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Abstract 
Predictive modeling based on machine learning with 

medical data has great potential to improve healthcare and 
reduce costs. However, two hurdles, among others, impede 
its widespread adoption in healthcare. First, medical data are 
by nature longitudinal. Pre-processing them, particularly for 
feature engineering, is labor intensive and often takes 50-
80% of the model building effort. Predictive temporal 
features are the basis of building accurate models, but are 
difficult to identify. This is problematic. Healthcare systems 
have limited resources for model building, while inaccurate 
models produce suboptimal outcomes and are often useless. 
Second, most machine learning models provide no 
explanation of their prediction results. However, offering 
such explanations is essential for a model to be used in usual 
clinical practice. To address these two hurdles, this paper 
outlines: 1) a data-driven method for semi-automatically 
extracting predictive and clinically meaningful temporal 
features from medical data for predictive modeling; and 2) a 
method of using these features to automatically explain 
machine learning prediction results and suggest tailored 
interventions. This provides a roadmap for future research. 
 
Keywords: temporal feature; medical data; machine 
learning; recurrent neural network; predictive modeling; 
automatic explanation 
 
1. Introduction 

Machine learning studies computer algorithms that learn 
from data [1] and has won most data science competitions 
[2]. Examples of machine learning algorithms include deep 
neural network (a.k.a. deep learning) [3], support vector 
machine, random forest, and decision tree. By enabling tasks 
like identifying high-risk patients for preventive 
interventions, predictive modeling based on machine 
learning with medical data holds great potential to improve 
healthcare and lower costs. Trials showed using machine 
learning helped: 1) reduce patient no-show rate by 19% and 
boost appointment rescheduling or cancel rate by 17% in 
outpatients at high risk of no-shows [4]; 2) cut 30-day 
mortality rate (odds ratio=0.53) in emergency department 
patients with community-acquired pneumonia [5]; 3) trim 
cost by $1,500 and ventilator use by 5.2 days per patient at a 
hospital respiratory care center [6]; 4) boost on-target 
hemoglobin values by 8.5-17% and reduce hospitalization 
days by 15%, cardiovascular events by 15%, hemoglobin 
fluctuation by 13%, expensive darbepoetin consumption by 
25%, and blood transfusion events by 40-60% in end-stage 
renal disease patients on dialysis [7-10]; and 5) cut healthcare 
cost in Medicare patients’ last half year of life by 4.5% [11]. 

Despite its potential for many clinical activities, machine 
learning-based predictive modeling is used by only 15% of 
hospitals for limited purposes [12]. Two hurdles, among 
others, impede the widespread adoption of machine learning 
in healthcare. 
 

1.1 Hurdle 1: Predictive temporal features are essential 
for building accurate predictive models, but are difficult 
to identify 

Most attributes in medical data are longitudinal. It is labor 
intensive and often takes 50-80% of the model building effort 
to pre-process medical data, particularly for feature 
engineering [13-15]. Predictive temporal features are the 
basis of building accurate predictive models, but are difficult 
to identify, even with many human resources. This is 
problematic. Healthcare systems have limited resources for 
model building, while inaccurate models produce suboptimal 
outcomes and are often useless. 

At present, clinical predictive models are usually created 
in the following way. Given a modeling task and a long list 
of attributes in the medical data like those stored in the 
electronic health record, a clinician uses his/her judgment to 
choose from the long list a short list of attributes that are 
potentially relevant to the task. For each longitudinal 
attribute in the short list, the clinician uses his/her judgment 
to specify how to aggregate the attribute’s values over time 
into a temporal feature, e.g., by taking their average or 
maximum. Then a data scientist uses the features (a.k.a. 
independent variables) to build a model. If model accuracy is 
unsatisfactory, which is frequently the case, the process is 
repeated. From what we have seen at three institutions, it 
often takes the clinician several months and multiple 
iterations to finish the manual attribute and feature 
specification for each modeling task. 

Besides being labor intensive, the above model building 
approach has two other drawbacks. First, many attributes 
could be useful for the modeling task, but are missing in the 
short list of attributes chosen by the clinician. Second, many 
temporal features could have additional predictive power, but 
are not included in those specified by the clinician [16]. Both 
drawbacks result from our limited understanding of diseases 
and lead to degraded model accuracy. Moreover, although 
the data mining community has done much work on mining 
and constructing temporal [17, 18] and sequence features 
[19], often many temporal features useful for the modeling 
task are still waiting to be discovered. 

As evidence of all of these issues, Google recently reported 
using all attributes in the electronic health record and long 
short-term memory (LSTM) [20, 21], a type of deep neural 
network, to automatically learn temporal features from 
medical data [22]. For predicting each of three outcomes: in-
hospital mortality, unexpected readmissions within 30 days, 
and long hospital stay, this resulted in a boost of the area 
under the receiver operating characteristic curve accuracy 
measure by almost 10% [22]. Several other studies [23-25] 
also showed that for various clinical prediction tasks and 
compared to using temporal features specified by experts, 
using LSTM to automatically learn temporal features from 
medical data improved prediction accuracy. This is 
consistent with what has happened in several areas like 
speech recognition, natural language processing, and video 
classification, where temporal features automatically learned 
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from data by LSTM outperform those specified by experts or 
mined by other methods [3]. It is common that many 
temporal features have additional predictive power, but have 
not been identified before. 

Without prelimiting to a small number of longitudinal 
attributes and possibly missing many other useful ones, 
LSTM can examine many attributes and automatically learn 
temporal features from irregularly sampled medical data of 
varying lengths in a data-driven way. However, the learned 
features are suboptimal and unsuitable for direct clinical use. 
When learning temporal features, the standard LSTM does 
not restrict the number of longitudinal attributes used in each 
feature. Consequently, a learned feature often involves lots 
of attributes, many of which have little or no relationship 
with each other. This results in three problems. 

Problem 1: The learned features tend to overfit the training 
data’s peculiarities and become less generalizable, leading to 
suboptimal model accuracy. As evidence of this, for several 
modeling tasks engaging longitudinal attributes that can be 
naturally partitioned into a small number (e.g., three) of 
modalities at a coarse granularity, researchers have improved 
LSTM model accuracy using multimodal LSTM [26, 27]. A 
multimodal LSTM network includes several constituent 
LSTM networks, one per modality. Each feature learned by 
a constituent network involves only those attributes in the 
modality linking to the constituent network. Usually, the 
medical data set contains a lot of longitudinal attributes, 
many of which could be useful for the modeling task. If we 
could partition longitudinal attributes meaningfully at a finer 
granularity and let multimodal LSTM take advantage of this 
aspect, we would expect the learned features’ quality and 
consequently model accuracy to improve further. Intuitively, 
a clinically meaningful temporal feature should typically 
involve no more than a few attributes. 

Problem 2: Differing healthcare systems collect 
overlapping yet different attributes. The more attributes a 
feature involves, the less likely a predictive model built with 
the feature will be used by other healthcare systems beyond 
the one that originally developed the model. 

Problem 3: A feature involving many longitudinal 
attributes is difficult to understand. As reviewed in Section 2, 
in LSTM, each memory cell vector element depicts some 
learned feature(s). Karpathy et al. [28] showed that only ~10% 
of these elements could be interpreted [29]. In clinical 
practice, clinicians usually refuse to use what they do not 
understand. 
 
1.2 Hurdle 2: Most machine learning models are black 
boxes, but clinical practice requires transparency of 
model prediction results 

This hurdle is related to Problem 3 mentioned above. Most 
machine learning models including LSTM provide no 
explanation of their prediction results. Yet, offering such 
explanations is essential for a model to be used in usual 
clinical practice. When lives are at risk, clinicians need to 
know the reasons to trust a model’s prediction results. 

Understanding the reasons for poor outcomes can help 
clinicians select tailored interventions that typically work 
better than non-specific ones. Explanations for prediction 
results can provide hints to help discover new knowledge. In 
addition, if sued for malpractice, clinicians will need to use 
their understanding of the prediction results to justify their 
decisions in court. 

Previously, for tabular data whose columns have easy-to-
understand meanings, we developed a method that can 
automatically explain any machine learning model’s 
prediction results with no accuracy loss [30]. This method 
cannot handle longitudinal data directly. Using the temporal 
features automatically learned by LSTM, one could convert 
longitudinal medical data to tabular data and then build 
machine learning models on the tabular data. But, if the 
automatically learned features have no easy-to-understand 
meanings, we still cannot use this method to automatically 
explain the models’ prediction results. 
 
1.3 Our contributions 

To address the two hurdles, this paper makes two 
contributions, offering a roadmap for future research. 

First, we outline a data-driven method for semi-
automatically extracting predictive and clinically meaningful 
temporal features from medical data for predictive modeling. 
Using this method can reduce the effort needed to build 
usable predictive models for the current modeling task. 
Complementing expert-engineered features, the extracted 
features can be used to build machine learning, statistical, or 
rule-based predictive models, improve model accuracy [31] 
and generalizability, and identify data quality issues. In 
addition, as shown by Gupta et al. [32], many extracted 
features reflect general properties of the medical attributes 
involved in the features, and can be useful for other modeling 
tasks. Using the extracted features to form a temporal feature 
library to facilitate feature reuse, we can reduce the effort 
needed to build predictive models for other modeling tasks. 

Second, we outline a method of using the extracted 
features to automatically explain machine learning prediction 
results and suggest tailored interventions. This can enable 
machine learning models to be used in clinical practice, and 
help transform healthcare to be more proactive. At present, 
healthcare is often reactive. Existing clinical predictive 
models rarely use trend features [16]. When a health risk is 
identified, e.g., with existing models, it is often at a relatively 
late stage of persisting deterioration of health. At that point, 
resolving it tends to be difficult and costly, and the patient is 
at increased risk of a poor outcome. Our feature extraction 
method can find many temporal features reflecting trends. By 
using these features and our automatic explanation method to 
identify risky trends early, we can proactively apply 
preventive interventions to stop further deterioration of 
health. The automatically generated explanations can help us 
identify new interventions, warn clinicians of risky patterns, 
and reduce the time clinicians need to review patient records 
to find the reasons why a specific patient is at high risk for a 
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poor outcome. The automatically suggested interventions 
can reduce the likelihood of missing suitable interventions 
for a patient. All of these factors can help improve outcomes 
and cut costs. 
 
1.4 Organization of the paper 

The rest of the paper is organized as follows. Section 2 
reviews the current approach of using LSTM to build 
predictive models with medical data. Section 3 sketches our 
data-driven method for semi-automatically extracting 
predictive and clinically meaningful temporal features from 
medical data for predictive modeling. Section 4 outlines our 
method of using the extracted features to automatically 
explain machine learning prediction results and suggest 
tailored interventions. Section 5 discusses related work. We 
conclude in Section 6. 

In this paper, we refer to both clinical and administrative 
data as medical data. We focus on predicting one outcome 
per data instance (e.g., per patient) rather than per data 
instance per time step (e.g., per patient per day). When a data 
instance has one outcome per time step, one way to extract 
temporal features is to focus on the outcome at the last time 
step of each data instance. 

Below is a list of abbreviations used in the paper. 
FeNO:  fractional exhaled nitric oxide 
FEV1:  forced expiratory volume in 1 second 
GPU: graphics processing unit 
Lasso:  least absolute shrinkage and selection operator 
LSTM:  long short-term memory 
MCLSTM: multi-component LSTM 
RNN:  recurrent neural network 

 
Below is a list of symbols used in the paper. 

  element-wise sum 
  element-wise multiplication 
λ1 parameter controlling RW’s importance 
λ2 parameter controlling RU’s importance 
λ3 parameter controlling Rf’s importance 
 element-wise sigmoid function 
τ+ for the top N+ training instances with the highest 

positive values in a given memory cell vector 
element, the lowest one of these values 

τ- for the bottom N- training instances with the lowest 
negative values in a given memory cell vector 
element, the highest one of these values 

𝑏
ሬሬሬ⃑  the bias vector for the memory cell 
𝑏,
ሬሬሬሬሬሬ⃑  the bias vector for the memory cell in the q-th 

component network 
𝑏
ሬሬሬ⃑  the bias vector for the forget gate 

𝑏,
ሬሬሬሬሬሬ⃑  the bias vector for the forget gate in the q-th 

component network 
𝑏ప
ሬሬሬ⃑  the bias vector for the input gate 
𝑏ప,
ሬሬሬሬሬሬ⃑  the bias vector for the input gate in the q-th 

component network 

𝑏
ሬሬሬሬ⃑  the bias vector for the output gate 
𝑏,
ሬሬሬሬሬሬሬ⃑  the bias vector for the output gate in the q-th 

component network 
𝑐,,௧ሬሬሬሬሬሬሬሬ⃑  the memory cell vector on the l-th layer of the q-th 

component network at time step t 
𝑐,௧ሬሬሬሬሬሬ⃑  the memory cell vector in the q-th component 

network at time step t 
ct  memory cell at time step t 
𝑐௧ሬሬሬ⃑  the memory cell vector at time step t 
D date 
𝑑ሺ�⃑�, 𝑧ሻ the distance between vectors �⃑� and 𝑧 
dp(Y, Z) the total distance between temporal sequences Y and 

Z along warping path p 
dq the q-th component network’s memory cell vector 

dimensionality 
DTW(Y, Z) the dynamic time warping distance 

between temporal sequences Y and Z 
ei the i-th condition on the left hand side of an 

association rule 
𝑓,௧
ሬሬሬሬሬ⃑  the forget gate’s activation vector in the q-th 

component network at time step t 
ft forget gate at time step t 
𝑓௧
ሬሬሬ⃑  the forget gate’s activation vector at time step t 
gi number of weights in the i-th group 
G number of groups 
ℎ,,௧
ሬሬሬሬሬሬሬሬ⃑  the hidden state vector on the l-th layer of the q-th 

component network at time step t 
ℎ,௧
ሬሬሬሬሬሬ⃑  the hidden state vector in the q-th component 

network at time step t 
ht hidden state at time step t 
ℎ௧
ሬሬሬ⃑  the hidden state vector at time step t 
𝚤,௧ሬሬሬሬሬ⃑  the input gate’s activation vector in the q-th 

component network at time step t 
it input gate at time step t 
𝚤௧ሬሬ⃑  the input gate’s activation vector at time step t 
k the number of clusters of effective segments that 

will be created for the top/bottom training instances 
of a memory cell vector element at the last time step 
of the MCLSTM network 

K number of component networks 
L the loss function measuring the mismatch between 

the predicted and actual outcomes of the data 
instances 

Lo the overall loss function 
m, m1, m2 number of time steps 
MDTW(Y, Z) the multivariate dynamic time warping 

distance between temporal sequences Y and Z 
n the input vector’s dimensionality 
n+ the number of training instances with positive 

values in a given memory cell vector element 
n- the number of training instances with negative 

values in a given memory cell vector element 
N the maximum number of top/bottom training 

instances that will be obtained for each memory cell 
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vector element at the last time step of the MCLSTM 
network 

N+ the number of identified top training instances with 
the highest positive values in a given memory cell 
vector element 

N- the number of identified bottom training instances 
with the lowest negative values in a given memory 
cell vector element 

nq the number of longitudinal attributes used in the q-
th component network 

𝑜,௧ሬሬሬሬሬሬ⃑  the output gate’s activation vector in the q-th 
component network at time step t 

ot output gate at time step t 
𝑜௧ሬሬሬ⃑  the output gate’s activation vector at time step t 
p, p* warping path 
|p| warping path p’s length 
P(Y, Z) all possible warping paths between temporal 

sequences Y and Z 
R association rule 
Rf the L2 regularizer for the weights in the fully 

connected feedforward network used at the end of 
the MCLSTM network 

Rq,r  the L2 norm of the input vector weight matrix 
elements linking to the r-th longitudinal attribute in 
the q-th component network 

RU the L2 regularizer for the elements of the hidden 
state vector weight matrices Uf,q, Ui,q, Uo,q, and Uc,q 

RW the exclusive group Lasso regularizer 
t, t', t1, t2, t3, t4, t5 time step 
tend an effective segment’s ending time step 
tstart an effective segment’s starting time step 
tanh element-wise hyperbolic tangent function 
Uc the hidden state vector weight matrix for the 

memory cell 
Uc,q the hidden state vector weight matrix for the 

memory cell in the q-th component network 
Uc,q,s,r the element in the s-th row and r-th column of Uc,q 
Uf the hidden state vector weight matrix for the forget 

gate 
Uf,q the hidden state vector weight matrix for the forget 

gate in the q-th component network 
Uf,q,s,r the element in the s-th row and r-th column of Uf,q 
Ui the hidden state vector weight matrix for the input 

gate 
Ui,q the hidden state vector weight matrix for the input 

gate in the q-th component network 
Ui,q,s,r the element in the s-th row and r-th column of Ui,q 
Uo the hidden state vector weight matrix for the output 

gate 
Uo,q the hidden state vector weight matrix for the output 

gate in the q-th component network 
Uo,q,s,r the element in the s-th row and r-th column of Uo,q 
v value 
wi,j weight 
Wc the input vector weight matrix for the memory cell 

Wc,q the input vector weight matrix for the memory cell 
in the q-th component network 

Wc,q,s,r the element in the s-th row and r-th column of Wc,q 
Wf the input vector weight matrix for the forget gate 
Wf,q the input vector weight matrix for the forget gate in 

the q-th component network 
Wf,q,s,r the element in the s-th row and r-th column of Wf,q 
Wi the input vector weight matrix for the input gate 
Wi,q the input vector weight matrix for the input gate in 

the q-th component network 
Wi,q,s,r the element in the s-th row and r-th column of Wi,q 
Wo the input vector weight matrix for the output gate 
Wo,q the input vector weight matrix for the output gate in 

the q-th component network 
Wo,q,s,r the element in the s-th row and r-th column of Wo,q 
𝑥,௧ሬሬሬሬሬሬ⃑  the input vector in the q-th component network at 

time step t 
xq,t,j the j-th element of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑  
𝑥௧ሬሬሬ⃑  the input vector at time step t 
xt,i the i-th element of the input vector 𝑥௧ሬሬሬ⃑  
Y temporal sequence 
𝑦ሬሬሬ⃑  the r-th element of temporal sequence Y 
Z temporal sequence 
𝑧௦ሬሬሬ⃑  the s-th element of temporal sequence Z 
 
2. The Current Approach of Using LSTM to Build 
Predictive Models with Medical Data 

In this section, we review the current standard approach of 
using LSTM to build predictive models with medical data. In 
Section 3, we present our temporal feature extraction method 
based on this approach. Variations of this approach are used 
in many LSTM-based clinical predictive modeling papers 
[22-25, 33-46]. With proper modifications, our temporal 
feature extraction method also applies to these variations. 

A deep neural network is a neural network with many 
layers of computation. Ching et al. [47-50] reviewed existing 
work using deep neural networks on medical data. Deep 
neural networks have several types, such as recurrent neural 
network (RNN), convolutional neural network, and deep 
feedforward neural network. Among them, RNN handles 
irregularly sampled longitudinal medical data of varying 
lengths the most naturally. LSTM [20, 21] is a specific kind 
of RNN that uses a gating mechanism to better model long-
range dependencies. Much work has been done using LSTM 
to build predictive models with medical data [22-25, 33-46]. 
Other kinds of RNN like gated recurrent unit have also been 
used for this purpose [32, 51-63]. In this paper, we focus on 
LSTM having memory cells, from which we extract temporal 
features. 

LSTM processes a sequence of input vectors from the same 
data instance, one input vector at a time. Each input vector 𝑥௧ሬሬሬ⃑  
is indexed by a time step t. After processing the entire 
sequence, LSTM obtains results that are used to predict the 
data instance’s outcome. Often, each data instance refers to a 
distinct patient. Each input vector includes one patient visit’s 
information, such as diagnoses and vital signs. The sequence 
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length can vary across data instances. This helps boost model 
accuracy, as LSTM can use as much of the information of 
each patient as possible, without having to drop information 
to make each patient’s history be of the same length. This 
also allows us to make predictions on new patients in a timely 
manner, without having to wait until each patient 
accumulates a certain length of history. With a single patient 
visit’s information available, LSTM can already start to make 
predictions on the patient. 

As shown in Figure 1, an LSTM network contains a 
sequence of units, one per time step. In Figure 1, each 

rounded rectangle denotes a unit.  is the element-wise sum. 
 is the element-wise multiplication. A unit has a memory 
cell ct, a hidden state ht, an input gate it, an output gate ot, and 
a forget gate ft. The memory cell keeps long-term memory 
and stores summary information from all previous inputs. It 
is known that LSTM can maintain memory over 1,000 time 
steps [20]. The input gate regulates the input flowing into the 
memory cell. The forget gate adjusts the forgetting of the 
memory cell. The output gate controls the output flowing 
from the memory cell. 

 
 
 
 
 
 
 
 
 

Figure 1. An LSTM network. 
 

For a sequence with m time steps, LSTM works based on 
the following formulas: 

𝑓௧
ሬሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑  𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑  𝑏
ሬሬሬ⃑ ሻ          (forget gate) 

𝚤௧ሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑  𝑈ℎ௧ିଵ
ሬሬሬሬሬሬሬሬ⃑  𝑏ప

ሬሬሬ⃑ ሻ           (input gate) 
𝑜௧ሬሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑  𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑  𝑏
ሬሬሬሬ⃑ ሻ        (output gate) 

𝑐௧ሬሬሬ⃑ ൌ 𝑓௧
ሬሬሬ⃑ ⨂𝑐௧ିଵሬሬሬሬሬሬሬ⃑  𝚤௧ሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑊𝑥௧ሬሬሬ⃑  𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑  𝑏
ሬሬሬ⃑ ሻ  (memory 

cell) 
ℎ௧
ሬሬሬ⃑ ൌ 𝑜௧ሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑐௧ሬሬሬ⃑ ሻ       (hidden state) 

Here,  and tanh are the element-wise sigmoid and 
hyperbolic tangent functions, respectively. 𝑥௧ሬሬሬ⃑ ൌ
ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ is the input vector at time step t (1≤t≤m). 

Each 𝑥௧ሬሬሬ⃑  has the same dimensionality n. 𝑓௧
ሬሬሬ⃑ , 𝚤௧ሬሬ⃑ , and 𝑜௧ሬሬሬ⃑  are the 

forget, input, and output gates’ activation vectors, 
respectively. 𝑐௧ሬሬሬ⃑  is the memory cell vector. ℎ௧

ሬሬሬ⃑  is the hidden 
state vector. 𝑏

ሬሬሬ⃑ , 𝑏ప
ሬሬሬ⃑ , 𝑏

ሬሬሬሬ⃑ , and 𝑏
ሬሬሬ⃑  are bias vectors. All vectors 

except for 𝑥௧ሬሬሬ⃑  have the same dimensionality. Wf, Wi, Wo, and 
Wc are the input vector weight matrices. Uf, Ui, Uo, and Uc 
are the hidden state vector weight matrices. The hidden state 
vector ℎ

ሬሬሬሬሬ⃑  in the last time step summarizes the whole 
sequence. Along with the sequence, the data instance often 
contains some static attributes, such as gender and race. We 
concatenate ℎ

ሬሬሬሬሬ⃑  with the static attributes, if any, into a vector. 
We input the vector to a fully connected feedforward network 
and compute the data instance’s predicted outcome [26]. 

The input vector 𝑥௧ሬሬሬ⃑ ൌ ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ  contains 
information of all longitudinal attributes at time step t. We 
can make xt,i (1≤i≤n) the i-th longitudinal attribute’s value at 
t. Alternatively, we can embed each categorical attribute 
value, such as diagnosis or procedure code, into a vector 
representation and merge all embedded vectors at t into 𝑥௧ሬሬሬ⃑  

[22]. In this case, each embedded xt,i becomes difficult to 
interpret. 

In LSTM, each element of the memory cell vector 𝑐௧ሬሬሬ⃑  
depicts some learned temporal feature(s). Karpathy et al. [28] 
showed that only ~10% of these elements could be 
interpreted [29]. Our goal is to modify LSTM so that it can 
be used to extract predictive and clinically meaningful 
temporal features from medical data for predictive modeling. 

 
3. Semi-automatically Extracting Predictive and 
Clinically Meaningful Temporal Features from Medical 
Data 

In this section, we sketch our data-driven method for semi-
automatically extracting predictive and clinically meaningful 
temporal features from medical data for predictive modeling. 
Our method is semi-automatic because its last step requires a 
human to extract features via visualization. Since temporal 
feature is one form of phenotype, our method belongs to 
computational phenotyping [64-66]. Our method has a 
different focus than most existing phenotyping algorithms, 
which use medical data to detect whether a patient has a 
specific disease. 

The standard LSTM imposes no limit on how many input 
vector elements can link to each memory cell vector element. 
All input vector elements could be used in each element of 
the forget and input gates’ activation vectors, and 
subsequently link to each memory cell vector element. As a 
result, even if each input vector element links to a distinct 
longitudinal attribute, no limit is placed on the number of 
attributes used in each learned temporal feature. A feature 
involving many attributes is difficult to understand. Our key 
idea for semi-automatically extracting temporal features 
from medical data is to restrict the number of longitudinal 
attributes linking to each memory cell vector element. In this 

𝑥௧ሬሬሬ⃑ ൌ ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ 

ℎ𝑡െ1ሬሬሬሬሬሬ⃑  
tanh 

tanh  
 

𝑐௧ሬሬሬ⃑  

ℎ௧
ሬሬሬ⃑  


tanh

tanh


ℎ𝑡1ሬሬሬሬሬሬ⃑

𝑥௧ାଵሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥௧ାଵ,ଵ, 𝑥௧ାଵ,ଶ, … , 𝑥௧ାଵ,ሻ

𝑓௧
ሬሬሬ⃑  𝚤௧ሬሬ⃑  

𝑜௧ሬሬሬ⃑  

𝑓௧ାଵ
ሬሬሬሬሬሬሬ⃑ 𝚤௧ାଵሬሬሬሬሬሬሬ⃑

𝑜௧ାଵሬሬሬሬሬሬሬሬ⃑

… … 

𝑐𝑡െ1ሬሬሬሬሬሬ⃑  𝑐𝑡1ሬሬሬሬሬሬ⃑

fully 
connected 

feedforward 
network 

static attributes 
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way, more memory cell vector elements will represent 
clinically meaningful temporal features. The learned features 
are likely to be predictive, as LSTM frequently produces 
more accurate clinical predictive models than other machine 
learning algorithms [22-25]. 

The rest of Section 3 is organized as follows. Section 3.1 
describes how to modify LSTM to limit the number of 
longitudinal attributes linking to each memory cell vector 
element. Section 3.2 shows how to visualize the memory cell 
vector elements in our trained LSTM network to extract 
predictive and clinically meaningful temporal features. 
Section 3.3 mentions several ways of using the extracted 

features and lists our feature extraction method’s advantages. 
Section 3.4 sketches a method for efficiently automating 
LSTM model selection. Section 3.5 provides some additional 
details. 
 
3.1 Multi-component LSTM 

To limit the number of longitudinal attributes linking to 
each memory cell vector element, we use a new type of 
LSTM termed multi-component LSTM (MCLSTM). 
 
3.1.1 Overview

 
 
 

 

 
 
 
 
 

 
 

Figure 2. A multi-component LSTM network with K components. 
 
As shown in Figure 2, an MCLSTM network contains 

multiple component LSTM networks. In a given component 
network and at any time step, each input vector element links 
to a distinct longitudinal attribute. Each component network 
uses only a subset of the longitudinal attributes rather than all 
of them. This is similar to the case of multimodal LSTM [26, 
27]. Yet, MCLSTM differs from multimodal LSTM in 
several ways. In multimodal LSTM, all longitudinal 
attributes are partitioned into a small number of sets, one per 
modality, based on existing knowledge of the modalities. A 
set can possibly contain many attributes. Each longitudinal 
attribute appears in exactly one of the sets. The multimodal 
LSTM model is trained after attribute partitioning is finalized. 
In comparison, in MCLSTM, we preselect an integer K that 
is not necessarily small. All longitudinal attributes are 
partitioned into K sets, one per component, in a data-driven 
way when the MCLSTM model is trained. Each set tends to 
contain one or a few attributes. The same attribute could 
appear in more than one set. Also, some longitudinal 
attributes may appear in none of the sets. 

In Figure 2, nq denotes the number of longitudinal 
attributes used in the q-th (1≤q≤K) component network. For 
each element xq,t,j (1≤j≤ni) of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑  at time step 
t, the first, second, and third subscripts indicate the 
component number, time step, and element number in the 

component, respectively. For both the memory cell vector 

𝑐𝑞,𝑡ሬሬሬሬ⃑  and the hidden state vector ℎ𝑞,𝑡ሬሬሬሬሬ⃑ , the first and second 
subscripts indicate the component number and time step, 
respectively. 

Consider a data instance containing a sequence with m time 
steps and perhaps some static attributes. The MCLSTM 
network includes K component networks. We concatenate all 
K hidden state vectors ℎ,

ሬሬሬሬሬሬሬሬ⃑  (1≤q≤K) at the last time step, one 
from each component network, and the static attributes, if 
any, into a vector ℎ

ሬሬሬሬሬ⃑  [26]. We input ℎ
ሬሬሬሬሬ⃑  to a fully connected 

feedforward network to compute the data instance’s 
predicted outcome. 

In MCLSTM, by controlling the number of longitudinal 
attributes used in each component network, we limit the 
number of attributes linking to each memory cell vector 
element, and subsequently the number of attributes involved 
in each learned temporal feature. This offers several 
advantages. First, a larger portion of learned features will be 
understandable and clinically meaningful. Clinicians are 
more willing to use these features than those they do not 
understand. Second, the learned features become more 
generalizable and less likely to overfit the training data’s 
peculiarities. This helps improve the accuracy of predictive 
models built using these features [67]. Third, MCLSTM 

𝑥,௧ሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧,ଵ, 𝑥,௧,ଶ, … , 𝑥,௧,಼
ሻ

𝑐𝐾,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑   
tanh

tanh  
 

𝑐𝐾,𝑡ሬሬሬሬሬ⃑

ℎ𝐾,𝑡ሬሬሬሬሬ⃑ 
tanh

tanh


𝑐𝐾,𝑡1ሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,𝑡1ሬሬሬሬሬሬሬሬሬ⃑
component K 

𝑐1,𝑡െ1ሬሬሬሬሬሬሬሬ⃑  

ℎ1,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑  
tanh

tanh  
 

𝑐1,𝑡ሬሬሬሬ⃑

ℎ1,𝑡ሬሬሬሬሬ⃑ 
tanh

tanh


𝑐1,𝑡1ሬሬሬሬሬሬሬሬ⃑

ℎ1,𝑡1ሬሬሬሬሬሬሬሬሬ⃑
component 1 

…
 

… 

… 

… 

… 

𝑥,௧ାଵሬሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧ାଵ,ଵ, 𝑥,௧ାଵ,ଶ, … , 𝑥,௧ାଵ,಼
ሻ 

𝑥ଵ,௧ሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧,ଵ,  𝑥ଵ,௧,ଶ, … , 𝑥ଵ,௧,భ
ሻ 𝑥ଵ,௧ାଵሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧ାଵ,ଵ, 𝑥ଵ,௧ାଵ,ଶ, … , 𝑥ଵ,௧ାଵ,భ

ሻ 

fully 
connected 

feedforward 
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naturally has feature selection capability. Often, some 
longitudinal attributes appear in none of the component 
networks, and are regarded as having no predictive power. 
Only the other longitudinal attributes appearing in the 
MCLSTM network are deemed relevant and need to be 
collected for the modeling task. This reduces the number of 
attributes involved in the predictive model built using the 
learned features. Such a model is more likely to be used by 
other healthcare systems beyond the one that originally 
developed the model, as differing healthcare systems collect 
overlapping but different attributes. 
 
3.1.2 Setting the network configuration hyper-parameters 

Before training an MCLSTM network, we need to set a few 
hyper-parameters for its configuration. First, we need to 
select K, the number of component networks in it. Second, 
for each component network, we need to choose its memory 
cell vector dimensionality. Recall that except for the input 
vector, all vectors used in an LSTM unit have the same 
dimensionality. The memory cell vector is one of them. 

We set the network configuration hyper-parameters based 
on two considerations. First, which component network uses 
which longitudinal attributes is generally determined in a 
data-driven way when the MCLSTM network is trained. 
Ideally, when training is completed, we want to achieve the 
effect that each component network uses one or a few 
attributes. That is, every nq (1≤q≤K) is small. Each memory 
cell vector element of the component network represents 
some temporal feature(s) involving no more than these 
attributes. Such a feature is more likely to be understood and 
clinically meaningful than one involving many attributes. 
When the medical data set contains lots of longitudinal 
attributes, many of them could be useful for the modeling 
task. In this case, we use a large K to allow the useful 
attributes to appear in the MCLSTM network. Otherwise, 
when the medical data set contains only a few longitudinal 
attributes, we use a small K. 

Second, for the one or a few longitudinal attributes used in 
a component network, intuitively no more than a few 
temporal features using these attributes would be clinically 
meaningful, predictive, and non-redundant for the modeling 
task. Hence, the memory cell vectors 𝑐,௧ሬሬሬሬሬሬ⃑  (1≤q≤K) used in 
each component network should have a low dimensionality. 
We can use the same low dimensionality for the memory cell 
vectors in each component network. Alternatively, we can 
partition all K component networks into multiple groups, and 
choose a different low dimensionality for the memory cell 
vectors in each group. 

The optimal hyper-parameter values vary by the modeling 
task and data set. Finding the optimal hyper-parameter values 
belongs to machine learning model selection, for which much 
work has been done [68]. We conduct this search by 
maximizing the MCLSTM network’s prediction accuracy. 
 
3.1.3 Exclusive group Lasso regularization 

After setting the network configuration hyper-parameters, 
the MCLSTM network’s configuration is only partly in 
place. To complete it, we need to figure out which 
component network uses which longitudinal attributes. We 
do this in a data-driven way when the MCLSTM network is 
trained. 

The MCLSTM network contains K component networks. 
We have n longitudinal attributes. Initially, not knowing 
which component network will use which attributes, we give 
all n attributes to each component network. At time step t, all 
component networks receive the same input vector 𝑥௧ሬሬሬ⃑ ൌ
ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ , with xt,i (1≤i≤n) being the i-th 
longitudinal attribute’s value. 

We want the data to tell us which component network 
should use which longitudinal attributes. The i-th (1≤i≤n) 
longitudinal attribute links to the i-th column of each input 
vector weight matrix in every component network. An 
attribute is unused by a component network if and only if all 
columns of the input vector weight matrices in the 
component network linking to the attribute are all zeros. 
After the MCLSTM network is trained, we want to achieve 
the effect that each component network uses only one or a 
few attributes. That is, most columns of the input vector 
weight matrices in the component network are all zeros. 
Lasso (least absolute shrinkage and selection operator) 
regularization is widely used to make most weights in a 
machine learning model zero. Existing Lasso regularization 
methods cannot achieve our desired effect, as the weights 
used in the MCLSTM network have a special structure [67]. 
We design a new Lasso regularization method tailored to this 
structure to serve our purpose. 

Our regularization method performs one type of structured 
regularization. It is related to, but different from multimodal 
group regularization, the type of structured regularization 
conducted in Lenz et al. [67]. Our regularization method is 
designed for MCLSTM to handle longitudinal data. The goal 
is to limit the number of longitudinal attributes used in each 
component network. In comparison, the multimodal group 
regularization method was developed for a deep feedforward 
neural network handling static data. There, all attributes are 
partitioned into a small number of groups, one per modality, 
based on existing knowledge of the modalities. The goal is to 
limit the number of modalities that each neuron on the first 
layer of the network links to. Lenz et al. [67] showed that 
standard L1 regularization cannot achieve this goal without 
degrading the quality of the features learned by the neurons 
on the first layer. Using multimodal group regularization 
improved both feature quality and model accuracy. 
 
Notations 

Before describing our regularization method’s technical 
details, we first introduce a few notations. Consider the q-th 
(1≤q≤K) component network. It works based on the 
following formulas at time step t: 

𝑓,௧
ሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑  𝑈,ℎ,௧ିଵ

ሬሬሬሬሬሬሬሬሬሬሬ⃑  𝑏,
ሬሬሬሬሬሬ⃑ ሻ        (forget gate) 
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𝚤,௧ሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑  𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑  𝑏ప,

ሬሬሬሬሬሬ⃑ ሻ        (input gate) 

𝑜,௧ሬሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑  𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑  𝑏,

ሬሬሬሬሬሬሬ⃑ ሻ      (output gate) 

𝑐,௧ሬሬሬሬሬሬ⃑ ൌ 𝑓,௧
ሬሬሬሬሬ⃑ ⨂𝑐,௧ିଵሬሬሬሬሬሬሬሬሬሬ⃑   

     𝚤,௧ሬሬሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑊,𝑥௧ሬሬሬ⃑  𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑  𝑏,

ሬሬሬሬሬሬ⃑ ሻ   (memory cell) 

ℎ,௧
ሬሬሬሬሬሬ⃑ ൌ 𝑜,௧ሬሬሬሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑐,௧ሬሬሬሬሬሬ⃑ ሻ       (hidden state) 

Compared to those listed in Section 2, each vector except for 
the input vector and each weight matrix have an added 
subscript: q. Let dq denote the q-th component network’s 
memory cell vector dimensionality. Wf,q, Wi,q, Wo,q, and Wc,q 
are the dq×n input vector weight matrices for the forget gate, 
input gate, output gate, and memory cell, respectively. Wf,q,s,r, 
Wi,q,s,r, Wo,q,s,r, and Wc,q,s,r denote the element in the s-th 
(1≤s≤dq) row and r-th (1≤r≤n) column of Wf,q, Wi,q, Wo,q, and 
Wc,q, respectively. Uf,q, Ui,q, Uo,q, and Uc,q are the dq×dq 
hidden state vector weight matrices for the forget gate, input 
gate, output gate, and memory cell, respectively. Uf,q,s,r, 
Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r denote the element in the s-th 
(1≤s≤dq) row and r-th (1≤r≤dq) column of Uf,q, Ui,q, Uo,q, and 
Uc,q, respectively. 
 
Basic method 

To obtain the desired effect that each component network 
uses only one or a few longitudinal attributes, our 
regularization method needs to achieve two goals 
simultaneously. First, in a component network, the n 
longitudinal attributes compete with each other. If one 
attribute is used, the other attributes are less likely to be used. 
In other words, if an input vector weight matrix element 
linking to an attribute is non-zero, the regularizer tends to 
assign zeros to the input vector weight matrix elements 
linking to the other attributes. Second, in a component 

network, all input vector weight matrix elements linking to 
the same attribute tend to be zero (or non-zero) concurrently. 
Non-zero means the component network uses this attribute. 

We borrow ideas from exclusive Lasso [69, 70] and group 
Lasso [71] to reach these two goals. Consider a set of weights 
wi,j (1≤i≤G, 1≤j≤gi) partitioned into G groups. The i-th group 
has gi weights. Exclusive Lasso [69, 70] uses the regularizer 
∑ ሺ∑ |𝑤,|

ୀଵ ሻଶீ
ୀଵ  to make the weights in the same group 

compete with each other. If one weight in a group is non-
zero, the regularizer tends to assign zeros to the other weights 
in the same group. This can be used to reach our first goal. In 
comparison, group Lasso [71] uses the regularizer 

∑ ට∑ 𝑤,
ଶ

ୀଵ
ீ
ୀଵ  to make all weights in the same group tend 

to be zero (or non-zero) concurrently. This can be used to 
reach our second goal. 

Our regularization method combines exclusive Lasso and 
group Lasso, and is thus called exclusive group Lasso. In the 
q-th (1≤q≤K) component network, the input vector weight 
matrix elements linking to the r-th (1≤r≤n) longitudinal 
attribute are Wf,q,s,r, Wi,q,s,r, Wo,q,s,r, and Wc,q,s,r for each s 
between 1 and dq. We treat these elements as a group, and 
use their L2 norm 𝑅, ൌ

ට∑ ሺ𝑊,,௦,
ଶ  𝑊,,௦,

ଶ  𝑊,,௦,
ଶ  𝑊,,௦,

ଶ ሻ
ௗ
௦ୀଵ  to make them 

tend to be zero (or non-zero) concurrently. If Rq,r=0, all of 
them are zero. For each q (1≤q≤K), the L2 norms linking to 
the n longitudinal attributes are Rq,r for every r between 1 and 
n. We treat these L2 norms as a group, and use the regularizer 
𝑅ௐ ൌ ∑ ሾ∑ 𝑅,


ୀଵ ሿଶ

ୀଵ  to make them compete with each 
other for being non-zero. Putting everything together, we use 
the exclusive group Lasso regularizer 

𝑅ௐ ൌ   ඨ ሺ𝑊,,௦,
ଶ  𝑊,,௦,

ଶ  𝑊,,௦,
ଶ  𝑊,,௦,

ଶ ሻ
ௗ

௦ୀଵ



ୀଵ


ଶ


ୀଵ
 

to reach our two goals simultaneously. RW is a convex 
function of all input vector weight matrix elements. 

For the hidden state vector weight matrices Uf,q, Ui,q, Uo,q, 
and Uc,q, we do not need to make most of their elements zero. 
Instead, we use the L2 regularizer 

𝑅 ൌ ∑ ∑ ∑ ሺ𝑈,,௦,
ଶ  𝑈,,௦,

ଶ  𝑈,,௦,
ଶ  𝑈,,௦,

ଶ ሻ
ௗ
௦ୀଵ

ௗ
ୀଵ


ୀଵ   

for their elements Uf,q,s,r, Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r. Let L 
denote the loss function measuring the discrepancy between 
the predicted and actual outcomes of the data instances. Rf 
denotes the L2 regularizer for the weights in the fully 
connected feedforward network used at the end of the 
MCLSTM network. To train the MCLSTM network, we use 
a standard subgradient optimization algorithm to minimize 
the overall loss function Lo=L+λ1RW+λ2RU+λ3Rf [3]. λ1, λ2, λ3 
are the parameters controlling the importance of the 
regularizers RW, RU, and Rf, respectively. 
 
Extension of the basic method 

Sometimes, based on medical intuition, we know which 
longitudinal attribute by itself or which several longitudinal 
attributes combined are likely to form predictive and 
clinically meaningful temporal features, even if we do not 
know the exact features. In this case, before training the 
MCLSTM network, for each subset of longitudinal attributes 
with this property, we specify a separate component network 
to receive in its input vectors the values of the attributes in 
this subset rather than all attributes’ values. This can ease 
model training and help make more learned features 
represented by the memory cell vector elements clinically 
meaningful. This also expedites model training by reducing 
the number of weights that need to be handled. 

By default, all component networks in an MCLSTM 
network use the same set of time steps. Sometimes, all 
longitudinal attributes fall into several groups, each collected 
at a distinct frequency. For instance, one group of 
longitudinal attributes like diagnosis codes is collected per 
patient visit. Another group of longitudinal attributes, such 
as air quality measurements and vital signs that a patient self-



10 

 

monitors at home, is collected every day. In this case, for 
each group of longitudinal attributes, we can specify a 
different subset of component networks, whose input vectors 
include only these attributes’ values. Each subset uses a 
distinct set of time steps based on the frequency at which the 
corresponding group of longitudinal attributes is collected. 

Sometimes, based on medical knowledge or our prior 
experience with other modeling tasks, we know some 
temporal features that are clinically meaningful, formed by 
some of the longitudinal attributes, and likely to be predictive 
for the current modeling task. In this case, we compute these 
features, treat them as static attributes used near the end of 
the MCLSTM network, and can opt to not use the raw 
longitudinal attributes involved in them when training the 
network. This can ease model training and help the network 
form predictive and clinically meaningful temporal features 
from the other longitudinal attributes. 

Section 3.2 outlines our method of visualizing the memory 
cell vector elements in a trained MCLSTM network to extract 
predictive and clinically meaningful temporal features. To 
increase the number of such extracted features, we can 
iteratively train the MCLSTM network and extract features 
in multiple rounds. After extracting some features via 
visualization in one round, we reduce the number of 

component networks in the MCLSTM network, compute 
these features, add them to the list of static attributes used 
near the end of the MCLSTM network, and no longer use the 
raw longitudinal attributes involved in them when training 
the MCLSTM network in the next round. This helps the 
MCLSTM network form predictive and clinically 
meaningful temporal features from the remaining 
longitudinal attributes. 

Often, the input vector at each time step includes an 
element showing the elapsed time between the current and 
previous time steps [33, 35, 46, 51]. For the first time step, 
the elapsed time is zero. Sometimes, a log transformation is 
applied to the elapsed time to reduce its skewed distribution 
[52]. The elapsed time attribute has a different property from 
the other longitudinal attributes. Intuitively, any other 
longitudinal attribute tends to be used by one or a few 
component networks in the MCLSTM network to form 
temporal features. In comparison, many component networks 
could use the elapsed time attribute to form temporal features. 
To reflect this difference, we use the L2 regularizer rather 
than the exclusive group Lasso regularizer for the input 
vector weight matrix elements linking to the elapsed time 
attribute in each component network.

 
 
 

 

 

 
 
 

Figure 3. A multi-component stacked LSTM network with K components and two recurrent layers. 
 

The above discussion focuses on LSTM with one recurrent 
layer. Our method also applies to stacked LSTM with 
multiple recurrent hidden layers stacked on top of each other 
[72]. Having multiple recurrent hidden layers often helps an 
RNN learn better features [51]. Figure 3 illustrates a multi-
component stacked LSTM network. It has multiple 
component networks, each of which is a stacked LSTM 
network using a subset of longitudinal attributes. In each 
component network and at each recurrent layer above the 
first, the input vector at time step t incorporates the hidden 

state vector elements outputted by the layer below at t. If 
nothing else is included in the input vector, we use the same 
method mentioned above to figure out which component 
network uses which longitudinal attributes. Otherwise, if the 
input vector at each recurrent layer above the first one at t 
also includes the input vector elements at the first layer at t, 
we first use an MCLSTM network with one recurrent layer 
and the method mentioned above to figure out which 
component network uses which longitudinal attributes. Then 
we use this information to form the multi-component stacked 
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LSTM network and train it. In this way, we ensure that in 
each component network, every recurrent layer links to the 
same subset of longitudinal attributes. 

In Figure 3, nq denotes the number of longitudinal 
attributes used in the q-th (1≤q≤K) component network. For 
each element xq,t,j (1≤j≤ni) of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑ , the first, 
second, and third subscripts indicate the component number, 
time step, and element number in the component, 
respectively. For both the memory cell vector 𝑐𝑞,𝑙,𝑡ሬሬሬሬሬሬ⃑  and the 

hidden state vector ℎ𝑞,𝑙,𝑡ሬሬሬሬሬሬ⃑ , the first, second, and third 
subscripts indicate the component number, layer number, and 
time step, respectively. 
 
3.2 Visualizing the memory cell vector elements in a 
trained MCLSTM network to extract predictive and 
clinically meaningful temporal features 

In LSTM, each memory cell vector element depicts some 
learned temporal feature(s). After using the training instances 
to train the MCLSTM network, we visualize its memory cell 
vector elements to extract clinically meaningful temporal 
features. These features are likely to be predictive, as LSTM 
frequently produces more accurate clinical predictive models 
than other machine learning algorithms [22-25]. 

We design the visualization method based on three 
observations. First, LSTM has been shown to use high 
positive and low negative values of its memory cell vector 
elements to express information [73]. Second, Kale et al. [31, 
74-76] showed one can use training instances with the 
highest activations of a neuron in a deep neural network to 
identify clinically meaningful features. A memory cell vector 
element is a neuron. Third, intuitively, an informative 
sequence of input vectors in a training instance contains one 
or more segments, each depicting a temporal feature. 

Taking these observations as insights, we proceed in four 
steps to extract zero or more clinically meaningful temporal 
features from each memory cell vector element at the last 
time step of the MCLSTM network. In Step 1, we find the 
top and bottom few training instances with the highest 
positive and lowest negative values in the memory cell vector 
element, respectively. These training instances are likely to 
contain information of useful temporal features. In Step 2, we 
identify one or more so-called effective segments of the input 
vector sequence in each of these training instances. Each 
effective segment tends to reflect a useful temporal feature. 
In Step 3, we partition all identified effective segments into 
several clusters. In Step 4, we visualize each cluster of 
effective segments in a separate figure to extract zero or more 
clinically meaningful temporal features. By reducing the 
number of effective segments in each figure and making the 
effective segments in the same figure more homogeneous, 
clustering eases visualization and temporal feature extraction. 
The temporal features extracted from the MCLSTM network 
include all features extracted from every memory cell vector 
element at the last time step of the MCLSTM network. 

In the rest of Section 3.2, we describe each of the four steps 
one by one. Our description focuses on a single memory cell 
vector element at the last time step of the MCLSTM network. 
For this element, we find the corresponding component 
network and the longitudinal attributes used in it. Each 
temporal feature depicted by this element involves no more 
than these attributes. When mentioning an input vector, we 
always refer to an input vector of the component network 
containing only the values of these attributes. The component 
network usually uses one or a few longitudinal attributes. 
This is crucial for making our visualization method effective 
in identifying features describing temporal relationships [77]. 
Psychology studies have shown that humans can correctly 
analyze the relationship among up to four attributes [78]. The 
more complex the relationship among the attributes, the 
lower the upper limit on the number of attributes [79]. 
 
3.2.1 Step 1: Finding the top and bottom few training 
instances with the highest positive and lowest negative values 
in the memory cell vector element, respectively 

We preselect a number N as the maximum number of 
top/bottom training instances that will be obtained for each 
memory cell vector element at the last time step of the 
MCLSTM network. In Step 4, we conduct visualization to 
extract clinically meaningful temporal features. To avoid 
cluttering any given figure and creating difficulty with 
visualization, N should not be too large. To obtain enough 
signal for identifying clinically meaningful temporal 
features, N should not be too small. One possible good value 
of N is 50, as adopted in Che et al [75]. 

Consider the given memory cell vector element at the last 
time step of the MCLSTM network. Let n+ denote the 
number of training instances with positive values in the 
element. n- denotes the number of training instances with 
negative values in the element. We sort all training instances 
in descending order of the element’s value. Multiple training 
instances with the same value in the element can be put in 
any order. We find the top N+=min(N, n+) training instances 
with the highest positive values in the element [75], and 
record the lowest one τ+ of these values. In addition, we find 
the bottom N-=min(N, n-) training instances with the lowest 
negative values in the element [75], and record the highest 
one τ- of these values. In Step 2, we will use τ+ and τ- to 
identify the effective segments of the input vector sequences 
in the top N+ and bottom N- training instances, respectively. 

Intuitively, the top N+ training instances include one set of 
temporal features. The bottom N- training instances include 
another set of temporal features. In Step 4, we will visualize 
the effective segments of the input vector sequences in the 
top N+ and bottom N- training instances to identify clinically 
meaningful features in the first and second sets, respectively. 

Previously, for image data, researchers have used the 
activation maximization method to explain the meaning of 
each neuron in a deep neural network [80]. For each neuron 
in the network, that method creates a synthetic data instance 
maximizing the neuron’s output, and uses the data instance 
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to explain the neuron’s meaning. That method does not serve 
our purpose of extracting temporal features from longitudinal 
data. For instance, consider a sequence of results of a specific 
lab test obtained over time. Suppose the actual temporal 
feature depicted by the memory cell vector element is 
whether the lab test result is above a fixed threshold value 
≥40% of the time. The synthetic data instance maximizing 
the element’s value is a sequence of lab test results all above 
the threshold value. From this data instance, we cannot 
deduce the feature’s property of being ≥40% of the time. In 
comparison, training instances are real and usually do not 
push the element to have extreme values. After viewing 
multiple training instances satisfying this property in various 
ways, such as one being 40% of the time and another being 
50% of the time, we are more likely to identify this property. 
 
3.2.2 Step 2: Identifying one or more effective segments of 
the input vector sequence in each training instance found in 
Step 1 

Consider the given memory cell vector element at the last 
time step of the MCLSTM network and a training instance 
found in Step 1. The training instance has a sequence of input 
vectors containing the information of some useful temporal 
features. Often, the sequence has one or more uninformative 
segments, which are unrelated to these features and do not 
contribute to making the element’s value high positive or low 
negative. Displaying these segments during visualization 
will clutter the figure and make it harder to identify these 
features. To address this issue, for each training instance 
found in Step 1, we identify one or more effective segments 
of its input vector sequence. Each effective segment tends to 
reflect a useful temporal feature. During visualization in Step 
4, we display only the effective segments rather than the 
whole input vector sequence. 

In the following, we show how to identify the effective 
segments for a top training instance found in Step 1. The case 
with identifying the effective segments for a bottom training 
instance found in Step 1 can be handled similarly. 

 
 
 
 
 
 
 
 
 
Figure 4. Identifying the effective segments of the input 

vector sequence in a top training instance. 
 
Recall that in Step 1, we find the top N+ training instances 

with the highest positive values in the memory cell vector 
element at the last time step of the component network, and 
record the lowest one τ+ of these values. As shown in Figure 
4, for each top training instance, the element’s value evolves 
over time and becomes ≥τ+ at the last time step of the training 

instance’s input vector sequence. τ+ can be regarded as a 
threshold value found in a data-driven way. When the 
element’s value becomes ≥τ+ at a specific time step, it 
indicates with high likelihood that a useful temporal feature 
appears there. We use this information to find the effective 
segment at or around the time step. In Figure 4, each dashed 
ellipse denotes an effective segment. The horizontal dotted 
line depicts τ+. 

Consider a given top training instance found in Step 1. We 
define a segment of its input vector sequence to be effective 
if the segment satisfies two properties simultaneously. 
1) Property 1: If we input the segment into the component 

network, the memory cell vector element at the segment’s 
last time step will produce a value ≥τ+. Typically, the 
segment and input vector sequence start at different time 
steps. If we input the segment vs. the input vector 
sequence into the component network, we get a different 
value in the memory cell vector element at the segment’s 
last time step. 

2) Property 2: The segment is as short as possible. This 
eases identifying temporal features via visualization in 
Step 4. It is easier to recognize a temporal feature from a 
short segment than from a long segment. 

Both properties combined make an effective segment the 
shortest segment that holds the signal of a useful temporal 
feature. 

The top training instance’s input vector sequence contains 
one or more effective segments. Each segment is a section of 
the sequence between a starting time step tstart and an ending 
time step tend. We use a sequential search algorithm to find 
the effective segments one by one. Our high-level idea is to 
start from the sequence’s last time step and keep going 
backwards. For each effective segment, we find first its 
ending and then its starting time step. Then we move on to 
pinpoint the next effective segment. To make our search 
algorithm easy to understand, we describe it using the case 
shown in Figure 4 as an example. 

We start from the last time step of the top training 
instance’s input vector sequence. Here, the memory cell 
vector element’s value is ≥τ+. We go backwards, one time 
step at a time. If the element’s value increases, we go back 
one more time step. We keep going backwards until the 
element’s value will decrease if we go back one more time 
step. This is the first effective segment’s ending time step tend, 
at which the element’s value reaches a local maximum ≥τ+. 
In Figure 4, tend is t5. To avoid violating Property 2, the 
section between t5 and the last time step is excluded from the 
first effective segment. Then we continue to go backwards, 
one time step at a time. For each time step t that we reach, we 
check whether the segment between t and tend satisfies 
Property 1. If so, this segment also satisfies Property 2 and is 
the first effective one, with t being its starting time step tstart. 
Otherwise, if this segment violates Property 1, we keep going 
backwards until we find a time step, at which Property 1 is 
satisfied. Such a time step must exist. In the worst case, we 
reach the first time step of the training instance’s input vector 
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sequence. The segment between the first time step and tend 
always satisfies Property 1. In Figure 4, tstart is t4. The 
segment between time steps t3 and t5 satisfies Property 1, but 
not Property 2, and thus is not an effective one. 

After finding the first effective segment’s starting time 
step, we go back one time step to start searching for the 
second effective segment. In Figure 4, this refers to starting 
from time step t3. We keep going backwards until reaching a 
time step t', at which the memory cell vector element’s value 
is ≥τ+. In Figure 4, this time step is t2. If we keep going 
backwards and still cannot find t' when reaching the first time 
step of the training instance’s input vector sequence, the 
second effective segment does not exist. Otherwise, if we can 
find t', we repeat the procedure mentioned in the above 
paragraph to find first the ending and then the starting time 
step of the second effective segment. For the same reason 
explained in the above paragraph, these two time steps must 
exist. In Figure 4, the second effective segment is the section 
between time steps t1 and t2. After finding the second 
effective segment, we move on to pinpoint the third effective 
segment, and so on. We keep iterating until reaching the first 
time step of the training instance’s input vector sequence. 
Our search process ends there. 

 
3.2.3 Step 3: Partitioning all identified effective segments 
into several clusters 

Consider the given memory cell vector element at the last 
time step of the MCLSTM network. In Step 1, we find its top 
N+ and bottom N- training instances. After identifying all 
effective segments in these training instances, we partition 
the segments into multiple clusters to ease visualization in 
Step 4. 

We preselect a number k to set the number of clusters. 
There are two groups of effective segments, one obtained 
from the top N+ training instances and the other from the 
bottom N- training instances. These two groups tend to reflect 
different temporal features. For either group, we partition the 
effective segments in it into k clusters, hoping each will 
reflect a distinct set of temporal features. The memory cell 
vector element usually depicts no more than a few temporal 
features. Accordingly, k should be a small number like three. 
For each group of effective segments, we can test different k 
values to see which one works the best. 

Many clustering algorithms for time series data exist [81]. 
Each relies on a distance measure for temporal sequences. In 
the following, we describe our distance measure first, and 
then present the clustering algorithm used to partition 
effective segments into clusters. 
 
Distance measure for temporal sequences 

We use the multivariate dynamic time warping distance 
measure, which Kale et al. [82] proposed as an extension of 
the dynamic time warping technique [83]. Dynamic time 
warping is widely used for measuring similarity between two 
temporal sequences, which can be multi-dimensional and 
have different lengths and sampling intervals. As shown in 

Figure 5, dynamic time warping allows time shifting and 
matches similar shapes even in the presence of a time-phase 
difference. In Figure 5, each dash-dotted line links two 
aligned points, one from each temporal sequence. 

 
 
 
 
 
 
 

Figure 5. Time alignment of two sequences. 
 
Consider two temporal sequences 𝑌 ൌ ሺ𝑦ଵሬሬሬ⃑ , 𝑦ଶሬሬሬሬ⃑ , … , 𝑦భሬሬሬሬሬሬሬ⃑ ሻ 

and 𝑍 ൌ ሺ𝑧ଵሬሬሬ⃑ , 𝑧ଶሬሬሬ⃑ , … , 𝑧మሬሬሬሬሬሬ⃑ ሻ . We use a distance measure 
𝑑ሺ𝑦ሬሬሬ⃑ , 𝑧௦ሬሬሬ⃑ ሻ, such as the Euclidean one, between each pair of 
elements 𝑦ሬሬሬ⃑  (1≤r≤m1) and 𝑧௦ሬሬሬ⃑  (1≤s≤m2), one from each 
sequence. A warping path p = {(r1, s1), (r2, s2), …, (r|p|, s|p|)} 
of length |p| aligns Y and Z via linking 𝑦ണሬሬሬሬ⃑  to 𝑧௦ണሬሬሬሬ⃑  (1≤j≤|p|). It 

satisfies two conditions: 
(1) r1=s1=1, r|p|=m1, and s|p|=m2. This condition makes Y’s 

first element align with Z’s first element, and Y’s last 
element align with Z’s last element. 

(2) For each j between 1 and |p|-1, (rj+1-rj, sj+1-sj) is (0, 1), 
(1, 0), or (1, 1). Consequently, rj≤rj+1 and sj≤sj+1. This 
condition makes each element of Y align with one 
element of Z, and vice versa. Also, only forward 
movements along Y and Z are allowed. 

The total distance between Y and Z along p is the sum of the 
distance between each pair of elements aligned via p: 
𝑑ሺ𝑌, 𝑍ሻ ൌ ∑ 𝑑ሺ𝑦ണሬሬሬሬ⃑ , 𝑧௦ണሬሬሬሬ⃑ ሻ||

ୀଵ . The dynamic time warping 

distance between Y and Z is the minimum total distance 
across all possible warping paths P(Y, Z) between Y and Z: 
𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ ൌ min

∈ሺ,ሻ
𝑑ሺ𝑌, 𝑍ሻ. 

Other things being equal, the dynamic time warping 
distance increases as temporal sequences become longer. To 
make the distance comparable across sequences of different 
lengths, Kale et al. [82] proposed using the multivariate 
dynamic time warping distance. This distance between 
sequences Y and Z is computed as their dynamic time 
warping distance divided by their optimal warping path’s 
length: 𝑀𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ ൌ 𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ/|𝑝∗| ൌ 𝑑∗ሺ𝑌, 𝑍ሻ/|𝑝∗|. 
Here, |p*| is the length of 𝑝∗ ൌ argmin

∈ሺ,ሻ
𝑑ሺ𝑌, 𝑍ሻ. 

Dynamic time warping is designed for temporal sequences 
sampled at equidistant points in time [84]. Yet, this is often 
not the case with medical data. For medical data that violate 
this property, we can compute the multivariate dynamic time 
warping distance in one of several ways. One way is to ignore 
the equidistance constraint and do the computation as 
presented above. Another way is to use the weighting 
mechanism in Siirtola et al. [84] to prevent areas of high 
point density from dominating the distance computation. 
This mechanism gives smaller and larger weights to points 

time 

sequence 1

sequence 2
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with near and distant neighbors in the temporal sequence, 
respectively. 

Differing longitudinal attributes’ values can be on different 
orders of magnitude. If this occurs, one attribute could 
dominate the distance computation for multi-dimensional 
temporal sequences. This is undesirable. To address this 
issue, before computing distances, we first normalize each 
attribute’s values so that the values of different attributes 
become comparable with each other. More specifically, for 
each attribute, we compute its mean and standard deviation 
across all of its values in all training instances. For each value 
of the attribute, we compute its normalized value by 
subtracting the mean and then dividing by the standard 
deviation. During visualization in Step 4, we show the 
original rather than normalized values to make the presented 
values easier to understand. 

Our distance computation approach considers not only 
shape, but also amplitude that matters. For instance, for 
making predictions, a lab test result above its normal range 
often gives a different signal from one within its normal 
range. Thus, we do not use the value normalization approach 
that Paparrizos et al. [85] adopted for computing shape-based 
distances for temporal sequences. That approach ignores 
amplitude and computes one mean and one standard 
deviation per temporal sequence to normalize the values in it. 
 
Clustering algorithm 

We use the k-medoids clustering algorithm [86] based on 
the multivariate dynamic time warping distance measure to 
partition each group of effective segments into k clusters. A 
medoid is a representative object of a cluster with the highest 
average similarity to all objects in the cluster. The k-medoids 
algorithm is inefficient for clustering many objects [86]. Yet, 
this is not an issue in our case. For the given memory cell 
vector element, we find a modest number of top and bottom 
training instances, and need to cluster only a moderate 
number of effective segments. 

We do not use the k-means clustering algorithm that 
requires computing the average of multiple objects. For 
multiple effective segments of different lengths, it is difficult 
to compute their average properly. Besides the k-medoids 
algorithm, other clustering algorithms based on dynamic 
time warping also exist [87] and could be used for our 
clustering purpose. 
 
3.2.4 Step 4: Visualizing each cluster of effective segments in 
a separate figure to extract zero or more clinically 
meaningful temporal features 

We visualize each cluster of effective segments obtained 
in Step 3 one by one. For each cluster, we show the effective 
segments in it in a figure to extract zero or more clinically 
meaningful temporal features. The figure includes one panel 
per longitudinal attribute used in the cluster. All panels are 
aligned by time and stacked on top of each other, as shown 
in Figure 6, with each rounded rectangle denoting a panel. 

 

 
 
 
 
 
 
 
 
 
 

Figure 6. Visualizing a cluster of three effective segments 
involving two longitudinal attributes. 

 
Each panel shows the value sequence of its linked 

longitudinal attribute in every effective segment in the 
cluster. An effective segment has one value sequence per 
longitudinal attribute used in the cluster. If the cluster uses 
more than one attribute, for each effective segment, we use a 
dash-dotted polyline to link the first element of each of the 
segment’s attribute value sequences across all panels. In this 
way, one can easily know that these sequences belong to the 
same segment. Each effective segment comes from a training 
instance. To ease visualization, we use different colors to 
mark differing training instances in the figure. 

Usually, a clinician and a data scientist collaborate to build 
a clinical predictive model. They view the figure to identify 
zero or more clinically meaningful temporal features. Each 
feature involves one or more longitudinal attributes used in 
the cluster, and is reflected by one or more attribute value 
sequences in the figure. It is easier to recognize the feature 
by viewing the sequences than to think of it on one’s own. 
For each identified feature, the clinician and the data scientist 
use their domain knowledge to jointly arrive at an exact 
mathematical definition of an extracted feature. Often, the 
extracted feature reflects the trend more precisely and 
performs better than the raw one learned by the MCLSTM 
network. 

Marlin et al. [88] proposed identifying temporal patterns 
by grouping numeric physiologic time series into clusters. 
All time series start and end at the same time steps. For every 
cluster, a distinct panel shows each longitudinal attribute’s 
mean and standard deviation over time. That approach does 
not serve our purpose. In our case, each effective segment 
can start and end at different time steps. Non-numeric 
attributes like categorical ones can be part of temporal 
features and need to be shown along with numeric ones. Also, 
the same feature can appear at different time steps in differing 
effective segments. If we show each numeric attribute’s 
mean and standard deviation over time instead of individual 
effective segments, we are likely to miss such features. 

Wang et al. [89] proposed identifying temporal patterns by 
visualizing multiple patients’ longitudinal medical data in the 
same figure. The figure includes one panel per patient. All 
panels are aligned by time and stacked on top of each other. 
Each panel shows multiple value sequences of a patient, one 
for each longitudinal attribute. For the same attribute, 

time 

at
tr

ib
ut

e 
2 

time at
tr

ib
ut

e 
1 



15 

 

different patients’ value sequences appear in differing panels. 
This makes it harder to identify temporal patterns, 
particularly if the number of patients is not small [90]. In 
comparison, for the same attribute, our visualization 
approach puts multiple patients’ value sequences in the same 
panel. 
 
Handling categorical attributes 

A neural network takes only numeric inputs. To use LSTM, 
one converts each categorical longitudinal attribute into one 
or more numeric attributes using one hot encoding. During 
visualization, we show the original categorical attribute 
values instead of the converted numeric ones to make the 
presentation more succinct and easier to understand. The 
figure includes a panel for each categorical attribute linking 
to the cluster of effective segments. In the panel, each distinct 
value of the attribute appears on a separate row, as illustrated 
in Figure 7. 

 
 
 
 

 
 
Figure 7. Displaying a sequence of values of the visit type 

attribute. 
 
Handling interval attributes 

Medical data often include interval attributes, such as the 
medication use period and hospitalization period. A common 
way to use interval attributes in LSTM is to convert each 
interval into two attribute values: its starting time step and its 
duration. During visualization, we show the original interval 
instead of the converted attribute values to make the 
presentation easier to understand. Recall that if the cluster of 
effective segments uses more than one attribute, for each 
effective segment, we use a dash-dotted polyline to link the 
first element of each of the segment’s attribute value 
sequences across all panels. For each interval attribute used 
in the segment, the dash-dotted polyline links to the starting 
point of the first interval in the attribute’s value sequence. To 
ease visualization, we put the intervals from distinct data 
instances on different and adjacent horizontal lines, with one 
line per data instance, as illustrated in Figure 8. 

 
 

 
 
 
 
 

Figure 8. Displaying the interval sequences from three 
patients’ hospitalization period attribute. 

 
Handling missing values 

Neural network does not take any missing input value. To 
use LSTM, one needs to fill in every missing value first. One 
way to do this is as follows. Consider a value sequence of an 
attribute. If the value sequence is completely missing, we 
impute a clinically normal value defined by the clinician [23, 
31]. Otherwise, for each missing value before the first 
occurrence or after the last occurrence of a non-missing one, 
we fill in the missing value with the non-missing one [91]. 
For each missing value between two non-missing ones, we 
linearly interpolate them to fill in the missing value. Another 
way to handle missing values for an attribute is to use a 
binary indicator for whether a value of it is missing, compute 
the amount of time since its last observation, and decay its 
value over time toward its empirical mean value rather than 
use its last observed value [57, 92]. 

During visualization, no filled-in value is shown. This 
makes the figure consistent with the raw data to help ensure 
genuine temporal features are identified. 

 
Avoiding using an excessive number of longitudinal 
attributes 

In LSTM, we sometimes embed each categorical attribute 
value into a vector representation to reduce the input vector 
dimensionality. This makes model training more efficient 
and effective [22]. In MCLSTM, no value embedding is 
used. Instead, each input vector element is a longitudinal 
attribute’s value. This is essential for making the identified 
temporal features easy to understand. To make model 
training efficient and effective, we need to avoid using an 
excessive number of longitudinal attributes. This requires 
handling two cases. 

First, consider three longitudinal attributes: disease, 
procedure, and drug. Each attribute is categorical with many 
possible values. If no value embedding is used, by default the 
attribute is converted into many numeric attributes, one per 
possible value, using one hot encoding. This explodes the 
input vector dimensionality and is undesirable. To address 
this issue, we can proceed in one or more of the following 
ways: 
(1) We use grouper models like the Diagnostic Cost Groups 

(DCG) system to group diseases, procedures, and drugs 
and reduce the numbers of their possible values [93, 
Chapter 5, 94]. 

(2) For each of the three attributes, we use a few of its most 
common values and ignore the others. 

(3) For each of the three attributes, we use a few values of it 
deemed most relevant to the modeling problem based on 
medical knowledge, and ignore the others. 

(4) Rajkomar et al. [22] provided a method using LSTM 
with value embedding and an attribution mechanism to 
rank categorical attribute values. For each of the three 
attributes, we use the top few values ranked by this 
method in MCLSTM and ignore the others. 

Second, many lab tests exist. We will have an excessive 
number of longitudinal attributes, if we use one for each lab 

time 

vi
si

t t
yp

e 

outpatient 
emergency department 

inpatient 

time ho
sp

ita
liz

at
io

n 
pe

ri
od

 



16 

 

test’s values. This is undesirable. To address this issue, we 
can proceed in one or more of the following ways: 
(1) Pivovarov et al. [95] identified 70 common lab tests of 

interest to primary care and internal medicine. We use 
these lab tests and ignore the others. 

(2) We use a few lab tests deemed most relevant to the 
modeling problem based on medical knowledge, and 
ignore the others. 

(3) Rajkomar et al. [22] converted numeric attributes to 
categorical ones via discretization, and provided a 
method using LSTM with value embedding and an 
attribution mechanism to compute a weight for each 
categorical attribute value. For a categorical attribute 
with multiple possible values, we compute its weight as 
these values’ maximum weight reflecting its importance. 
We use the top few lab tests with the highest weights in 
MCLSTM and ignore the others. This is a form of 
feature selection for longitudinal attributes. 

 
3.3 Several ways of using the extracted temporal features 
and our feature extraction method’s advantages 

The extracted temporal features are clinically meaningful 
and tend to be predictive. We combine them with expert-
engineered features to build machine learning, statistical, or 
rule-based predictive models. For machine learning models, 
this can improve model accuracy [31], as many extracted 
features reflect trends more precisely and can perform better 
than the raw ones learned by the MCLSTM network. Also, 
we can use the method described in Section 4 to 
automatically explain the models’ prediction results. 

Wang et al. [89] showed properly visualizing temporal 
sequences in medical data could help us spot data quality 
issues, such as an impossible order of events. When 
visualizing each cluster of effective segments, we could 
identify some temporal features that make no sense and 
reflect the underlying data quality issues. By fixing these 
issues and enhancing data quality, we can boost model 
accuracy and improve other applications using the same data 
set. 

Using our feature extraction method can reduce the effort 
needed to build usable predictive models for the current 
modeling task. Moreover, Gupta et al. [32] showed that many 
features an RNN learns from a medical data set reflect 
general properties of the medical attributes involved in the 
features, and can be useful for other modeling tasks. Using 
the features extracted by our method to form a temporal 
feature library to facilitate feature reuse, we can reduce the 
effort needed to build predictive models for other modeling 
tasks. 
 
3.4 Efficiently automating MCLSTM model selection 

Each machine learning algorithm has two types of 
parameters: normal parameters automatically tuned during 
model training, and hyper-parameters that must be set before 
model training. Before training a MCLSTM network, we 
need to set the values of multiple hyper-parameters, such as 

the number of component networks in it and the learning rate. 
These values can affect model accuracy greatly, e.g., by two 
or more times [96]. The optimal hyper-parameter value 
combination is found via an iterative model selection process. 
In each iteration, we use a combination to train a model. Its 
accuracy is used to guide the selection of the combination 
that will be tested in the next iteration. 
 
3.4.1 The need for and the state of the art of automatic 
machine learning model selection 

Machine learning model selection, if done manually, is 
labor intensive and time-consuming. Frequently, several 
hundred to several thousand iterations are needed to find a 
good hyper-parameter value combination [96, 97]. On a data 
set of non-trivial size and particularly for deep neural 
network, testing a combination in one iteration often takes 
several hours or longer [98]. To cut the human labor needed 
for model selection, researchers have developed multiple 
automatic machine learning model selection methods [68]. 
For certain machine learning algorithms including deep 
neural network, some of these methods can find better hyper-
parameter value combinations than manual search by human 
experts [68, 99]. 

Recently, Google set up an automatic model selection 
service called Google Vizier [99]. It has become the de facto 
model selection engine within Google. Using it to conduct 
model selection, Google researchers [22] built clinical LSTM 
models that greatly improved prediction accuracy for three 
outcomes. The medical data set used there is of moderate size 
and has 216,221 data instances. As mentioned in the paper 
posted at https://arxiv.org/pdf/1801.07860v1.pdf, using 
Google Vizier to perform automatic model selection on the 
data set consumed >201,000 GPU (graphics processing unit) 
hours. This is beyond the computational resources available 
to many healthcare systems and would exceed their budgets 
quickly. When standard techniques are used, the time needed 
for automatic model selection usually increases superlinearly 
with the data set size. On a medical data set larger than the 
above one, using Google Vizier to perform automatic model 
selection would consume more computational resources and 
a higher cost, and quickly reach a point that almost no 
healthcare system could afford. In fact, this could even 
become a problem for Google, which has a lot of resources. 
To run its business, Google regularly needs to build 
predictive models on large data sets. As mentioned in the 
Google Vizier paper [99], using Google Vizier to perform 
automatic model selection on a large data set often takes 
months or years. As a result, for some mission critical 
applications, Google has to deploy a model without fully 
tuning it, and then keep tuning it over several years. Using 
suboptimal models leads to degraded outcomes. In our case, 
the situation could become even worse, if we iteratively train 
the MCLSTM network and extract features in multiple 
rounds, as each round requires automatic MCLSTM model 
selection. 
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3.4.2 Our prior work on efficiently automating machine 
learning model selection 

To expedite automatic machine learning model selection, 
we recently developed a progressive sampling-based 
Bayesian optimization method for it. We showed that 
depending on the data set, our method can speed up the 
search process by one to two orders of magnitude [97, 100, 
101]. Our idea is to conduct progressive sampling [102], 
filtering, and fine-tuning to quickly shrink the search space. 
We use a random sample of the data set termed the training 
sample to train models. We do fast trials on a small training 
sample to drop unpromising hyper-parameter value 
combinations early, keeping resources to fine-tune promising 
ones. We test multiple combinations. For each combination, 
we test it by training a model using it and the training sample. 
A combination is promising if the trained model reaches 
accuracy above an initial threshold. We then raise the 
threshold, expand the training sample, test and adjust 
combinations on it, and reduce the search space several 
times. In the last round, we use the full data set to find a good 
combination. 

For several reasons described below, if we directly apply 
our progressive sampling-based Bayesian optimization 
method to automate MCLSTM model selection, we may not 
obtain the desired search efficiency and search result quality. 
Instead, for it to better automate MCLSTM model selection, 
we use four techniques to improve our method. The first 
technique is specific to deep neural network. The second 
technique is specific to LSTM. The third and fourth 
techniques apply to general machine learning algorithms. 
 
3.4.3 Technique 1: Performing early stopping when testing a 
hyper-parameter value combination 

To train a machine learning model, we often need to 
process each training instance multiple times. Our 
progressive sampling-based Bayesian optimization method 
is designed for the case that satisfies two conditions 
concurrently. First, it is fast to process a training instance 
once during model training. This ensures a hyper-parameter 
value combination can be tested on a small training sample 
quickly. Second, using a relatively small training sample, we 
can estimate a combination’s quality with reasonable 
accuracy. This reduces the likelihood that a high-quality 
combination is identified as unpromising and dropped at an 
early stage of the search process. 

Neither condition is satisfied on deep neural network. 
When training a deep neural network, it often takes a non-
trivial amount of time to process a training instance once. As 
a result, quite some time is needed to test a hyper-parameter 
value combination on even a small training sample. This 
degrades search efficiency. Moreover, deep neural network 
is data hungry. To reasonably estimate a combination’s 
quality for a deep neural network, a large training set is 
needed. If we start from using a small training sample to 
identify unpromising combinations, we are likely to drop 
many high-quality combinations erroneously in the first few 

rounds of the search process. This can degrade search result 
quality. 

To address these issues, we adopt an early stopping 
technique for automating deep neural network model 
selection. Instead of starting from a small training sample, 
the search process starts from a relatively large training 
sample. A neural network is trained in epochs. As a model is 
trained for more epochs, its accuracy generally improves. In 
the first few rounds of the search process, when testing a 
hyper-parameter value combination, we train the model for a 
few rather than for the full number of epochs. In this way, 
without spending too much time on the test, we can estimate 
the combination’s quality with reasonable accuracy. This 
type of early stopping technique has been used previously for 
expediting automatic machine learning model selection [98, 
99], but not in combination with progressive sampling. 
 
3.4.4 Technique 2: Tuning the learning rate hyper-parameter 
before tuning the other hyper-parameters in depth 

Greff et al. [103] showed that LSTM’s learning rate hyper-
parameter has a special property. For each data set, there is a 
large interval, in which the learning rate offers good model 
accuracy with little variation. The LSTM model can be 
trained relatively quickly when the learning rate is at the high 
end of the interval. When searching for a good learning rate, 
we can start from a high value like one and keep dividing it 
by ten until model accuracy no longer improves. 

Based on this insight, we expedite automatic LSTM model 
selection by tuning the learning rate before tuning the other 
hyper-parameters in detail. We proceed in four steps. In step 
one, we use a relatively large training sample to test a few 
random hyper-parameter combinations, and select the one 
reaching the highest model accuracy. Intuitively, this 
combination would have reasonable and neither optimal nor 
terrible performance. In step two, for all hyper-parameters 
excluding the learning rate, we fix their values according to 
this combination and use the training sample to tune the 
learning rate. We start from a high learning rate like one and 
keep dividing it by ten until model accuracy no longer 
improves. In step three, we fix the learning rate at the value 
found in step two, and use our progressive sampling-based 
Bayesian optimization method to tune all of the other hyper-
parameters. In step four, if desired, we perform some final 
fine-tuning of all hyper-parameters simultaneously without 
significantly changing the value of any of them. 

 
3.4.5 Technique 3: Conducting stable Bayesian optimization 

Machine learning model selection aims to find an optimal 
hyper-parameter value combination in the hyper-parameter 
space. As mentioned in Nguyen et al. [104], when the 
training or validation set is small, spurious peaks often 
appear on the performance surface defined over all possible 
combinations. These peaks are narrow and scattered 
randomly in low-performance regions. In this case, the 
search process of automatic machine learning model 
selection frequently stops at a spurious peak instead of a 
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more stable one. The final model built there has suboptimal 
accuracy when deployed in the real world. 

To prevent the search process from stopping at a spurious 
peak, Nguyen et al. [104] proposed a stable Bayesian 
optimization method for automating machine learning model 
selection. Bayesian optimization uses a regression model to 
predict a machine learning model’s accuracy based on the 
hyper-parameter value combination, and an acquisition 
function to select the combination to test in the next iteration. 
The regression model is usually a random forest [96] or a 
Gaussian process [104]. The former has been shown to 
outperform the latter for making this prediction [105]. 

The main idea of the stable Bayesian optimization method 
[104] is to measure a hyper-parameter value combination’s 
performance stability and include the measure in the 
acquisition function. The method is designed for the case in 
which the regression model is a Gaussian process, and each 
step of the search process uses the whole data set. The 
technique used in that method does not directly apply to our 
progressive sampling-based Bayesian optimization method 
[97], which uses a random forest as the regression model, and 
a gradually expanded training sample over rounds of the 
search process. 

As our progressive sampling-based Bayesian optimization 
method starts from a moderate-sized training sample, we 
could run into spurious peaks in the first few rounds of the 
search process and get stuck at one of these peaks. To prevent 
this undesirable situation, we include a performance stability 
measure for hyper-parameter value combinations in the 
acquisition function. 

More specifically, our progressive sampling-based 
Bayesian optimization method uses a random sample of the 
data set termed the validation sample to evaluate trained 
models. For each hyper-parameter value combination chosen 
for testing, our original method [97] uses it to train a model 
and records the model’s accuracy on the validation sample as 
its accuracy measure without considering its performance 
stability. To measure a combination’s performance stability, 
we partition the validation sample into multiple subsets 
before the search process starts. For a large data set, we use 
a validation sample larger than that used in our paper [97] to 
ensure each subset is of reasonable size. For each 
combination chosen for testing, we record the trained 
model’s accuracy on each subset and compute the variance 
of these accuracies. A large variance indicates the 
combination has unstable performance. We include this 
variance as the combination’s performance stability measure 
in the acquisition function. 

In our progressive sampling-based Bayesian optimization 
method, the training sample expands over rounds. To save 
time, in each round that is neither the first nor the last one, 
for each hyper-parameter value combination that looks 
unpromising in the previous round, we do not use it and the 
expanded training sample to train a model. Instead, we 
multiply its accuracy measure from the previous round by a 
computed factor as its estimated accuracy measure for the 

current round [97]. Our rationale is that in the search process, 
which new combinations are chosen for testing in each round 
tends to be impacted mostly by the promising combinations’ 
accuracy measures [105]. Using the same rationale, for each 
unpromising combination, we can handle its performance 
stability measure over rounds in a similar way. 
 
3.4.6 Technique 4: Normalizing the data before starting the 
search process 

Often, we can greatly improve a predictive model’s 
accuracy by normalizing the data before training the model. 
To do this, in each round of the search process, we could take 
a sample of the data set, normalize it, and use it to test and 
adjust hyper-parameter value combinations. Yet, for each 
attribute, its mean and standard deviation in the sample are 
different from those in the whole data set. This will lead to 
imprecise accuracy estimates of the trained models and 
subsequently degrade search result quality. To avoid this 
problem, before the search process starts, we normalize the 
entire data set that will be used for training and validation in 
any way. During the search process, we obtain training and 
validation samples from the normalized data set. Besides 
boosting search result quality, this also improves search 
efficiency, as data need to be normalized only once during 
the search process. 

 
3.5 Additional details 

For each longitudinal attribute, one could train an LSTM 
network using only that attribute without the others, and then 
extract temporal features from the network’s memory cell 
vector elements. But, this is unlikely to produce high-quality 
features. A typical attribute has limited predictive power by 
itself. An LSTM network built using only this attribute 
without the others tends to have low prediction accuracy. 

Once developed, chronic diseases rarely disappear and 
usually have a longer lasting impact on future visits than 
acute diseases. When each input vector includes one patient 
visit’s information, Bai et al. [46, 62] improved LSTM 
prediction accuracy by learning different time decay factors 
for differing diseases to reflect this. We can make this more 
explicit to help LSTM remember long-span history and 
further boost prediction accuracy. For each common chronic 
disease, researchers have developed some phenotyping 
algorithms using medical data to detect whether a patient has 
this disease [64-66, 106, 107]. After spotting that a patient 
has a chronic disease at a specific time step, we add this 
disease’s diagnosis information into the input vector at each 
subsequent time step for the patient, regardless of whether 
this diagnosis is recorded at that time step. 

For our temporal feature extraction method to work, we 
rely on three properties of LSTM. First, LSTM has memory 
cell vectors, whose elements depict the learned temporal 
features. Second, the memory cell vector 𝑐௧ሬሬሬ⃑  at time step t is a 
function of the input vector 𝑥௧ሬሬሬ⃑ , 𝑐௧ିଵሬሬሬሬሬሬሬ⃑ , and the hidden state 
vector ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ . Third, ℎ௧
ሬሬሬ⃑  is a function of 𝑥௧ሬሬሬ⃑ , 𝑐௧ିଵሬሬሬሬሬሬሬ⃑ , and ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ . 
Besides LSTM, several other types of RNN like those given 
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in Zoph et al. [108] also have these three properties. These 
RNNs can outperform LSTM for certain modeling tasks. We 
can also apply our method to these RNNs to extract 
predictive and clinically meaningful temporal features from 
medical data for predictive modeling. 

 
4. Automatically Explaining Machine Learning 
Prediction Results 

In this section, we outline a method of using the extracted 
temporal features to automatically explain machine learning 
prediction results and to suggest tailored interventions. 

Each extracted temporal feature is clinically meaningful 
and has a precise mathematical definition. Using these 
temporal features, we convert the longitudinal medical data 
to an initial table, with one column per temporal feature. 
Then we add the static attributes to form the final table. Each 
column of it has an easy-to-understand meaning. Using a 
supervised machine learning algorithm that can maximize 
prediction accuracy, we build a predictive model on the final 
table. Then we use our previously developed method [30] to 
automatically explain the model’s prediction results and 
suggest tailored interventions. 
 
4.1 Review of our prior automatic explanation method 

For tabular data, our prior method [30] can automatically 
explain any machine learning model’s prediction results with 
no accuracy loss. It works in the following way. We use the 
final table to mine class-based association rules. Each rule 
contains a feature pattern linking to a value of the outcome 
variable and is of the form: e1 AND e2 AND … AND eu  
v. The rule suggests that a patient’s outcome variable tends 
to take value v if the patient satisfies conditions e1, e2, …, and 
eu. Each condition is on a feature taking a specific value or a 
value in a given range. An example rule for predicting asthma 
patient outcome is: the patient’s body mass index kept rising 
over 12 months AND the patient had an emergency 
department visit for asthma last year  high risk. 

After the association rules are mined, a clinician examines 
them and drops those that make little or no clinical sense. For 
each remaining rule with a poor outcome on its right hand 
side, the clinician pre-compiles zero or more interventions 
addressing the reason shown by the rule. One such 
intervention for the example rule mentioned above is to 
advise the patient to lose weight with a healthy diet and 
regular exercise. For each patient who is predicted by the 
machine learning model to have a poor outcome, our method 
lists zero or more rules. Each rule gives a reason why the 
patient is predicted to have the poor outcome. Moreover, our 
method suggests tailored interventions by listing the 
interventions linking to these rules. 
 
4.2 Shortcomings of our prior automatic explanation 
method 

Our prior automatic explanation method [30] has two 
shortcomings. 
 

4.2.1 Shortcoming 1: Using an association rule mining 
method suboptimal for imbalanced data 

Consider an association rule R with value v on its right 
hand side. Among all data instances satisfying R’s left hand 
side, the percentage of data instances whose outcome 
variables have value v reflects R’s accuracy and is termed R’s 
confidence. The percentage of data instances satisfying R’s 
left hand side and whose outcome variables have value v 
reflects R’s coverage and is termed R’s support. Our prior 
automatic explanation method uses a standard approach to 
mine association rules, obtaining rules at a fixed level of 
minimum confidence (e.g., 50%) and support (e.g., 1%). Yet, 
this approach is suboptimal on imbalanced data. 

Medical data are often imbalanced, with one value of the 
outcome variable occurring much more frequently than 
another. In this case, using the same minimum support for 
different values of the outcome variable is inadequate [109]. 
If the minimum support is high, we cannot find enough 
association rules for the rare values. As a result, for many 
patients whose outcome variables are predicted by the 
machine learning model to take these values, we cannot 
explain the model’s prediction results. On the other hand, if 
the minimum support is too low, the rule mining process will 
produce too many rules as intermediate results and generate 
many overfitted rules in the end. The former makes the rule 
mining process rather slow and the computer easily run out 
of memory. The latter makes it daunting, if not infeasible, for 
the clinician to examine the many mined rules. 
 
4.2.2 Shortcoming 2: Ignoring those interventions that target 
the conditions on the mined association rules’ left hand side 
linking to good outcomes 

Our prior automatic explanation method uses only 
interventions linking to the association rules with poor 
outcomes on their right hand side. Consider a rule with a 
good outcome on its right hand side. An intervention helping 
patients fulfill the conditions on the rule’s left hand side 
could improve outcomes [53]. Yet, our prior method ignores 
such interventions and misses the related opportunities for 
improving outcomes. 
 
4.3 Improving our prior automatic explanation method 

We use two techniques to address the two shortcomings 
mentioned above and to improve our prior automatic 
explanation method [30]. 
 
4.3.1 Technique 1: Replacing support by commonality 

To address the shortcoming mentioned in Section 4.2.1, we 
use the approach developed by Paul et al. [109], instead of 
the standard approach, to mine class-based association rules. 
There, we replace support by commonality, which is a value-
specific support. Consider an association rule R with value v 
on its right hand side. R’s commonality is defined as the 
percentage of data instances satisfying R’s left hand side 
among all data instances whose outcome variables have 
value v. Intuitively, we want to keep R if the feature pattern 
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on its left hand side is frequent for v, but rare for any other 
value of the outcome variable. Based on this insight, we mine 
rules at a fixed level of minimum confidence (e.g., 50%) and 
commonality (e.g., 10%). If several mined rules have the 
same left hand side, we keep only the rule with the highest 
confidence for the value on its right hand side [110]. 

Compared to using support, using commonality has three 
advantages. First, the rule mining process produces fewer 
association rules as intermediate results. This expedites the 
process, which is important for large data sets. Second, the 
rule mining process generates fewer overfitted rules in the 
end. This reduces the time the clinician needs to examine the 
mined rules. Third, we find more rules for the rare values of 
the outcome variable. As a result, we can explain the machine 
learning model’s prediction results for more patients whose 
outcome variables are predicted by the model to take one of 
these values. 

In clinical applications, the rare values of the outcome 
variable usually denote poor outcomes and are of more 
interest to us than frequent values. The mined rules related to 
the rare values reflect common feature patterns linking to 
these values. Some patients have these values as their 
outcomes for uncommon reasons and are covered by none of 
these rules, no matter how we improve our association rule-
based automatic explanation method. Yet, by improving our 
method, we reduce the number of patients for whom we are 
unable to explain the machine learning model’s prediction 
results. 
 
4.3.2 Technique 2: Adding interventions that target the 
conditions on the mined association rules’ left hand side 
linking to good outcomes 

To address the shortcoming mentioned in Section 4.2.2, we 
add interventions beyond those used in our prior automatic 
explanation method [30]. For each kept association rule with 
a good outcome on its right hand side, the clinician pre-
compiles zero or more interventions helping patients fulfill 
some or all of the conditions on its left hand side. For some 
patients at high risk for poor outcomes, using these 
interventions could improve outcomes [53]. We consider 
these interventions when suggesting tailored interventions. 

The patients suitable for these interventions are not those 
satisfying the rule’s left hand side. This is different from the 
case of the interventions linking to the association rules with 
poor outcomes on their right hand side. Instead, for each of 
these interventions, the clinician pre-compiles one or more 
sets of conditions, under each of which a patient is regarded 
suitable for the invention. For each patient who is predicted 
by the machine learning model to have a poor outcome and 
satisfies one of these sets of conditions, we list the 
intervention as one of the suggested ones. 
 
4.4 Advantages of and a potential use case for our 
automatic explanation method for machine learning 
prediction results on longitudinal medical data 

As mentioned in the introduction, our automatic 
explanation method for machine learning prediction results 
on longitudinal medical data can enable machine learning 
models to be used in clinical practice, and help transform 
healthcare to be more proactive. At present, healthcare is 
often reactive, resulting in suboptimal outcomes and 
increased costs. Our feature extraction method can find many 
temporal features reflecting trends. By using these features 
and our automatic explanation method to identify risky 
trends early, we can proactively apply preventive 
interventions to stop further deterioration of health. The 
automatically generated explanations can help us identify 
new interventions, warn clinicians of risky patterns, and 
reduce the time clinicians need to review patient records to 
find the reasons why a specific patient is at high risk for a 
poor outcome. The automatically suggested interventions 
can reduce the likelihood of missing suitable interventions 
for a patient. All of these factors can help improve outcomes 
and cut costs. 

Below are several examples of temporal features with 
potential preventive interventions for asthma patients: 
(1) Air pollution: Consider the number of days in the past 

week in which the concentration of a given air pollutant 
like sulfur dioxide stayed above a fixed level. If either 
this number or the concentration’s rate of increase 
exceeds its own specific threshold, the following 
preventive interventions could be used: 
(a)  Suggest the patient to stay indoors as much as 

possible until the pollutant concentration drops 
below a safe threshold. 

(b)  Ensure the patient is compliant with his/her current 
controller therapy like inhaled corticosteroid. If the 
patient is compliant and symptomatic, consider a 
temporary increase in controller medication dose 
during the next two to four weeks. 

(c)  Ask the patient to increase the dose and/or dosing 
frequency of quick-relief asthma medication during 
the next two to four weeks. For example, increase 
albuterol dose from two to four puffs per dose 
and/or dosing frequency to four to six doses per day 
as needed. 

(2) Pollen count: Consider the number of days in the past 
week in which a given type of pollen count stayed above 
a fixed level. If either this number or the pollen count’s 
rate of increase exceeds its own specific threshold, the 
following preventive interventions could be used: 
(a) Recommend the patient to use allergy medication 

like antihistamine or nasal steroid spray during the 
pollen season (February to October depending on 
the pollen type). 

(b) If asthma control worsens during the pollen season 
despite medication compliance, consider initiating 
or increasing the dose of the daily controller 
medication regimen (inhaled corticosteroid). 

(c) Consider adding a leukotriene inhibitor to the daily 
controller medication regimen. 
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(3) Fractional exhaled nitric oxide (FeNO): Rising FeNO 
levels over time despite treatment may indicate non-
compliance with or non-responsiveness to inhaled 
corticosteroid, or worsening asthma. If this increase 
occurs, the following preventive interventions could be 
used: 
(a) Assess and address reasons for non-compliance 

with inhaled corticosteroid. 
(b) Adjust the medication type or dose of inhaled 

corticosteroid. 
(c) Perform allergy testing on the patient and prescribe 

allergy medication as needed. 
(4) Forced expiratory volume in 1 second (FEV1): 

Decreasing FEV1 over the past year to below 80% of the 
predicted normal value or prior personal best may 
indicate poor asthma control or progressive lung injury 
from asthma. If this decrease occurs, the following 
preventive interventions could be used: 
(a) Assess the patient for asthma triggers and ensure 

avoidance of them. 
(b) Assess asthma controller medication compliance 

and dosage. Adjust the medication as indicated. 
(c) Assess asthma control and intervene based on the 

National Heart, Lung and Blood Institute step 
therapy guidelines. 

(5) Oral corticosteroid prescription: Increasing frequency of 
filling oral corticosteroid prescription over the past year 
indicates poor asthma control. If this increase occurs, the 
following preventive interventions could be used: 
(a) Assess the patient for asthma triggers and ensure the 

patient avoids them. 
(b) Assess asthma controller medication compliance. 

Prescribe, change, or increase the dose of the 
medication if indicated. 

(c) Prepare a new asthma action plan to intervene more 
aggressively in the yellow zone [111]. 

(d) Assess asthma control and intervene based on the 
National Heart, Lung and Blood Institute step 
therapy guidelines. 

(6) Body mass index: The status that a patient’s body mass 
index keeps rising over 12 months or exceeds 25, the 
threshold value for overweight, is associated with poorer 
asthma control. If the patient reaches this status, the 
following preventive interventions could be used: 
(a) Advise the patient to lose weight with a healthy diet 

and regular exercise. Provide education and 
information on weight loss to caregivers. 

(b) Refer the patient to a dietician and/or a dedicated 
weight loss clinic. 

(7) Asthma control test score: The asthma control test score 
reflects a patient’s asthma control status [112, 113] and 
can be assessed every week [114]. A lower score 
indicates worse asthma control. If over a period of two 
weeks, the score has trended down but stayed between 
15 and 18, the following preventive intervention could 
be used: 

(a) Ensure the patient is compliant with asthma 
controller medications and avoids asthma triggers. 
Ask the patient to see his/her care provider for 
further interventions/instructions. 

If the score is below 15 at any time, the following 
preventive intervention could be used: 
(b)  Besides the actions listed in (a), refer the patient to 

his/her personalized asthma action plan for acute 
interventions including initiating oral 
corticosteroids. 

(8) Asthma controller medication compliance: Lack of 
compliance with daily controller medication can lead to 
poor asthma control. Yet, medication compliance data 
are rarely provided to a patient’s care provider. We can 
track medication compliance data electronically in two 
ways. First, we track monthly asthma controller 
medication refills from claims data as a surrogate for 
medication compliance, as compliance should link to 
monthly refills. Second, we use the electronic-Asthma 
Tracker [114, 115], an asthma control tracker with a 
symptom diary tool that also monitors a patient’s daily 
use of asthma controller medications. When monitoring 
frequency of monthly refills or daily use of asthma 
controller medications, the patient’s compliance is 
expected to be ≥80% of prescribed asthma controller 
medications [116]. If this is not the case, the following 
preventive intervention could be used: 
(a)  The care provider assesses over the phone or during 

clinic visits potential barriers to compliance, and 
provides education about the importance of 
achieving and maintaining medication compliance. 

The above preventive interventions are useful for asthma 
care management [117]. Currently, care managers handle 
most of the care management process and provide limited 
input on the patient to physicians. Using our automatic 
explanation method to identify risk trends early and obtain 
suggestions on potential preventive interventions, care 
managers can pass this tailored information to physicians for 
them to act accordingly. This transforms the care 
management process and makes it more effective via closer 
collaboration between care managers and physicians. 

We can use the final predictive model and automatic 
explanations to give early warnings for high-risk patients. To 
measure the number of days of early warning provided by the 
model, we use an approach illustrated by the following 
example. Suppose the model predicts an individual patient’s 
hospitalization in the next 365 days. A patient could be 
hospitalized more than once during a one-year period. 
Consider a patient admitted to the hospital on date D. To 
measure the number of days of early warning the model 
provides for the patient, we use D-365 as the initial prediction 
time point and input the patient’s history up to D-365 into the 
model. If it predicts hospitalization, it warns 365-j1 days in 
advance, with D-j1 being the first day between D-365 and D 
when the patient was admitted to the hospital. Otherwise, if 
the model predicts no hospitalization, we move the prediction 
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time point one day forward to D-364 and input the patient’s 
history up to D-364 into the model. If it predicts 
hospitalization, it warns 364-j2 days in advance, with D-j2 
being the first day between D-364 and D when the patient 
was admitted to the hospital. Otherwise, if the model still 
predicts no hospitalization, we move the prediction time 
point another day forward. We keep moving the prediction 
time point forward until the model predicts hospitalization or 
we reach D, whichever occurs first. If we reach D, the model 
warns zero day in advance. For patients ever hospitalized 
during a certain period, the average number of days of early 
warning provided by our model reflects how early it gives 
warnings. 

 
5. Related Work 

Much related work is mentioned in the previous sections. 
In this section, we describe some other related work not 
covered in any of the previous sections. 
 
5.1 Automating feature engineering on tabular data 

Several papers have been published on automating feature 
engineering on tabular data. 

As a form of meta-learning, Bilalli et al. [118] used 
knowledge learned from processing prior data sets to 
automatically suggest data pre-processing operators for the 
current data set. That method considers only a few pre-
defined operators and cannot handle longitudinal data. In 
comparison, MCLSTM handles longitudinal data and does 
not limit the types of temporal features it can learn. 
Numerous types of clinically meaningful temporal features 
could be useful for predictive modeling with medical data. 
The exact forms of many of these types are often unknown 
beforehand and need to be discovered in a data-driven way. 

Khurana [119] automated feature engineering on data 
stored in a single table, by recursively applying a set of pre-
defined transformations on the table’s columns to form new 
features. That method cannot handle longitudinal data. Often, 
a feature formed by recursive transformations has no clear 
medical meaning. It is difficult to use the feature to 
automatically explain machine learning prediction results. 
Yet, this function is needed in our case. 

Kanter et al. [120-122] described three methods for 
automating feature engineering on data stored in multiple 
tables. Each method supports a few pre-defined aggregate 
operators like sum and average, and allows them to be 
applied to temporal data over the same period. Yet, this is 
insufficient for handling longitudinal medical data. On 
medical data, many types of temporal features could be 
useful for predictive modeling. Each feature could be 
computed on data over a distinct period. For example, one 
feature is whether a patient’s body mass index kept rising 
over the past 12 months. Another feature is whether the 
patient had at least two emergency department visits for 
asthma in the past six months. Our feature extraction method 
can obtain features computed on data over different periods. 

Lam et al. [123] described a method for automatically 
learning features from data stored in multiple tables. That 
method can handle temporal data, if each temporal attribute’s 
values are stored in a separate table or a separate column of 
a table linking to the main table via key-foreign key 
relationships. That method learns temporal features by 
forming one RNN per temporal attribute. As a result, each 
learned feature involves only one attribute. Also, the learned 
features are not guaranteed to be meaningful. In comparison, 
on medical data, a useful feature could involve more than one 
longitudinal attribute. Our feature extraction method can find 
such features and ensures each kept feature is clinically 
meaningful. 
 
5.2 Temporal and sequential pattern mining 

Our temporal feature extraction method is also a pattern 
mining method, as each temporal feature obtained by it 
captures a pattern that is temporal and/or sequential. The data 
mining community has developed many temporal [17, 18] 
and sequential [19] pattern mining techniques, some of which 
use visualization to facilitate pattern discovery [77, 90, 124]. 
Existing techniques [77, 124-129] usually handle a single 
type of attribute. For example, standard sequential pattern 
mining techniques handle only categorical attributes. This 
does not serve our feature extraction purpose. In our case, 
medical data often contain several types of attributes 
(numeric, categorical, and interval). An extracted temporal 
feature can involve more than one type of attribute. 

Many temporal and sequential pattern mining techniques 
[125, 126, 130] ignore pattern interactions and mine each 
pattern independently of the others. On a data set of non-
trivial size, such a technique often finds numerous patterns, 
many of which are clinically meaningless and highly 
redundant with each other, e.g., differ by only one item with 
all other items in the pattern being the same. It is daunting, if 
not infeasible, for the clinician to examine these patterns and 
identify the clinically meaningful ones. Without dropping the 
redundant patterns, using all mined patterns, each as a feature, 
to build a machine learning predictive model would degrade 
model accuracy. In comparison, MCLSTM model training 
considers pattern interactions. Hence, our MCLSTM-based 
pattern mining method finds mostly non-redundant patterns 
and avoids the pattern explosion problem. For the clinician 
and the data scientist involved in the feature extraction 
process, this greatly reduces the manual examination work 
needed by them. 

Many temporal and sequential pattern mining techniques 
mine frequent patterns without thinking about building an 
accurate predictive model [130, 131]. As a result, many 
mined patterns have little or no predictive power for the 
outcome variable. In comparison, our pattern mining method 
starts from building an MCLSTM predictive model for the 
outcome variable. The model often has a reasonable accuracy. 
Thus, the patterns mined by our method tend to have high 
predictive power for the outcome variable. 
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Existing temporal and sequential pattern mining 
techniques either ignore the time gap between consecutive 
events or require a human expert to specify a threshold, 
above which the consecutive events in the same sequence are 
regarded as unrelated to each other [126]. The time gap 
between consecutive events should be used, as it gives useful 
information on how closely these events relate to each other. 
Yet, manually specifying the threshold for the time gap is 
difficult, particularly because each type of event can have its 
own optimal threshold that is often unknown beforehand. In 
comparison, our pattern mining method considers the time 
gap between consecutive events, requires no manual 
specification of any threshold for the time gap, and learns 
which consecutive events in the same sequence relate to each 
other in a data-driven way. 

Some temporal pattern mining techniques use temporal 
abstraction, which converts a time series of a variable into a 
sequence of time-interval events [132, 133]. Each event 
denotes a property of the time series. Temporal abstraction 
requires manual specification of its primitives and thresholds 
that are often specific to a given disease. This is difficult to 
do, particularly in a thorough fashion. 

Some temporal pattern mining techniques use shapelets 
[134]. Each shapelet is a univariate time series subsequence 
that represents a class well in some sense. In comparison, in 
our case, an extracted temporal feature can involve more than 
one attribute. 

Using shapelets, Ghalwash et al. [135] developed a method 
to extract multivariate temporal patterns from medical time 
series. That method assumes time series are evenly spaced, 
which is often not true in our case. Also, certain temporal 
patterns can be learned by MCLSTM, but not by that method. 
One such pattern is that an attribute’s value shows a specific 
trend, and then after a period of variable length, the 
attribute’s value shows another specific trend. 

Nguyen et al. [136] used a convolutional neural network 
built on medical data to find sequence patterns of a fixed 
length. That method handles only categorical attributes and 
does not fit our case, where temporal patterns can have 
varying lengths and other types of attributes exist. 

Wang et al. [127] used non-negative matrix factorization 
to mine temporal patterns from medical data. That method 
handles only binary event attributes, and does not require the 
mined patterns to correlate with the outcome variable. 

Liu et al. [126] used a graph-based method to mine 
temporal patterns from medical data. That method handles 
only categorical event attributes. 
 
5.3 Visualizing deep neural networks 

Many papers have been published on visualizing deep 
neural networks [137, 138]. Most of these papers focus on 
convolutional neural network. Only a few of these papers 
address RNN [138]. Our temporal feature extraction method 
includes a technique of visualizing MCLSTM. 
 

5.4 Automatically explaining machine learning 
prediction results 

Much work has been done on automatically explaining 
machine learning prediction results [139, 140]. Most of the 
work focuses on tabular data, images, and texts. To the best 
of our knowledge, no paper has been published on this 
paper’s topic of automatically providing rule-based 
explanations for machine learning prediction results on 
longitudinal medical data and suggesting tailored 
interventions [139]. Compared to other forms of explanations 
for machine learning prediction results used in the literature, 
rule-based explanations are easier to understand and easier to 
use for designing tailored interventions. Among the work 
published on automatically explaining deep neural network’s 
prediction results [138, 141-143], most targets convolutional 
neural network rather than RNN [141]. 
 
Automatically explaining LSTM’s prediction results on 
genomic and text data 

Several papers on automatically explaining LSTM’s 
prediction results focus on genomic and text data. Unlike a 
patient’s medical data that have multiple attribute values at 
each time step, a genomic or text sequence has only one value 
at every position of the sequence. 

For an LSTM network built on genomic data, Lanchantin 
et al. [144] automatically explained its positive prediction 
result on a genomic sequence by displaying the sub-sequence 
of a fixed length that gives the largest score change from 
negative to positive output score. This approach does not fit 
our case, where temporal patterns can have varying lengths. 

For an LSTM network built on text data, researchers have 
automatically explained its classification result on a text 
sequence by showing which words [145], pieces of text [146], 
or phrases [147] in the sequence are responsible for the 
classification result. Ming et al. [148] explained the function 
of each hidden state vector element in the network using the 
words highly correlated with the element. Strobelt et al. [149] 
built a tool to visualize the network’s hidden state sequences. 
For a text sequence, the tool can find other text sequences 
producing hidden state sequences similar to that produced by 
this one. In comparison, our feature extraction method uses 
the memory cell vector elements at the last time step to 
identify the top and bottom training instances, and visualize 
their effective segments rather than hidden state sequences. 

Besides that done for LSTM on text data, researchers have 
also done some automatic explanation work for non-LSTM 
RNN on text data. In particular, Foerster et al. [150] proposed 
a non-LSTM RNN on text data. That RNN takes a character 
sequence as its input and computes each input character’s 
linear contribution to its classification result on the sequence. 
 
Automatically explaining LSTM’s prediction results on 
medical data 

For an LSTM network built on medical data, researchers 
have automatically explained its prediction result on a patient 
by highlighting the data elements [22] or medical codes [46] 
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that influence the prediction. Neither of these methods offers 
rule-based explanations or suggests tailored interventions. 
 
5.5 Other relevant topics 

For medical data of a fixed sequence length, Che et al. [151] 
used a gradient boosting tree to mimic an LSTM network 
built on them and to learn interpretable features. That method 
neither extracts temporal features nor handles medical data 
of varying sequence lengths. 

To support feature engineering on text data, Brooks et al. 
[152] built a tool, which visually summarizes misclassified 
data instances to help find features that can be used to 
improve model accuracy. Our temporal feature extraction 
method supports feature engineering on longitudinal medical 
data. 

On non-longitudinal medical data, Ho et al. [153] used 
tensor factorization to find patterns as features. 

Suo et al. [154] used deep neural network to identify non-
temporal risk factors. In comparison, many temporal features 
found by our feature extraction method reflect temporal risk 
factors. 

The usual goal of longitudinal data analysis [155] is to 
model the expected value of an outcome variable measured 
repeatedly over time. This is different from our goal of using 
independent variables measured repeatedly over time to 
predict an outcome variable that usually has one value per 
data instance. 
 
6. Conclusions 

Identifying predictive and clinically meaningful temporal 
features is critical for improving the accuracy and 
transparency of machine learning predictive models on 
medical data. This paper sketches a method for semi-
automatically extracting such features from medical data, 
and shows how to use these features to automatically explain 
machine learning prediction results and suggest tailored 
interventions. This provides a roadmap for future research. 
Besides being useful for healthcare, our proposed methods 
can also be used to handle temporal data for non-medical 
applications. 
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