friesen, M. Balazinska, and D. Grossman,
“Estimating the progress of MapReduce pipelines,” in Proc. IEEE Int.
Conf. Data Eng., 2010, pp. 681-684.

[50] K. Lee, A. C. König, V. R. Narasayya, B. Ding, S. Chaudhuri, B.
Ellwein, A. Eksarevskiy, M. Kohli, J. Wyant, P. Prakash, R. V.
Nehme, J. Li, and J. F. Naughton, “Operator and query progress
estimation in Microsoft SQL Server Live Query Statistics,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 1753-1764.

[51] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Increasing the
accuracy and coverage of SQL progress indicators,” in Proc. IEEE Int.
Conf. Data Eng., 2005, pp. 853-864.

[52] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke, “Toward a
progress indicator for database queries,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2004, pp. 791-802.

[53] X. Xie, Z. Fan, B. Choi, P. Yi, S. S. Bhowmick, and S. Zhou,
“PIGEON: progress indicator for subgraph queries,” in Proc. IEEE
Int. Conf. Data Eng., 2015, pp. 1492-1495.

[54] G. Luo, “Progress indication for machine learning model building: a
feasibility demonstration,” SIGKDD Explorations, vol. 20, no. 2, pp.
1-12, Dec. 2018.

[55] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proc. BigData, 2018,
pp. 3873-3882.

[56] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. NIPS, 2012,
pp. 2960-2968.

[57] T. Doan and J. Kalita, “Predicting run time of classification algorithms
using meta-learning,” Int. J. Mach. Learn. and Cybern., vol. 8, no. 6,
pp. 1929-1943, Dec. 2017.

[58] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “OBOE:
collaborative filtering for AutoML model selection,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 1173-
1183.

[59] M. Reif, F. Shafait, and A. Dengel, “Prediction of classifier training
time including parameter optimization,” in Proc. KI, 2011, pp. 260-
271.

[60] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. NIPS, 2014, pp. 855-
863.

[61] L. L. Fredenslund. “Computational complexity of neural networks.”
https://lunalux.io/computational-complexity-of-neural-networks
(accessed Dec. 10, 2023).

[62] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical
Foundations. New York, NY, USA: Cambridge Univ. Press, 2002.

[63] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “When can we trust
progress estimators for SQL queries?” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2005, pp. 575-586.

[64] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig, “Early stopping
without a validation set,” 2017, arXiv: 1703.09580.

[65] D. Duvenaud, D. Maclaurin, and R. P. Adams, “Early stopping as
nonparametric variational inference,” in Proc. AISTATS, 2016, pp.
1070-1077.

[66] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks
of the Trade. Berlin, Germany: Springer, 1996, pp. 55-69.

QIFEI DONG received the B.S. degree in
electrical engineering from Zhejiang University,
Hangzhou, Zhejiang Province, P.R. China, in 2016
and the M.S. degree in electrical and computer
engineering from the University of Michigan, Ann
Arbor, MI, USA, in 2018. He is currently pursuing
the PhD degree in biomedical informatics and
medical education at the University of
Washington, Seattle, WA, USA.

Since 2018, he has been a Research Assistant
with the University of Washington Clinical

Learning, Evidence and Research Center for Musculoskeletal Disorders,
Seattle, WA, USA. His research interests include machine learning,
computer vision, natural language processing, and clinical informatics.

GANG LUO received the B.S. degree in
computer science from Shanghai Jiaotong
University, Shanghai, P.R. China, in 1998, and the
PhD degree in computer science from the
University of Wisconsin-Madison, Madison, WI,
USA, in 2004.

From 2004 to 2012, he was a Research Staff
Member at IBM T.J. Watson Research Center,
Hawthorne, NY, USA. From 2012 to 2016, he was
an Assistant Professor in the Department of
Biomedical Informatics at the University of Utah,

Salt Lake City, UT, USA. He is currently a Professor in the Department of
Biomedical Informatics and Medical Education at the University of
Washington, Seattle, WA, USA. He is the author of over 90 papers. His
research interests include machine learning, information retrieval, database
systems, and health informatics.

