
1

A Roadmap for Semi-automatically Extracting Predictive and Clinically Meaningful Temporal
Features from Medical Data for Predictive Modeling

Gang Luo, PhD
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union,
850 Republican Street, Building C, Box 358047, Seattle, WA 98109, USA
luogang@uw.edu

Corresponding author:
Gang Luo, PhD
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union,
850 Republican Street, Building C, Box 358047, Seattle, WA 98109, USA
luogang@uw.edu
Phone: 1-206-221-4596
Fax: 1-206-221-2671
Email: luogang@uw.edu

2

Abstract
Predictive modeling based on machine learning with

medical data has great potential to improve healthcare and
reduce costs. However, two hurdles, among others, impede
its widespread adoption in healthcare. First, medical data are
by nature longitudinal. Pre-processing them, particularly for
feature engineering, is labor intensive and often takes 50-
80% of the model building effort. Predictive temporal
features are the basis of building accurate models, but are
difficult to identify. This is problematic. Healthcare systems
have limited resources for model building, while inaccurate
models produce suboptimal outcomes and are often useless.
Second, most machine learning models provide no
explanation of their prediction results. However, offering
such explanations is essential for a model to be used in usual
clinical practice. To address these two hurdles, this paper
outlines: 1) a data-driven method for semi-automatically
extracting predictive and clinically meaningful temporal
features from medical data for predictive modeling; and 2) a
method of using these features to automatically explain
machine learning prediction results and suggest tailored
interventions. This provides a roadmap for future research.

Keywords: temporal feature; medical data; machine
learning; recurrent neural network; predictive modeling;
automatic explanation

1. Introduction

Machine learning studies computer algorithms that learn
from data [1] and has won most data science competitions
[2]. Examples of machine learning algorithms include deep
neural network (a.k.a. deep learning) [3], support vector
machine, random forest, and decision tree. By enabling tasks
like identifying high-risk patients for preventive
interventions, predictive modeling based on machine
learning with medical data holds great potential to improve
healthcare and lower costs. Trials showed using machine
learning helped: 1) reduce patient no-show rate by 19% and
boost appointment rescheduling or cancel rate by 17% in
outpatients at high risk of no-shows [4]; 2) cut 30-day
mortality rate (odds ratio=0.53) in emergency department
patients with community-acquired pneumonia [5]; 3) trim
cost by $1,500 and ventilator use by 5.2 days per patient at a
hospital respiratory care center [6]; 4) boost on-target
hemoglobin values by 8.5-17% and reduce hospitalization
days by 15%, cardiovascular events by 15%, hemoglobin
fluctuation by 13%, expensive darbepoetin consumption by
25%, and blood transfusion events by 40-60% in end-stage
renal disease patients on dialysis [7-10]; and 5) cut healthcare
cost in Medicare patients’ last half year of life by 4.5% [11].

Despite its potential for many clinical activities, machine
learning-based predictive modeling is used by only 15% of
hospitals for limited purposes [12]. Two hurdles, among
others, impede the widespread adoption of machine learning
in healthcare.

1.1 Hurdle 1: Predictive temporal features are essential
for building accurate predictive models, but are difficult
to identify

Most attributes in medical data are longitudinal. It is labor
intensive and often takes 50-80% of the model building effort
to pre-process medical data, particularly for feature
engineering [13-15]. Predictive temporal features are the
basis of building accurate predictive models, but are difficult
to identify, even with many human resources. This is
problematic. Healthcare systems have limited resources for
model building, while inaccurate models produce suboptimal
outcomes and are often useless.

At present, clinical predictive models are usually created
in the following way. Given a modeling task and a long list
of attributes in the medical data like those stored in the
electronic health record, a clinician uses his/her judgment to
choose from the long list a short list of attributes that are
potentially relevant to the task. For each longitudinal
attribute in the short list, the clinician uses his/her judgment
to specify how to aggregate the attribute’s values over time
into a temporal feature, e.g., by taking their average or
maximum. Then a data scientist uses the features (a.k.a.
independent variables) to build a model. If model accuracy is
unsatisfactory, which is frequently the case, the process is
repeated. From what we have seen at three institutions, it
often takes the clinician several months and multiple
iterations to finish the manual attribute and feature
specification for each modeling task.

Besides being labor intensive, the above model building
approach has two other drawbacks. First, many attributes
could be useful for the modeling task, but are missing in the
short list of attributes chosen by the clinician. Second, many
temporal features could have additional predictive power, but
are not included in those specified by the clinician [16]. Both
drawbacks result from our limited understanding of diseases
and lead to degraded model accuracy. Moreover, although
the data mining community has done much work on mining
and constructing temporal [17, 18] and sequence features
[19], often many temporal features useful for the modeling
task are still waiting to be discovered.

As evidence of all of these issues, Google recently reported
using all attributes in the electronic health record and long
short-term memory (LSTM) [20, 21], a type of deep neural
network, to automatically learn temporal features from
medical data [22]. For predicting each of three outcomes: in-
hospital mortality, unexpected readmissions within 30 days,
and long hospital stay, this resulted in a boost of the area
under the receiver operating characteristic curve accuracy
measure by almost 10% [22]. Several other studies [23-25]
also showed that for various clinical prediction tasks and
compared to using temporal features specified by experts,
using LSTM to automatically learn temporal features from
medical data improved prediction accuracy. This is
consistent with what has happened in several areas like
speech recognition, natural language processing, and video
classification, where temporal features automatically learned

3

from data by LSTM outperform those specified by experts or
mined by other methods [3]. It is common that many
temporal features have additional predictive power, but have
not been identified before.

Without prelimiting to a small number of longitudinal
attributes and possibly missing many other useful ones,
LSTM can examine many attributes and automatically learn
temporal features from irregularly sampled medical data of
varying lengths in a data-driven way. However, the learned
features are suboptimal and unsuitable for direct clinical use.
When learning temporal features, the standard LSTM does
not restrict the number of longitudinal attributes used in each
feature. Consequently, a learned feature often involves lots
of attributes, many of which have little or no relationship
with each other. This results in three problems.

Problem 1: The learned features tend to overfit the training
data’s peculiarities and become less generalizable, leading to
suboptimal model accuracy. As evidence of this, for several
modeling tasks engaging longitudinal attributes that can be
naturally partitioned into a small number (e.g., three) of
modalities at a coarse granularity, researchers have improved
LSTM model accuracy using multimodal LSTM [26, 27]. A
multimodal LSTM network includes several constituent
LSTM networks, one per modality. Each feature learned by
a constituent network involves only those attributes in the
modality linking to the constituent network. Usually, the
medical data set contains a lot of longitudinal attributes,
many of which could be useful for the modeling task. If we
could partition longitudinal attributes meaningfully at a finer
granularity and let multimodal LSTM take advantage of this
aspect, we would expect the learned features’ quality and
consequently model accuracy to improve further. Intuitively,
a clinically meaningful temporal feature should typically
involve no more than a few attributes.

Problem 2: Differing healthcare systems collect
overlapping yet different attributes. The more attributes a
feature involves, the less likely a predictive model built with
the feature will be used by other healthcare systems beyond
the one that originally developed the model.

Problem 3: A feature involving many longitudinal
attributes is difficult to understand. As reviewed in Section 2,
in LSTM, each memory cell vector element depicts some
learned feature(s). Karpathy et al. [28] showed that only ~10%
of these elements could be interpreted [29]. In clinical
practice, clinicians usually refuse to use what they do not
understand.

1.2 Hurdle 2: Most machine learning models are black
boxes, but clinical practice requires transparency of
model prediction results

This hurdle is related to Problem 3 mentioned above. Most
machine learning models including LSTM provide no
explanation of their prediction results. Yet, offering such
explanations is essential for a model to be used in usual
clinical practice. When lives are at risk, clinicians need to
know the reasons to trust a model’s prediction results.

Understanding the reasons for poor outcomes can help
clinicians select tailored interventions that typically work
better than non-specific ones. Explanations for prediction
results can provide hints to help discover new knowledge. In
addition, if sued for malpractice, clinicians will need to use
their understanding of the prediction results to justify their
decisions in court.

Previously, for tabular data whose columns have easy-to-
understand meanings, we developed a method that can
automatically explain any machine learning model’s
prediction results with no accuracy loss [30]. This method
cannot handle longitudinal data directly. Using the temporal
features automatically learned by LSTM, one could convert
longitudinal medical data to tabular data and then build
machine learning models on the tabular data. But, if the
automatically learned features have no easy-to-understand
meanings, we still cannot use this method to automatically
explain the models’ prediction results.

1.3 Our contributions

To address the two hurdles, this paper makes two
contributions, offering a roadmap for future research.

First, we outline a data-driven method for semi-
automatically extracting predictive and clinically meaningful
temporal features from medical data for predictive modeling.
Using this method can reduce the effort needed to build
usable predictive models for the current modeling task.
Complementing expert-engineered features, the extracted
features can be used to build machine learning, statistical, or
rule-based predictive models, improve model accuracy [31]
and generalizability, and identify data quality issues. In
addition, as shown by Gupta et al. [32], many extracted
features reflect general properties of the medical attributes
involved in the features, and can be useful for other modeling
tasks. Using the extracted features to form a temporal feature
library to facilitate feature reuse, we can reduce the effort
needed to build predictive models for other modeling tasks.

Second, we outline a method of using the extracted
features to automatically explain machine learning prediction
results and suggest tailored interventions. This can enable
machine learning models to be used in clinical practice, and
help transform healthcare to be more proactive. At present,
healthcare is often reactive. Existing clinical predictive
models rarely use trend features [16]. When a health risk is
identified, e.g., with existing models, it is often at a relatively
late stage of persisting deterioration of health. At that point,
resolving it tends to be difficult and costly, and the patient is
at increased risk of a poor outcome. Our feature extraction
method can find many temporal features reflecting trends. By
using these features and our automatic explanation method to
identify risky trends early, we can proactively apply
preventive interventions to stop further deterioration of
health. The automatically generated explanations can help us
identify new interventions, warn clinicians of risky patterns,
and reduce the time clinicians need to review patient records
to find the reasons why a specific patient is at high risk for a

4

poor outcome. The automatically suggested interventions
can reduce the likelihood of missing suitable interventions
for a patient. All of these factors can help improve outcomes
and cut costs.

1.4 Organization of the paper

The rest of the paper is organized as follows. Section 2
reviews the current approach of using LSTM to build
predictive models with medical data. Section 3 sketches our
data-driven method for semi-automatically extracting
predictive and clinically meaningful temporal features from
medical data for predictive modeling. Section 4 outlines our
method of using the extracted features to automatically
explain machine learning prediction results and suggest
tailored interventions. Section 5 discusses related work. We
conclude in Section 6.

In this paper, we refer to both clinical and administrative
data as medical data. We focus on predicting one outcome
per data instance (e.g., per patient) rather than per data
instance per time step (e.g., per patient per day). When a data
instance has one outcome per time step, one way to extract
temporal features is to focus on the outcome at the last time
step of each data instance.

Below is a list of abbreviations used in the paper.
FeNO: fractional exhaled nitric oxide
FEV1: forced expiratory volume in 1 second
GPU: graphics processing unit
Lasso: least absolute shrinkage and selection operator
LSTM: long short-term memory
MCLSTM: multi-component LSTM
RNN: recurrent neural network

Below is a list of symbols used in the paper.

 element-wise sum
 element-wise multiplication
λ1 parameter controlling RW’s importance
λ2 parameter controlling RU’s importance
λ3 parameter controlling Rf’s importance
 element-wise sigmoid function
τ+ for the top N+ training instances with the highest

positive values in a given memory cell vector
element, the lowest one of these values

τ- for the bottom N- training instances with the lowest
negative values in a given memory cell vector
element, the highest one of these values

𝑏
ሬሬሬ⃑ the bias vector for the memory cell
𝑏,
ሬሬሬሬሬሬ⃑ the bias vector for the memory cell in the q-th

component network
𝑏
ሬሬሬ⃑ the bias vector for the forget gate

𝑏,
ሬሬሬሬሬሬ⃑ the bias vector for the forget gate in the q-th

component network
𝑏ప
ሬሬሬ⃑ the bias vector for the input gate
𝑏ప,
ሬሬሬሬሬሬ⃑ the bias vector for the input gate in the q-th

component network

𝑏
ሬሬሬሬ⃑ the bias vector for the output gate
𝑏,
ሬሬሬሬሬሬሬ⃑ the bias vector for the output gate in the q-th

component network
𝑐,,௧ሬሬሬሬሬሬሬሬ⃑ the memory cell vector on the l-th layer of the q-th

component network at time step t
𝑐,௧ሬሬሬሬሬሬ⃑ the memory cell vector in the q-th component

network at time step t
ct memory cell at time step t
𝑐௧ሬሬሬ⃑ the memory cell vector at time step t
D date
𝑑ሺ�⃑�, 𝑧ሻ the distance between vectors �⃑� and 𝑧
dp(Y, Z) the total distance between temporal sequences Y and

Z along warping path p
dq the q-th component network’s memory cell vector

dimensionality
DTW(Y, Z) the dynamic time warping distance

between temporal sequences Y and Z
ei the i-th condition on the left hand side of an

association rule
𝑓,௧
ሬሬሬሬሬ⃑ the forget gate’s activation vector in the q-th

component network at time step t
ft forget gate at time step t
𝑓௧
ሬሬሬ⃑ the forget gate’s activation vector at time step t
gi number of weights in the i-th group
G number of groups
ℎ,,௧
ሬሬሬሬሬሬሬሬ⃑ the hidden state vector on the l-th layer of the q-th

component network at time step t
ℎ,௧
ሬሬሬሬሬሬ⃑ the hidden state vector in the q-th component

network at time step t
ht hidden state at time step t
ℎ௧
ሬሬሬ⃑ the hidden state vector at time step t
𝚤,௧ሬሬሬሬሬ⃑ the input gate’s activation vector in the q-th

component network at time step t
it input gate at time step t
𝚤௧ሬሬ⃑ the input gate’s activation vector at time step t
k the number of clusters of effective segments that

will be created for the top/bottom training instances
of a memory cell vector element at the last time step
of the MCLSTM network

K number of component networks
L the loss function measuring the mismatch between

the predicted and actual outcomes of the data
instances

Lo the overall loss function
m, m1, m2 number of time steps
MDTW(Y, Z) the multivariate dynamic time warping

distance between temporal sequences Y and Z
n the input vector’s dimensionality
n+ the number of training instances with positive

values in a given memory cell vector element
n- the number of training instances with negative

values in a given memory cell vector element
N the maximum number of top/bottom training

instances that will be obtained for each memory cell

5

vector element at the last time step of the MCLSTM
network

N+ the number of identified top training instances with
the highest positive values in a given memory cell
vector element

N- the number of identified bottom training instances
with the lowest negative values in a given memory
cell vector element

nq the number of longitudinal attributes used in the q-
th component network

𝑜,௧ሬሬሬሬሬሬ⃑ the output gate’s activation vector in the q-th
component network at time step t

ot output gate at time step t
𝑜௧ሬሬሬ⃑ the output gate’s activation vector at time step t
p, p* warping path
|p| warping path p’s length
P(Y, Z) all possible warping paths between temporal

sequences Y and Z
R association rule
Rf the L2 regularizer for the weights in the fully

connected feedforward network used at the end of
the MCLSTM network

Rq,r the L2 norm of the input vector weight matrix
elements linking to the r-th longitudinal attribute in
the q-th component network

RU the L2 regularizer for the elements of the hidden
state vector weight matrices Uf,q, Ui,q, Uo,q, and Uc,q

RW the exclusive group Lasso regularizer
t, t', t1, t2, t3, t4, t5 time step
tend an effective segment’s ending time step
tstart an effective segment’s starting time step
tanh element-wise hyperbolic tangent function
Uc the hidden state vector weight matrix for the

memory cell
Uc,q the hidden state vector weight matrix for the

memory cell in the q-th component network
Uc,q,s,r the element in the s-th row and r-th column of Uc,q
Uf the hidden state vector weight matrix for the forget

gate
Uf,q the hidden state vector weight matrix for the forget

gate in the q-th component network
Uf,q,s,r the element in the s-th row and r-th column of Uf,q
Ui the hidden state vector weight matrix for the input

gate
Ui,q the hidden state vector weight matrix for the input

gate in the q-th component network
Ui,q,s,r the element in the s-th row and r-th column of Ui,q
Uo the hidden state vector weight matrix for the output

gate
Uo,q the hidden state vector weight matrix for the output

gate in the q-th component network
Uo,q,s,r the element in the s-th row and r-th column of Uo,q
v value
wi,j weight
Wc the input vector weight matrix for the memory cell

Wc,q the input vector weight matrix for the memory cell
in the q-th component network

Wc,q,s,r the element in the s-th row and r-th column of Wc,q
Wf the input vector weight matrix for the forget gate
Wf,q the input vector weight matrix for the forget gate in

the q-th component network
Wf,q,s,r the element in the s-th row and r-th column of Wf,q
Wi the input vector weight matrix for the input gate
Wi,q the input vector weight matrix for the input gate in

the q-th component network
Wi,q,s,r the element in the s-th row and r-th column of Wi,q
Wo the input vector weight matrix for the output gate
Wo,q the input vector weight matrix for the output gate in

the q-th component network
Wo,q,s,r the element in the s-th row and r-th column of Wo,q
𝑥,௧ሬሬሬሬሬሬ⃑ the input vector in the q-th component network at

time step t
xq,t,j the j-th element of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑
𝑥௧ሬሬሬ⃑ the input vector at time step t
xt,i the i-th element of the input vector 𝑥௧ሬሬሬ⃑
Y temporal sequence
𝑦ሬሬሬ⃑ the r-th element of temporal sequence Y
Z temporal sequence
𝑧௦ሬሬሬ⃑ the s-th element of temporal sequence Z

2. The Current Approach of Using LSTM to Build
Predictive Models with Medical Data

In this section, we review the current standard approach of
using LSTM to build predictive models with medical data. In
Section 3, we present our temporal feature extraction method
based on this approach. Variations of this approach are used
in many LSTM-based clinical predictive modeling papers
[22-25, 33-46]. With proper modifications, our temporal
feature extraction method also applies to these variations.

A deep neural network is a neural network with many
layers of computation. Ching et al. [47-50] reviewed existing
work using deep neural networks on medical data. Deep
neural networks have several types, such as recurrent neural
network (RNN), convolutional neural network, and deep
feedforward neural network. Among them, RNN handles
irregularly sampled longitudinal medical data of varying
lengths the most naturally. LSTM [20, 21] is a specific kind
of RNN that uses a gating mechanism to better model long-
range dependencies. Much work has been done using LSTM
to build predictive models with medical data [22-25, 33-46].
Other kinds of RNN like gated recurrent unit have also been
used for this purpose [32, 51-63]. In this paper, we focus on
LSTM having memory cells, from which we extract temporal
features.

LSTM processes a sequence of input vectors from the same
data instance, one input vector at a time. Each input vector 𝑥௧ሬሬሬ⃑
is indexed by a time step t. After processing the entire
sequence, LSTM obtains results that are used to predict the
data instance’s outcome. Often, each data instance refers to a
distinct patient. Each input vector includes one patient visit’s
information, such as diagnoses and vital signs. The sequence

6

length can vary across data instances. This helps boost model
accuracy, as LSTM can use as much of the information of
each patient as possible, without having to drop information
to make each patient’s history be of the same length. This
also allows us to make predictions on new patients in a timely
manner, without having to wait until each patient
accumulates a certain length of history. With a single patient
visit’s information available, LSTM can already start to make
predictions on the patient.

As shown in Figure 1, an LSTM network contains a
sequence of units, one per time step. In Figure 1, each

rounded rectangle denotes a unit. is the element-wise sum.
 is the element-wise multiplication. A unit has a memory
cell ct, a hidden state ht, an input gate it, an output gate ot, and
a forget gate ft. The memory cell keeps long-term memory
and stores summary information from all previous inputs. It
is known that LSTM can maintain memory over 1,000 time
steps [20]. The input gate regulates the input flowing into the
memory cell. The forget gate adjusts the forgetting of the
memory cell. The output gate controls the output flowing
from the memory cell.

Figure 1. An LSTM network.

For a sequence with m time steps, LSTM works based on
the following formulas:

𝑓௧
ሬሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑ 𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ 𝑏
ሬሬሬ⃑ ሻ (forget gate)

𝚤௧ሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑ 𝑈ℎ௧ିଵ
ሬሬሬሬሬሬሬሬ⃑ 𝑏ప

ሬሬሬ⃑ ሻ (input gate)
𝑜௧ሬሬሬ⃑ ൌ 𝜎ሺ𝑊𝑥௧ሬሬሬ⃑ 𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ 𝑏
ሬሬሬሬ⃑ ሻ (output gate)

𝑐௧ሬሬሬ⃑ ൌ 𝑓௧
ሬሬሬ⃑ ⨂𝑐௧ିଵሬሬሬሬሬሬሬ⃑ 𝚤௧ሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑊𝑥௧ሬሬሬ⃑ 𝑈ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ 𝑏
ሬሬሬ⃑ ሻ (memory

cell)
ℎ௧
ሬሬሬ⃑ ൌ 𝑜௧ሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑐௧ሬሬሬ⃑ ሻ (hidden state)

Here, and tanh are the element-wise sigmoid and
hyperbolic tangent functions, respectively. 𝑥௧ሬሬሬ⃑ ൌ
ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ is the input vector at time step t (1≤t≤m).

Each 𝑥௧ሬሬሬ⃑ has the same dimensionality n. 𝑓௧
ሬሬሬ⃑ , 𝚤௧ሬሬ⃑ , and 𝑜௧ሬሬሬ⃑ are the

forget, input, and output gates’ activation vectors,
respectively. 𝑐௧ሬሬሬ⃑ is the memory cell vector. ℎ௧

ሬሬሬ⃑ is the hidden
state vector. 𝑏

ሬሬሬ⃑ , 𝑏ప
ሬሬሬ⃑ , 𝑏

ሬሬሬሬ⃑ , and 𝑏
ሬሬሬ⃑ are bias vectors. All vectors

except for 𝑥௧ሬሬሬ⃑ have the same dimensionality. Wf, Wi, Wo, and
Wc are the input vector weight matrices. Uf, Ui, Uo, and Uc
are the hidden state vector weight matrices. The hidden state
vector ℎ

ሬሬሬሬሬ⃑ in the last time step summarizes the whole
sequence. Along with the sequence, the data instance often
contains some static attributes, such as gender and race. We
concatenate ℎ

ሬሬሬሬሬ⃑ with the static attributes, if any, into a vector.
We input the vector to a fully connected feedforward network
and compute the data instance’s predicted outcome [26].

The input vector 𝑥௧ሬሬሬ⃑ ൌ ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ contains
information of all longitudinal attributes at time step t. We
can make xt,i (1≤i≤n) the i-th longitudinal attribute’s value at
t. Alternatively, we can embed each categorical attribute
value, such as diagnosis or procedure code, into a vector
representation and merge all embedded vectors at t into 𝑥௧ሬሬሬ⃑

[22]. In this case, each embedded xt,i becomes difficult to
interpret.

In LSTM, each element of the memory cell vector 𝑐௧ሬሬሬ⃑
depicts some learned temporal feature(s). Karpathy et al. [28]
showed that only ~10% of these elements could be
interpreted [29]. Our goal is to modify LSTM so that it can
be used to extract predictive and clinically meaningful
temporal features from medical data for predictive modeling.

3. Semi-automatically Extracting Predictive and
Clinically Meaningful Temporal Features from Medical
Data

In this section, we sketch our data-driven method for semi-
automatically extracting predictive and clinically meaningful
temporal features from medical data for predictive modeling.
Our method is semi-automatic because its last step requires a
human to extract features via visualization. Since temporal
feature is one form of phenotype, our method belongs to
computational phenotyping [64-66]. Our method has a
different focus than most existing phenotyping algorithms,
which use medical data to detect whether a patient has a
specific disease.

The standard LSTM imposes no limit on how many input
vector elements can link to each memory cell vector element.
All input vector elements could be used in each element of
the forget and input gates’ activation vectors, and
subsequently link to each memory cell vector element. As a
result, even if each input vector element links to a distinct
longitudinal attribute, no limit is placed on the number of
attributes used in each learned temporal feature. A feature
involving many attributes is difficult to understand. Our key
idea for semi-automatically extracting temporal features
from medical data is to restrict the number of longitudinal
attributes linking to each memory cell vector element. In this

𝑥௧ሬሬሬ⃑ ൌ ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ

ℎ𝑡െ1ሬሬሬሬሬሬ⃑
tanh

tanh

𝑐௧ሬሬሬ⃑

ℎ௧
ሬሬሬ⃑

tanh

tanh

ℎ𝑡1ሬሬሬሬሬሬ⃑

𝑥௧ାଵሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥௧ାଵ,ଵ, 𝑥௧ାଵ,ଶ, … , 𝑥௧ାଵ,ሻ

𝑓௧
ሬሬሬ⃑ 𝚤௧ሬሬ⃑

𝑜௧ሬሬሬ⃑

𝑓௧ାଵ
ሬሬሬሬሬሬሬ⃑ 𝚤௧ାଵሬሬሬሬሬሬሬ⃑

𝑜௧ାଵሬሬሬሬሬሬሬሬ⃑

… …

𝑐𝑡െ1ሬሬሬሬሬሬ⃑ 𝑐𝑡1ሬሬሬሬሬሬ⃑

fully
connected

feedforward
network

static attributes

7

way, more memory cell vector elements will represent
clinically meaningful temporal features. The learned features
are likely to be predictive, as LSTM frequently produces
more accurate clinical predictive models than other machine
learning algorithms [22-25].

The rest of Section 3 is organized as follows. Section 3.1
describes how to modify LSTM to limit the number of
longitudinal attributes linking to each memory cell vector
element. Section 3.2 shows how to visualize the memory cell
vector elements in our trained LSTM network to extract
predictive and clinically meaningful temporal features.
Section 3.3 mentions several ways of using the extracted

features and lists our feature extraction method’s advantages.
Section 3.4 sketches a method for efficiently automating
LSTM model selection. Section 3.5 provides some additional
details.

3.1 Multi-component LSTM

To limit the number of longitudinal attributes linking to
each memory cell vector element, we use a new type of
LSTM termed multi-component LSTM (MCLSTM).

3.1.1 Overview

Figure 2. A multi-component LSTM network with K components.

As shown in Figure 2, an MCLSTM network contains

multiple component LSTM networks. In a given component
network and at any time step, each input vector element links
to a distinct longitudinal attribute. Each component network
uses only a subset of the longitudinal attributes rather than all
of them. This is similar to the case of multimodal LSTM [26,
27]. Yet, MCLSTM differs from multimodal LSTM in
several ways. In multimodal LSTM, all longitudinal
attributes are partitioned into a small number of sets, one per
modality, based on existing knowledge of the modalities. A
set can possibly contain many attributes. Each longitudinal
attribute appears in exactly one of the sets. The multimodal
LSTM model is trained after attribute partitioning is finalized.
In comparison, in MCLSTM, we preselect an integer K that
is not necessarily small. All longitudinal attributes are
partitioned into K sets, one per component, in a data-driven
way when the MCLSTM model is trained. Each set tends to
contain one or a few attributes. The same attribute could
appear in more than one set. Also, some longitudinal
attributes may appear in none of the sets.

In Figure 2, nq denotes the number of longitudinal
attributes used in the q-th (1≤q≤K) component network. For
each element xq,t,j (1≤j≤ni) of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑ at time step
t, the first, second, and third subscripts indicate the
component number, time step, and element number in the

component, respectively. For both the memory cell vector

𝑐𝑞,𝑡ሬሬሬሬ⃑ and the hidden state vector ℎ𝑞,𝑡ሬሬሬሬሬ⃑ , the first and second
subscripts indicate the component number and time step,
respectively.

Consider a data instance containing a sequence with m time
steps and perhaps some static attributes. The MCLSTM
network includes K component networks. We concatenate all
K hidden state vectors ℎ,

ሬሬሬሬሬሬሬሬ⃑ (1≤q≤K) at the last time step, one
from each component network, and the static attributes, if
any, into a vector ℎ

ሬሬሬሬሬ⃑ [26]. We input ℎ
ሬሬሬሬሬ⃑ to a fully connected

feedforward network to compute the data instance’s
predicted outcome.

In MCLSTM, by controlling the number of longitudinal
attributes used in each component network, we limit the
number of attributes linking to each memory cell vector
element, and subsequently the number of attributes involved
in each learned temporal feature. This offers several
advantages. First, a larger portion of learned features will be
understandable and clinically meaningful. Clinicians are
more willing to use these features than those they do not
understand. Second, the learned features become more
generalizable and less likely to overfit the training data’s
peculiarities. This helps improve the accuracy of predictive
models built using these features [67]. Third, MCLSTM

𝑥,௧ሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧,ଵ, 𝑥,௧,ଶ, … , 𝑥,௧,಼
ሻ

𝑐𝐾,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑
tanh

tanh

𝑐𝐾,𝑡ሬሬሬሬሬ⃑

ℎ𝐾,𝑡ሬሬሬሬሬ⃑
tanh

tanh

𝑐𝐾,𝑡1ሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,𝑡1ሬሬሬሬሬሬሬሬሬ⃑
component K

𝑐1,𝑡െ1ሬሬሬሬሬሬሬሬ⃑

ℎ1,𝑡െ1ሬሬሬሬሬሬሬሬሬ⃑
tanh

tanh

𝑐1,𝑡ሬሬሬሬ⃑

ℎ1,𝑡ሬሬሬሬሬ⃑
tanh

tanh

𝑐1,𝑡1ሬሬሬሬሬሬሬሬ⃑

ℎ1,𝑡1ሬሬሬሬሬሬሬሬሬ⃑
component 1

…

…

…

…

…

𝑥,௧ାଵሬሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧ାଵ,ଵ, 𝑥,௧ାଵ,ଶ, … , 𝑥,௧ାଵ,಼
ሻ

𝑥ଵ,௧ሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧,ଵ, 𝑥ଵ,௧,ଶ, … , 𝑥ଵ,௧,భ
ሻ 𝑥ଵ,௧ାଵሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧ାଵ,ଵ, 𝑥ଵ,௧ାଵ,ଶ, … , 𝑥ଵ,௧ାଵ,భ

ሻ

fully
connected

feedforward
network

static attributes

8

naturally has feature selection capability. Often, some
longitudinal attributes appear in none of the component
networks, and are regarded as having no predictive power.
Only the other longitudinal attributes appearing in the
MCLSTM network are deemed relevant and need to be
collected for the modeling task. This reduces the number of
attributes involved in the predictive model built using the
learned features. Such a model is more likely to be used by
other healthcare systems beyond the one that originally
developed the model, as differing healthcare systems collect
overlapping but different attributes.

3.1.2 Setting the network configuration hyper-parameters

Before training an MCLSTM network, we need to set a few
hyper-parameters for its configuration. First, we need to
select K, the number of component networks in it. Second,
for each component network, we need to choose its memory
cell vector dimensionality. Recall that except for the input
vector, all vectors used in an LSTM unit have the same
dimensionality. The memory cell vector is one of them.

We set the network configuration hyper-parameters based
on two considerations. First, which component network uses
which longitudinal attributes is generally determined in a
data-driven way when the MCLSTM network is trained.
Ideally, when training is completed, we want to achieve the
effect that each component network uses one or a few
attributes. That is, every nq (1≤q≤K) is small. Each memory
cell vector element of the component network represents
some temporal feature(s) involving no more than these
attributes. Such a feature is more likely to be understood and
clinically meaningful than one involving many attributes.
When the medical data set contains lots of longitudinal
attributes, many of them could be useful for the modeling
task. In this case, we use a large K to allow the useful
attributes to appear in the MCLSTM network. Otherwise,
when the medical data set contains only a few longitudinal
attributes, we use a small K.

Second, for the one or a few longitudinal attributes used in
a component network, intuitively no more than a few
temporal features using these attributes would be clinically
meaningful, predictive, and non-redundant for the modeling
task. Hence, the memory cell vectors 𝑐,௧ሬሬሬሬሬሬ⃑ (1≤q≤K) used in
each component network should have a low dimensionality.
We can use the same low dimensionality for the memory cell
vectors in each component network. Alternatively, we can
partition all K component networks into multiple groups, and
choose a different low dimensionality for the memory cell
vectors in each group.

The optimal hyper-parameter values vary by the modeling
task and data set. Finding the optimal hyper-parameter values
belongs to machine learning model selection, for which much
work has been done [68]. We conduct this search by
maximizing the MCLSTM network’s prediction accuracy.

3.1.3 Exclusive group Lasso regularization

After setting the network configuration hyper-parameters,
the MCLSTM network’s configuration is only partly in
place. To complete it, we need to figure out which
component network uses which longitudinal attributes. We
do this in a data-driven way when the MCLSTM network is
trained.

The MCLSTM network contains K component networks.
We have n longitudinal attributes. Initially, not knowing
which component network will use which attributes, we give
all n attributes to each component network. At time step t, all
component networks receive the same input vector 𝑥௧ሬሬሬ⃑ ൌ
ሺ𝑥௧,ଵ, 𝑥௧,ଶ, … , 𝑥௧,ሻ , with xt,i (1≤i≤n) being the i-th
longitudinal attribute’s value.

We want the data to tell us which component network
should use which longitudinal attributes. The i-th (1≤i≤n)
longitudinal attribute links to the i-th column of each input
vector weight matrix in every component network. An
attribute is unused by a component network if and only if all
columns of the input vector weight matrices in the
component network linking to the attribute are all zeros.
After the MCLSTM network is trained, we want to achieve
the effect that each component network uses only one or a
few attributes. That is, most columns of the input vector
weight matrices in the component network are all zeros.
Lasso (least absolute shrinkage and selection operator)
regularization is widely used to make most weights in a
machine learning model zero. Existing Lasso regularization
methods cannot achieve our desired effect, as the weights
used in the MCLSTM network have a special structure [67].
We design a new Lasso regularization method tailored to this
structure to serve our purpose.

Our regularization method performs one type of structured
regularization. It is related to, but different from multimodal
group regularization, the type of structured regularization
conducted in Lenz et al. [67]. Our regularization method is
designed for MCLSTM to handle longitudinal data. The goal
is to limit the number of longitudinal attributes used in each
component network. In comparison, the multimodal group
regularization method was developed for a deep feedforward
neural network handling static data. There, all attributes are
partitioned into a small number of groups, one per modality,
based on existing knowledge of the modalities. The goal is to
limit the number of modalities that each neuron on the first
layer of the network links to. Lenz et al. [67] showed that
standard L1 regularization cannot achieve this goal without
degrading the quality of the features learned by the neurons
on the first layer. Using multimodal group regularization
improved both feature quality and model accuracy.

Notations

Before describing our regularization method’s technical
details, we first introduce a few notations. Consider the q-th
(1≤q≤K) component network. It works based on the
following formulas at time step t:

𝑓,௧
ሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑ 𝑈,ℎ,௧ିଵ

ሬሬሬሬሬሬሬሬሬሬሬ⃑ 𝑏,
ሬሬሬሬሬሬ⃑ ሻ (forget gate)

9

𝚤,௧ሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑ 𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑ 𝑏ప,

ሬሬሬሬሬሬ⃑ ሻ (input gate)

𝑜,௧ሬሬሬሬሬሬ⃑ ൌ 𝜎ሺ𝑊,𝑥௧ሬሬሬ⃑ 𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑ 𝑏,

ሬሬሬሬሬሬሬ⃑ ሻ (output gate)

𝑐,௧ሬሬሬሬሬሬ⃑ ൌ 𝑓,௧
ሬሬሬሬሬ⃑ ⨂𝑐,௧ିଵሬሬሬሬሬሬሬሬሬሬ⃑

 𝚤,௧ሬሬሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑊,𝑥௧ሬሬሬ⃑ 𝑈,ℎ,௧ିଵ
ሬሬሬሬሬሬሬሬሬሬሬ⃑ 𝑏,

ሬሬሬሬሬሬ⃑ ሻ (memory cell)

ℎ,௧
ሬሬሬሬሬሬ⃑ ൌ 𝑜,௧ሬሬሬሬሬሬ⃑ ⨂𝑡𝑎𝑛ℎሺ𝑐,௧ሬሬሬሬሬሬ⃑ ሻ (hidden state)

Compared to those listed in Section 2, each vector except for
the input vector and each weight matrix have an added
subscript: q. Let dq denote the q-th component network’s
memory cell vector dimensionality. Wf,q, Wi,q, Wo,q, and Wc,q
are the dq×n input vector weight matrices for the forget gate,
input gate, output gate, and memory cell, respectively. Wf,q,s,r,
Wi,q,s,r, Wo,q,s,r, and Wc,q,s,r denote the element in the s-th
(1≤s≤dq) row and r-th (1≤r≤n) column of Wf,q, Wi,q, Wo,q, and
Wc,q, respectively. Uf,q, Ui,q, Uo,q, and Uc,q are the dq×dq
hidden state vector weight matrices for the forget gate, input
gate, output gate, and memory cell, respectively. Uf,q,s,r,
Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r denote the element in the s-th
(1≤s≤dq) row and r-th (1≤r≤dq) column of Uf,q, Ui,q, Uo,q, and
Uc,q, respectively.

Basic method

To obtain the desired effect that each component network
uses only one or a few longitudinal attributes, our
regularization method needs to achieve two goals
simultaneously. First, in a component network, the n
longitudinal attributes compete with each other. If one
attribute is used, the other attributes are less likely to be used.
In other words, if an input vector weight matrix element
linking to an attribute is non-zero, the regularizer tends to
assign zeros to the input vector weight matrix elements
linking to the other attributes. Second, in a component

network, all input vector weight matrix elements linking to
the same attribute tend to be zero (or non-zero) concurrently.
Non-zero means the component network uses this attribute.

We borrow ideas from exclusive Lasso [69, 70] and group
Lasso [71] to reach these two goals. Consider a set of weights
wi,j (1≤i≤G, 1≤j≤gi) partitioned into G groups. The i-th group
has gi weights. Exclusive Lasso [69, 70] uses the regularizer
∑ ሺ∑ |𝑤,|

ୀଵ ሻଶீ
ୀଵ to make the weights in the same group

compete with each other. If one weight in a group is non-
zero, the regularizer tends to assign zeros to the other weights
in the same group. This can be used to reach our first goal. In
comparison, group Lasso [71] uses the regularizer

∑ ට∑ 𝑤,
ଶ

ୀଵ
ீ
ୀଵ to make all weights in the same group tend

to be zero (or non-zero) concurrently. This can be used to
reach our second goal.

Our regularization method combines exclusive Lasso and
group Lasso, and is thus called exclusive group Lasso. In the
q-th (1≤q≤K) component network, the input vector weight
matrix elements linking to the r-th (1≤r≤n) longitudinal
attribute are Wf,q,s,r, Wi,q,s,r, Wo,q,s,r, and Wc,q,s,r for each s
between 1 and dq. We treat these elements as a group, and
use their L2 norm 𝑅, ൌ

ට∑ ሺ𝑊,,௦,
ଶ 𝑊,,௦,

ଶ 𝑊,,௦,
ଶ 𝑊,,௦,

ଶ ሻ
ௗ
௦ୀଵ to make them

tend to be zero (or non-zero) concurrently. If Rq,r=0, all of
them are zero. For each q (1≤q≤K), the L2 norms linking to
the n longitudinal attributes are Rq,r for every r between 1 and
n. We treat these L2 norms as a group, and use the regularizer
𝑅ௐ ൌ ∑ ሾ∑ 𝑅,

ୀଵ ሿଶ

ୀଵ to make them compete with each
other for being non-zero. Putting everything together, we use
the exclusive group Lasso regularizer

𝑅ௐ ൌ ඨ ሺ𝑊,,௦,
ଶ 𝑊,,௦,

ଶ 𝑊,,௦,
ଶ 𝑊,,௦,

ଶ ሻ
ௗ

௦ୀଵ

ୀଵ

ଶ

ୀଵ

to reach our two goals simultaneously. RW is a convex
function of all input vector weight matrix elements.

For the hidden state vector weight matrices Uf,q, Ui,q, Uo,q,
and Uc,q, we do not need to make most of their elements zero.
Instead, we use the L2 regularizer

𝑅 ൌ ∑ ∑ ∑ ሺ𝑈,,௦,
ଶ 𝑈,,௦,

ଶ 𝑈,,௦,
ଶ 𝑈,,௦,

ଶ ሻ
ௗ
௦ୀଵ

ௗ
ୀଵ

ୀଵ

for their elements Uf,q,s,r, Ui,q,s,r, Uo,q,s,r, and Uc,q,s,r. Let L
denote the loss function measuring the discrepancy between
the predicted and actual outcomes of the data instances. Rf
denotes the L2 regularizer for the weights in the fully
connected feedforward network used at the end of the
MCLSTM network. To train the MCLSTM network, we use
a standard subgradient optimization algorithm to minimize
the overall loss function Lo=L+λ1RW+λ2RU+λ3Rf [3]. λ1, λ2, λ3
are the parameters controlling the importance of the
regularizers RW, RU, and Rf, respectively.

Extension of the basic method

Sometimes, based on medical intuition, we know which
longitudinal attribute by itself or which several longitudinal
attributes combined are likely to form predictive and
clinically meaningful temporal features, even if we do not
know the exact features. In this case, before training the
MCLSTM network, for each subset of longitudinal attributes
with this property, we specify a separate component network
to receive in its input vectors the values of the attributes in
this subset rather than all attributes’ values. This can ease
model training and help make more learned features
represented by the memory cell vector elements clinically
meaningful. This also expedites model training by reducing
the number of weights that need to be handled.

By default, all component networks in an MCLSTM
network use the same set of time steps. Sometimes, all
longitudinal attributes fall into several groups, each collected
at a distinct frequency. For instance, one group of
longitudinal attributes like diagnosis codes is collected per
patient visit. Another group of longitudinal attributes, such
as air quality measurements and vital signs that a patient self-

10

monitors at home, is collected every day. In this case, for
each group of longitudinal attributes, we can specify a
different subset of component networks, whose input vectors
include only these attributes’ values. Each subset uses a
distinct set of time steps based on the frequency at which the
corresponding group of longitudinal attributes is collected.

Sometimes, based on medical knowledge or our prior
experience with other modeling tasks, we know some
temporal features that are clinically meaningful, formed by
some of the longitudinal attributes, and likely to be predictive
for the current modeling task. In this case, we compute these
features, treat them as static attributes used near the end of
the MCLSTM network, and can opt to not use the raw
longitudinal attributes involved in them when training the
network. This can ease model training and help the network
form predictive and clinically meaningful temporal features
from the other longitudinal attributes.

Section 3.2 outlines our method of visualizing the memory
cell vector elements in a trained MCLSTM network to extract
predictive and clinically meaningful temporal features. To
increase the number of such extracted features, we can
iteratively train the MCLSTM network and extract features
in multiple rounds. After extracting some features via
visualization in one round, we reduce the number of

component networks in the MCLSTM network, compute
these features, add them to the list of static attributes used
near the end of the MCLSTM network, and no longer use the
raw longitudinal attributes involved in them when training
the MCLSTM network in the next round. This helps the
MCLSTM network form predictive and clinically
meaningful temporal features from the remaining
longitudinal attributes.

Often, the input vector at each time step includes an
element showing the elapsed time between the current and
previous time steps [33, 35, 46, 51]. For the first time step,
the elapsed time is zero. Sometimes, a log transformation is
applied to the elapsed time to reduce its skewed distribution
[52]. The elapsed time attribute has a different property from
the other longitudinal attributes. Intuitively, any other
longitudinal attribute tends to be used by one or a few
component networks in the MCLSTM network to form
temporal features. In comparison, many component networks
could use the elapsed time attribute to form temporal features.
To reflect this difference, we use the L2 regularizer rather
than the exclusive group Lasso regularizer for the input
vector weight matrix elements linking to the elapsed time
attribute in each component network.

Figure 3. A multi-component stacked LSTM network with K components and two recurrent layers.

The above discussion focuses on LSTM with one recurrent
layer. Our method also applies to stacked LSTM with
multiple recurrent hidden layers stacked on top of each other
[72]. Having multiple recurrent hidden layers often helps an
RNN learn better features [51]. Figure 3 illustrates a multi-
component stacked LSTM network. It has multiple
component networks, each of which is a stacked LSTM
network using a subset of longitudinal attributes. In each
component network and at each recurrent layer above the
first, the input vector at time step t incorporates the hidden

state vector elements outputted by the layer below at t. If
nothing else is included in the input vector, we use the same
method mentioned above to figure out which component
network uses which longitudinal attributes. Otherwise, if the
input vector at each recurrent layer above the first one at t
also includes the input vector elements at the first layer at t,
we first use an MCLSTM network with one recurrent layer
and the method mentioned above to figure out which
component network uses which longitudinal attributes. Then
we use this information to form the multi-component stacked

𝑥ଵ,௧ሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧,ଵ, 𝑥ଵ,௧,ଶ, … , 𝑥ଵ,௧,భ
ሻ

ℎ1,1,𝑡ሬሬሬሬሬሬሬ⃑

ℎ1,1,𝑡ሬሬሬሬሬሬሬ⃑

𝑐1,2,𝑡ሬሬሬሬሬሬ⃑
 ℎ1,2,𝑡ሬሬሬሬሬሬሬ⃑

𝑐1,1,𝑡െ1ሬሬሬሬሬሬሬሬሬሬ⃑

ℎ1,1,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐1,2,𝑡െ1ሬሬሬሬሬሬሬሬሬሬ⃑
ℎ1,2,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐1,1,𝑡1ሬሬሬሬሬሬሬሬሬሬ⃑

𝑥ଵ,௧ାଵሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥ଵ,௧ାଵ,ଵ, 𝑥ଵ,௧ାଵ,ଶ, … , 𝑥ଵ,௧ାଵ,భ
ሻ

ℎ1,1,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

ℎ1,1,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐1,2,𝑡1ሬሬሬሬሬሬሬሬሬሬ⃑
 ℎ1,2,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

component 1

layer 2

layer 1

𝑐𝐾,1,𝑡ሬሬሬሬሬሬሬ⃑

𝑥,௧ሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧,ଵ, 𝑥,௧,ଶ, … , 𝑥,௧,಼
ሻ

ℎ𝐾,1,𝑡ሬሬሬሬሬሬሬ⃑

ℎ𝐾,1,𝑡ሬሬሬሬሬሬሬ⃑

𝑐𝐾,2,𝑡ሬሬሬሬሬሬሬ⃑
 ℎ𝐾,2,𝑡ሬሬሬሬሬሬሬ⃑

𝑐𝐾,1,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,1,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐𝐾,2,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑
ℎ𝐾,2,𝑡െ1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐𝐾,1,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑥,௧ାଵሬሬሬሬሬሬሬሬሬሬሬሬ⃑ ൌ ሺ𝑥,௧ାଵ,ଵ, 𝑥,௧ାଵ,ଶ, … , 𝑥,௧ାଵ,಼
ሻ

ℎ𝐾,1,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

ℎ𝐾,1,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

𝑐𝐾,2,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑
 ℎ𝐾,2,𝑡1ሬሬሬሬሬሬሬሬሬሬሬ⃑

component K

layer 2

layer 1

…

𝑐1,1,𝑡ሬሬሬሬሬሬ⃑

…

…

…

…

fully
connected

feedforward
network

static attributes

11

LSTM network and train it. In this way, we ensure that in
each component network, every recurrent layer links to the
same subset of longitudinal attributes.

In Figure 3, nq denotes the number of longitudinal
attributes used in the q-th (1≤q≤K) component network. For
each element xq,t,j (1≤j≤ni) of the input vector 𝑥,௧ሬሬሬሬሬሬ⃑ , the first,
second, and third subscripts indicate the component number,
time step, and element number in the component,
respectively. For both the memory cell vector 𝑐𝑞,𝑙,𝑡ሬሬሬሬሬሬ⃑ and the

hidden state vector ℎ𝑞,𝑙,𝑡ሬሬሬሬሬሬ⃑ , the first, second, and third
subscripts indicate the component number, layer number, and
time step, respectively.

3.2 Visualizing the memory cell vector elements in a
trained MCLSTM network to extract predictive and
clinically meaningful temporal features

In LSTM, each memory cell vector element depicts some
learned temporal feature(s). After using the training instances
to train the MCLSTM network, we visualize its memory cell
vector elements to extract clinically meaningful temporal
features. These features are likely to be predictive, as LSTM
frequently produces more accurate clinical predictive models
than other machine learning algorithms [22-25].

We design the visualization method based on three
observations. First, LSTM has been shown to use high
positive and low negative values of its memory cell vector
elements to express information [73]. Second, Kale et al. [31,
74-76] showed one can use training instances with the
highest activations of a neuron in a deep neural network to
identify clinically meaningful features. A memory cell vector
element is a neuron. Third, intuitively, an informative
sequence of input vectors in a training instance contains one
or more segments, each depicting a temporal feature.

Taking these observations as insights, we proceed in four
steps to extract zero or more clinically meaningful temporal
features from each memory cell vector element at the last
time step of the MCLSTM network. In Step 1, we find the
top and bottom few training instances with the highest
positive and lowest negative values in the memory cell vector
element, respectively. These training instances are likely to
contain information of useful temporal features. In Step 2, we
identify one or more so-called effective segments of the input
vector sequence in each of these training instances. Each
effective segment tends to reflect a useful temporal feature.
In Step 3, we partition all identified effective segments into
several clusters. In Step 4, we visualize each cluster of
effective segments in a separate figure to extract zero or more
clinically meaningful temporal features. By reducing the
number of effective segments in each figure and making the
effective segments in the same figure more homogeneous,
clustering eases visualization and temporal feature extraction.
The temporal features extracted from the MCLSTM network
include all features extracted from every memory cell vector
element at the last time step of the MCLSTM network.

In the rest of Section 3.2, we describe each of the four steps
one by one. Our description focuses on a single memory cell
vector element at the last time step of the MCLSTM network.
For this element, we find the corresponding component
network and the longitudinal attributes used in it. Each
temporal feature depicted by this element involves no more
than these attributes. When mentioning an input vector, we
always refer to an input vector of the component network
containing only the values of these attributes. The component
network usually uses one or a few longitudinal attributes.
This is crucial for making our visualization method effective
in identifying features describing temporal relationships [77].
Psychology studies have shown that humans can correctly
analyze the relationship among up to four attributes [78]. The
more complex the relationship among the attributes, the
lower the upper limit on the number of attributes [79].

3.2.1 Step 1: Finding the top and bottom few training
instances with the highest positive and lowest negative values
in the memory cell vector element, respectively

We preselect a number N as the maximum number of
top/bottom training instances that will be obtained for each
memory cell vector element at the last time step of the
MCLSTM network. In Step 4, we conduct visualization to
extract clinically meaningful temporal features. To avoid
cluttering any given figure and creating difficulty with
visualization, N should not be too large. To obtain enough
signal for identifying clinically meaningful temporal
features, N should not be too small. One possible good value
of N is 50, as adopted in Che et al [75].

Consider the given memory cell vector element at the last
time step of the MCLSTM network. Let n+ denote the
number of training instances with positive values in the
element. n- denotes the number of training instances with
negative values in the element. We sort all training instances
in descending order of the element’s value. Multiple training
instances with the same value in the element can be put in
any order. We find the top N+=min(N, n+) training instances
with the highest positive values in the element [75], and
record the lowest one τ+ of these values. In addition, we find
the bottom N-=min(N, n-) training instances with the lowest
negative values in the element [75], and record the highest
one τ- of these values. In Step 2, we will use τ+ and τ- to
identify the effective segments of the input vector sequences
in the top N+ and bottom N- training instances, respectively.

Intuitively, the top N+ training instances include one set of
temporal features. The bottom N- training instances include
another set of temporal features. In Step 4, we will visualize
the effective segments of the input vector sequences in the
top N+ and bottom N- training instances to identify clinically
meaningful features in the first and second sets, respectively.

Previously, for image data, researchers have used the
activation maximization method to explain the meaning of
each neuron in a deep neural network [80]. For each neuron
in the network, that method creates a synthetic data instance
maximizing the neuron’s output, and uses the data instance

12

to explain the neuron’s meaning. That method does not serve
our purpose of extracting temporal features from longitudinal
data. For instance, consider a sequence of results of a specific
lab test obtained over time. Suppose the actual temporal
feature depicted by the memory cell vector element is
whether the lab test result is above a fixed threshold value
≥40% of the time. The synthetic data instance maximizing
the element’s value is a sequence of lab test results all above
the threshold value. From this data instance, we cannot
deduce the feature’s property of being ≥40% of the time. In
comparison, training instances are real and usually do not
push the element to have extreme values. After viewing
multiple training instances satisfying this property in various
ways, such as one being 40% of the time and another being
50% of the time, we are more likely to identify this property.

3.2.2 Step 2: Identifying one or more effective segments of
the input vector sequence in each training instance found in
Step 1

Consider the given memory cell vector element at the last
time step of the MCLSTM network and a training instance
found in Step 1. The training instance has a sequence of input
vectors containing the information of some useful temporal
features. Often, the sequence has one or more uninformative
segments, which are unrelated to these features and do not
contribute to making the element’s value high positive or low
negative. Displaying these segments during visualization
will clutter the figure and make it harder to identify these
features. To address this issue, for each training instance
found in Step 1, we identify one or more effective segments
of its input vector sequence. Each effective segment tends to
reflect a useful temporal feature. During visualization in Step
4, we display only the effective segments rather than the
whole input vector sequence.

In the following, we show how to identify the effective
segments for a top training instance found in Step 1. The case
with identifying the effective segments for a bottom training
instance found in Step 1 can be handled similarly.

Figure 4. Identifying the effective segments of the input

vector sequence in a top training instance.

Recall that in Step 1, we find the top N+ training instances

with the highest positive values in the memory cell vector
element at the last time step of the component network, and
record the lowest one τ+ of these values. As shown in Figure
4, for each top training instance, the element’s value evolves
over time and becomes ≥τ+ at the last time step of the training

instance’s input vector sequence. τ+ can be regarded as a
threshold value found in a data-driven way. When the
element’s value becomes ≥τ+ at a specific time step, it
indicates with high likelihood that a useful temporal feature
appears there. We use this information to find the effective
segment at or around the time step. In Figure 4, each dashed
ellipse denotes an effective segment. The horizontal dotted
line depicts τ+.

Consider a given top training instance found in Step 1. We
define a segment of its input vector sequence to be effective
if the segment satisfies two properties simultaneously.
1) Property 1: If we input the segment into the component

network, the memory cell vector element at the segment’s
last time step will produce a value ≥τ+. Typically, the
segment and input vector sequence start at different time
steps. If we input the segment vs. the input vector
sequence into the component network, we get a different
value in the memory cell vector element at the segment’s
last time step.

2) Property 2: The segment is as short as possible. This
eases identifying temporal features via visualization in
Step 4. It is easier to recognize a temporal feature from a
short segment than from a long segment.

Both properties combined make an effective segment the
shortest segment that holds the signal of a useful temporal
feature.

The top training instance’s input vector sequence contains
one or more effective segments. Each segment is a section of
the sequence between a starting time step tstart and an ending
time step tend. We use a sequential search algorithm to find
the effective segments one by one. Our high-level idea is to
start from the sequence’s last time step and keep going
backwards. For each effective segment, we find first its
ending and then its starting time step. Then we move on to
pinpoint the next effective segment. To make our search
algorithm easy to understand, we describe it using the case
shown in Figure 4 as an example.

We start from the last time step of the top training
instance’s input vector sequence. Here, the memory cell
vector element’s value is ≥τ+. We go backwards, one time
step at a time. If the element’s value increases, we go back
one more time step. We keep going backwards until the
element’s value will decrease if we go back one more time
step. This is the first effective segment’s ending time step tend,
at which the element’s value reaches a local maximum ≥τ+.
In Figure 4, tend is t5. To avoid violating Property 2, the
section between t5 and the last time step is excluded from the
first effective segment. Then we continue to go backwards,
one time step at a time. For each time step t that we reach, we
check whether the segment between t and tend satisfies
Property 1. If so, this segment also satisfies Property 2 and is
the first effective one, with t being its starting time step tstart.
Otherwise, if this segment violates Property 1, we keep going
backwards until we find a time step, at which Property 1 is
satisfied. Such a time step must exist. In the worst case, we
reach the first time step of the training instance’s input vector

time

va
lu

e
in

 th
e

m
em

or
y

ce
ll

ve

ct
or

 e
le

m
en

t

t1

t2

t4

t5

t3

τ+

effective segments

13

sequence. The segment between the first time step and tend
always satisfies Property 1. In Figure 4, tstart is t4. The
segment between time steps t3 and t5 satisfies Property 1, but
not Property 2, and thus is not an effective one.

After finding the first effective segment’s starting time
step, we go back one time step to start searching for the
second effective segment. In Figure 4, this refers to starting
from time step t3. We keep going backwards until reaching a
time step t', at which the memory cell vector element’s value
is ≥τ+. In Figure 4, this time step is t2. If we keep going
backwards and still cannot find t' when reaching the first time
step of the training instance’s input vector sequence, the
second effective segment does not exist. Otherwise, if we can
find t', we repeat the procedure mentioned in the above
paragraph to find first the ending and then the starting time
step of the second effective segment. For the same reason
explained in the above paragraph, these two time steps must
exist. In Figure 4, the second effective segment is the section
between time steps t1 and t2. After finding the second
effective segment, we move on to pinpoint the third effective
segment, and so on. We keep iterating until reaching the first
time step of the training instance’s input vector sequence.
Our search process ends there.

3.2.3 Step 3: Partitioning all identified effective segments
into several clusters

Consider the given memory cell vector element at the last
time step of the MCLSTM network. In Step 1, we find its top
N+ and bottom N- training instances. After identifying all
effective segments in these training instances, we partition
the segments into multiple clusters to ease visualization in
Step 4.

We preselect a number k to set the number of clusters.
There are two groups of effective segments, one obtained
from the top N+ training instances and the other from the
bottom N- training instances. These two groups tend to reflect
different temporal features. For either group, we partition the
effective segments in it into k clusters, hoping each will
reflect a distinct set of temporal features. The memory cell
vector element usually depicts no more than a few temporal
features. Accordingly, k should be a small number like three.
For each group of effective segments, we can test different k
values to see which one works the best.

Many clustering algorithms for time series data exist [81].
Each relies on a distance measure for temporal sequences. In
the following, we describe our distance measure first, and
then present the clustering algorithm used to partition
effective segments into clusters.

Distance measure for temporal sequences

We use the multivariate dynamic time warping distance
measure, which Kale et al. [82] proposed as an extension of
the dynamic time warping technique [83]. Dynamic time
warping is widely used for measuring similarity between two
temporal sequences, which can be multi-dimensional and
have different lengths and sampling intervals. As shown in

Figure 5, dynamic time warping allows time shifting and
matches similar shapes even in the presence of a time-phase
difference. In Figure 5, each dash-dotted line links two
aligned points, one from each temporal sequence.

Figure 5. Time alignment of two sequences.

Consider two temporal sequences 𝑌 ൌ ሺ𝑦ଵሬሬሬ⃑ , 𝑦ଶሬሬሬሬ⃑ , … , 𝑦భሬሬሬሬሬሬሬ⃑ ሻ

and 𝑍 ൌ ሺ𝑧ଵሬሬሬ⃑ , 𝑧ଶሬሬሬ⃑ , … , 𝑧మሬሬሬሬሬሬ⃑ ሻ . We use a distance measure
𝑑ሺ𝑦ሬሬሬ⃑ , 𝑧௦ሬሬሬ⃑ ሻ, such as the Euclidean one, between each pair of
elements 𝑦ሬሬሬ⃑ (1≤r≤m1) and 𝑧௦ሬሬሬ⃑ (1≤s≤m2), one from each
sequence. A warping path p = {(r1, s1), (r2, s2), …, (r|p|, s|p|)}
of length |p| aligns Y and Z via linking 𝑦ണሬሬሬሬ⃑ to 𝑧௦ണሬሬሬሬ⃑ (1≤j≤|p|). It

satisfies two conditions:
(1) r1=s1=1, r|p|=m1, and s|p|=m2. This condition makes Y’s

first element align with Z’s first element, and Y’s last
element align with Z’s last element.

(2) For each j between 1 and |p|-1, (rj+1-rj, sj+1-sj) is (0, 1),
(1, 0), or (1, 1). Consequently, rj≤rj+1 and sj≤sj+1. This
condition makes each element of Y align with one
element of Z, and vice versa. Also, only forward
movements along Y and Z are allowed.

The total distance between Y and Z along p is the sum of the
distance between each pair of elements aligned via p:
𝑑ሺ𝑌, 𝑍ሻ ൌ ∑ 𝑑ሺ𝑦ണሬሬሬሬ⃑ , 𝑧௦ണሬሬሬሬ⃑ ሻ||

ୀଵ . The dynamic time warping

distance between Y and Z is the minimum total distance
across all possible warping paths P(Y, Z) between Y and Z:
𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ ൌ min

∈ሺ,ሻ
𝑑ሺ𝑌, 𝑍ሻ.

Other things being equal, the dynamic time warping
distance increases as temporal sequences become longer. To
make the distance comparable across sequences of different
lengths, Kale et al. [82] proposed using the multivariate
dynamic time warping distance. This distance between
sequences Y and Z is computed as their dynamic time
warping distance divided by their optimal warping path’s
length: 𝑀𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ ൌ 𝐷𝑇𝑊ሺ𝑌, 𝑍ሻ/|𝑝∗| ൌ 𝑑∗ሺ𝑌, 𝑍ሻ/|𝑝∗|.
Here, |p*| is the length of 𝑝∗ ൌ argmin

∈ሺ,ሻ
𝑑ሺ𝑌, 𝑍ሻ.

Dynamic time warping is designed for temporal sequences
sampled at equidistant points in time [84]. Yet, this is often
not the case with medical data. For medical data that violate
this property, we can compute the multivariate dynamic time
warping distance in one of several ways. One way is to ignore
the equidistance constraint and do the computation as
presented above. Another way is to use the weighting
mechanism in Siirtola et al. [84] to prevent areas of high
point density from dominating the distance computation.
This mechanism gives smaller and larger weights to points

time

sequence 1

sequence 2

14

with near and distant neighbors in the temporal sequence,
respectively.

Differing longitudinal attributes’ values can be on different
orders of magnitude. If this occurs, one attribute could
dominate the distance computation for multi-dimensional
temporal sequences. This is undesirable. To address this
issue, before computing distances, we first normalize each
attribute’s values so that the values of different attributes
become comparable with each other. More specifically, for
each attribute, we compute its mean and standard deviation
across all of its values in all training instances. For each value
of the attribute, we compute its normalized value by
subtracting the mean and then dividing by the standard
deviation. During visualization in Step 4, we show the
original rather than normalized values to make the presented
values easier to understand.

Our distance computation approach considers not only
shape, but also amplitude that matters. For instance, for
making predictions, a lab test result above its normal range
often gives a different signal from one within its normal
range. Thus, we do not use the value normalization approach
that Paparrizos et al. [85] adopted for computing shape-based
distances for temporal sequences. That approach ignores
amplitude and computes one mean and one standard
deviation per temporal sequence to normalize the values in it.

Clustering algorithm

We use the k-medoids clustering algorithm [86] based on
the multivariate dynamic time warping distance measure to
partition each group of effective segments into k clusters. A
medoid is a representative object of a cluster with the highest
average similarity to all objects in the cluster. The k-medoids
algorithm is inefficient for clustering many objects [86]. Yet,
this is not an issue in our case. For the given memory cell
vector element, we find a modest number of top and bottom
training instances, and need to cluster only a moderate
number of effective segments.

We do not use the k-means clustering algorithm that
requires computing the average of multiple objects. For
multiple effective segments of different lengths, it is difficult
to compute their average properly. Besides the k-medoids
algorithm, other clustering algorithms based on dynamic
time warping also exist [87] and could be used for our
clustering purpose.

3.2.4 Step 4: Visualizing each cluster of effective segments in
a separate figure to extract zero or more clinically
meaningful temporal features

We visualize each cluster of effective segments obtained
in Step 3 one by one. For each cluster, we show the effective
segments in it in a figure to extract zero or more clinically
meaningful temporal features. The figure includes one panel
per longitudinal attribute used in the cluster. All panels are
aligned by time and stacked on top of each other, as shown
in Figure 6, with each rounded rectangle denoting a panel.

Figure 6. Visualizing a cluster of three effective segments
involving two longitudinal attributes.

Each panel shows the value sequence of its linked

longitudinal attribute in every effective segment in the
cluster. An effective segment has one value sequence per
longitudinal attribute used in the cluster. If the cluster uses
more than one attribute, for each effective segment, we use a
dash-dotted polyline to link the first element of each of the
segment’s attribute value sequences across all panels. In this
way, one can easily know that these sequences belong to the
same segment. Each effective segment comes from a training
instance. To ease visualization, we use different colors to
mark differing training instances in the figure.

Usually, a clinician and a data scientist collaborate to build
a clinical predictive model. They view the figure to identify
zero or more clinically meaningful temporal features. Each
feature involves one or more longitudinal attributes used in
the cluster, and is reflected by one or more attribute value
sequences in the figure. It is easier to recognize the feature
by viewing the sequences than to think of it on one’s own.
For each identified feature, the clinician and the data scientist
use their domain knowledge to jointly arrive at an exact
mathematical definition of an extracted feature. Often, the
extracted feature reflects the trend more precisely and
performs better than the raw one learned by the MCLSTM
network.

Marlin et al. [88] proposed identifying temporal patterns
by grouping numeric physiologic time series into clusters.
All time series start and end at the same time steps. For every
cluster, a distinct panel shows each longitudinal attribute’s
mean and standard deviation over time. That approach does
not serve our purpose. In our case, each effective segment
can start and end at different time steps. Non-numeric
attributes like categorical ones can be part of temporal
features and need to be shown along with numeric ones. Also,
the same feature can appear at different time steps in differing
effective segments. If we show each numeric attribute’s
mean and standard deviation over time instead of individual
effective segments, we are likely to miss such features.

Wang et al. [89] proposed identifying temporal patterns by
visualizing multiple patients’ longitudinal medical data in the
same figure. The figure includes one panel per patient. All
panels are aligned by time and stacked on top of each other.
Each panel shows multiple value sequences of a patient, one
for each longitudinal attribute. For the same attribute,

time

at
tr

ib
ut

e
2

time at
tr

ib
ut

e
1

15

different patients’ value sequences appear in differing panels.
This makes it harder to identify temporal patterns,
particularly if the number of patients is not small [90]. In
comparison, for the same attribute, our visualization
approach puts multiple patients’ value sequences in the same
panel.

Handling categorical attributes

A neural network takes only numeric inputs. To use LSTM,
one converts each categorical longitudinal attribute into one
or more numeric attributes using one hot encoding. During
visualization, we show the original categorical attribute
values instead of the converted numeric ones to make the
presentation more succinct and easier to understand. The
figure includes a panel for each categorical attribute linking
to the cluster of effective segments. In the panel, each distinct
value of the attribute appears on a separate row, as illustrated
in Figure 7.

Figure 7. Displaying a sequence of values of the visit type

attribute.

Handling interval attributes

Medical data often include interval attributes, such as the
medication use period and hospitalization period. A common
way to use interval attributes in LSTM is to convert each
interval into two attribute values: its starting time step and its
duration. During visualization, we show the original interval
instead of the converted attribute values to make the
presentation easier to understand. Recall that if the cluster of
effective segments uses more than one attribute, for each
effective segment, we use a dash-dotted polyline to link the
first element of each of the segment’s attribute value
sequences across all panels. For each interval attribute used
in the segment, the dash-dotted polyline links to the starting
point of the first interval in the attribute’s value sequence. To
ease visualization, we put the intervals from distinct data
instances on different and adjacent horizontal lines, with one
line per data instance, as illustrated in Figure 8.

Figure 8. Displaying the interval sequences from three
patients’ hospitalization period attribute.

Handling missing values

Neural network does not take any missing input value. To
use LSTM, one needs to fill in every missing value first. One
way to do this is as follows. Consider a value sequence of an
attribute. If the value sequence is completely missing, we
impute a clinically normal value defined by the clinician [23,
31]. Otherwise, for each missing value before the first
occurrence or after the last occurrence of a non-missing one,
we fill in the missing value with the non-missing one [91].
For each missing value between two non-missing ones, we
linearly interpolate them to fill in the missing value. Another
way to handle missing values for an attribute is to use a
binary indicator for whether a value of it is missing, compute
the amount of time since its last observation, and decay its
value over time toward its empirical mean value rather than
use its last observed value [57, 92].

During visualization, no filled-in value is shown. This
makes the figure consistent with the raw data to help ensure
genuine temporal features are identified.

Avoiding using an excessive number of longitudinal
attributes

In LSTM, we sometimes embed each categorical attribute
value into a vector representation to reduce the input vector
dimensionality. This makes model training more efficient
and effective [22]. In MCLSTM, no value embedding is
used. Instead, each input vector element is a longitudinal
attribute’s value. This is essential for making the identified
temporal features easy to understand. To make model
training efficient and effective, we need to avoid using an
excessive number of longitudinal attributes. This requires
handling two cases.

First, consider three longitudinal attributes: disease,
procedure, and drug. Each attribute is categorical with many
possible values. If no value embedding is used, by default the
attribute is converted into many numeric attributes, one per
possible value, using one hot encoding. This explodes the
input vector dimensionality and is undesirable. To address
this issue, we can proceed in one or more of the following
ways:
(1) We use grouper models like the Diagnostic Cost Groups

(DCG) system to group diseases, procedures, and drugs
and reduce the numbers of their possible values [93,
Chapter 5, 94].

(2) For each of the three attributes, we use a few of its most
common values and ignore the others.

(3) For each of the three attributes, we use a few values of it
deemed most relevant to the modeling problem based on
medical knowledge, and ignore the others.

(4) Rajkomar et al. [22] provided a method using LSTM
with value embedding and an attribution mechanism to
rank categorical attribute values. For each of the three
attributes, we use the top few values ranked by this
method in MCLSTM and ignore the others.

Second, many lab tests exist. We will have an excessive
number of longitudinal attributes, if we use one for each lab

time

vi
si

t t
yp

e

outpatient
emergency department

inpatient

time ho
sp

ita
liz

at
io

n
pe

ri
od

16

test’s values. This is undesirable. To address this issue, we
can proceed in one or more of the following ways:
(1) Pivovarov et al. [95] identified 70 common lab tests of

interest to primary care and internal medicine. We use
these lab tests and ignore the others.

(2) We use a few lab tests deemed most relevant to the
modeling problem based on medical knowledge, and
ignore the others.

(3) Rajkomar et al. [22] converted numeric attributes to
categorical ones via discretization, and provided a
method using LSTM with value embedding and an
attribution mechanism to compute a weight for each
categorical attribute value. For a categorical attribute
with multiple possible values, we compute its weight as
these values’ maximum weight reflecting its importance.
We use the top few lab tests with the highest weights in
MCLSTM and ignore the others. This is a form of
feature selection for longitudinal attributes.

3.3 Several ways of using the extracted temporal features
and our feature extraction method’s advantages

The extracted temporal features are clinically meaningful
and tend to be predictive. We combine them with expert-
engineered features to build machine learning, statistical, or
rule-based predictive models. For machine learning models,
this can improve model accuracy [31], as many extracted
features reflect trends more precisely and can perform better
than the raw ones learned by the MCLSTM network. Also,
we can use the method described in Section 4 to
automatically explain the models’ prediction results.

Wang et al. [89] showed properly visualizing temporal
sequences in medical data could help us spot data quality
issues, such as an impossible order of events. When
visualizing each cluster of effective segments, we could
identify some temporal features that make no sense and
reflect the underlying data quality issues. By fixing these
issues and enhancing data quality, we can boost model
accuracy and improve other applications using the same data
set.

Using our feature extraction method can reduce the effort
needed to build usable predictive models for the current
modeling task. Moreover, Gupta et al. [32] showed that many
features an RNN learns from a medical data set reflect
general properties of the medical attributes involved in the
features, and can be useful for other modeling tasks. Using
the features extracted by our method to form a temporal
feature library to facilitate feature reuse, we can reduce the
effort needed to build predictive models for other modeling
tasks.

3.4 Efficiently automating MCLSTM model selection

Each machine learning algorithm has two types of
parameters: normal parameters automatically tuned during
model training, and hyper-parameters that must be set before
model training. Before training a MCLSTM network, we
need to set the values of multiple hyper-parameters, such as

the number of component networks in it and the learning rate.
These values can affect model accuracy greatly, e.g., by two
or more times [96]. The optimal hyper-parameter value
combination is found via an iterative model selection process.
In each iteration, we use a combination to train a model. Its
accuracy is used to guide the selection of the combination
that will be tested in the next iteration.

3.4.1 The need for and the state of the art of automatic
machine learning model selection

Machine learning model selection, if done manually, is
labor intensive and time-consuming. Frequently, several
hundred to several thousand iterations are needed to find a
good hyper-parameter value combination [96, 97]. On a data
set of non-trivial size and particularly for deep neural
network, testing a combination in one iteration often takes
several hours or longer [98]. To cut the human labor needed
for model selection, researchers have developed multiple
automatic machine learning model selection methods [68].
For certain machine learning algorithms including deep
neural network, some of these methods can find better hyper-
parameter value combinations than manual search by human
experts [68, 99].

Recently, Google set up an automatic model selection
service called Google Vizier [99]. It has become the de facto
model selection engine within Google. Using it to conduct
model selection, Google researchers [22] built clinical LSTM
models that greatly improved prediction accuracy for three
outcomes. The medical data set used there is of moderate size
and has 216,221 data instances. As mentioned in the paper
posted at https://arxiv.org/pdf/1801.07860v1.pdf, using
Google Vizier to perform automatic model selection on the
data set consumed >201,000 GPU (graphics processing unit)
hours. This is beyond the computational resources available
to many healthcare systems and would exceed their budgets
quickly. When standard techniques are used, the time needed
for automatic model selection usually increases superlinearly
with the data set size. On a medical data set larger than the
above one, using Google Vizier to perform automatic model
selection would consume more computational resources and
a higher cost, and quickly reach a point that almost no
healthcare system could afford. In fact, this could even
become a problem for Google, which has a lot of resources.
To run its business, Google regularly needs to build
predictive models on large data sets. As mentioned in the
Google Vizier paper [99], using Google Vizier to perform
automatic model selection on a large data set often takes
months or years. As a result, for some mission critical
applications, Google has to deploy a model without fully
tuning it, and then keep tuning it over several years. Using
suboptimal models leads to degraded outcomes. In our case,
the situation could become even worse, if we iteratively train
the MCLSTM network and extract features in multiple
rounds, as each round requires automatic MCLSTM model
selection.

17

3.4.2 Our prior work on efficiently automating machine
learning model selection

To expedite automatic machine learning model selection,
we recently developed a progressive sampling-based
Bayesian optimization method for it. We showed that
depending on the data set, our method can speed up the
search process by one to two orders of magnitude [97, 100,
101]. Our idea is to conduct progressive sampling [102],
filtering, and fine-tuning to quickly shrink the search space.
We use a random sample of the data set termed the training
sample to train models. We do fast trials on a small training
sample to drop unpromising hyper-parameter value
combinations early, keeping resources to fine-tune promising
ones. We test multiple combinations. For each combination,
we test it by training a model using it and the training sample.
A combination is promising if the trained model reaches
accuracy above an initial threshold. We then raise the
threshold, expand the training sample, test and adjust
combinations on it, and reduce the search space several
times. In the last round, we use the full data set to find a good
combination.

For several reasons described below, if we directly apply
our progressive sampling-based Bayesian optimization
method to automate MCLSTM model selection, we may not
obtain the desired search efficiency and search result quality.
Instead, for it to better automate MCLSTM model selection,
we use four techniques to improve our method. The first
technique is specific to deep neural network. The second
technique is specific to LSTM. The third and fourth
techniques apply to general machine learning algorithms.

3.4.3 Technique 1: Performing early stopping when testing a
hyper-parameter value combination

To train a machine learning model, we often need to
process each training instance multiple times. Our
progressive sampling-based Bayesian optimization method
is designed for the case that satisfies two conditions
concurrently. First, it is fast to process a training instance
once during model training. This ensures a hyper-parameter
value combination can be tested on a small training sample
quickly. Second, using a relatively small training sample, we
can estimate a combination’s quality with reasonable
accuracy. This reduces the likelihood that a high-quality
combination is identified as unpromising and dropped at an
early stage of the search process.

Neither condition is satisfied on deep neural network.
When training a deep neural network, it often takes a non-
trivial amount of time to process a training instance once. As
a result, quite some time is needed to test a hyper-parameter
value combination on even a small training sample. This
degrades search efficiency. Moreover, deep neural network
is data hungry. To reasonably estimate a combination’s
quality for a deep neural network, a large training set is
needed. If we start from using a small training sample to
identify unpromising combinations, we are likely to drop
many high-quality combinations erroneously in the first few

rounds of the search process. This can degrade search result
quality.

To address these issues, we adopt an early stopping
technique for automating deep neural network model
selection. Instead of starting from a small training sample,
the search process starts from a relatively large training
sample. A neural network is trained in epochs. As a model is
trained for more epochs, its accuracy generally improves. In
the first few rounds of the search process, when testing a
hyper-parameter value combination, we train the model for a
few rather than for the full number of epochs. In this way,
without spending too much time on the test, we can estimate
the combination’s quality with reasonable accuracy. This
type of early stopping technique has been used previously for
expediting automatic machine learning model selection [98,
99], but not in combination with progressive sampling.

3.4.4 Technique 2: Tuning the learning rate hyper-parameter
before tuning the other hyper-parameters in depth

Greff et al. [103] showed that LSTM’s learning rate hyper-
parameter has a special property. For each data set, there is a
large interval, in which the learning rate offers good model
accuracy with little variation. The LSTM model can be
trained relatively quickly when the learning rate is at the high
end of the interval. When searching for a good learning rate,
we can start from a high value like one and keep dividing it
by ten until model accuracy no longer improves.

Based on this insight, we expedite automatic LSTM model
selection by tuning the learning rate before tuning the other
hyper-parameters in detail. We proceed in four steps. In step
one, we use a relatively large training sample to test a few
random hyper-parameter combinations, and select the one
reaching the highest model accuracy. Intuitively, this
combination would have reasonable and neither optimal nor
terrible performance. In step two, for all hyper-parameters
excluding the learning rate, we fix their values according to
this combination and use the training sample to tune the
learning rate. We start from a high learning rate like one and
keep dividing it by ten until model accuracy no longer
improves. In step three, we fix the learning rate at the value
found in step two, and use our progressive sampling-based
Bayesian optimization method to tune all of the other hyper-
parameters. In step four, if desired, we perform some final
fine-tuning of all hyper-parameters simultaneously without
significantly changing the value of any of them.

3.4.5 Technique 3: Conducting stable Bayesian optimization

Machine learning model selection aims to find an optimal
hyper-parameter value combination in the hyper-parameter
space. As mentioned in Nguyen et al. [104], when the
training or validation set is small, spurious peaks often
appear on the performance surface defined over all possible
combinations. These peaks are narrow and scattered
randomly in low-performance regions. In this case, the
search process of automatic machine learning model
selection frequently stops at a spurious peak instead of a

18

more stable one. The final model built there has suboptimal
accuracy when deployed in the real world.

To prevent the search process from stopping at a spurious
peak, Nguyen et al. [104] proposed a stable Bayesian
optimization method for automating machine learning model
selection. Bayesian optimization uses a regression model to
predict a machine learning model’s accuracy based on the
hyper-parameter value combination, and an acquisition
function to select the combination to test in the next iteration.
The regression model is usually a random forest [96] or a
Gaussian process [104]. The former has been shown to
outperform the latter for making this prediction [105].

The main idea of the stable Bayesian optimization method
[104] is to measure a hyper-parameter value combination’s
performance stability and include the measure in the
acquisition function. The method is designed for the case in
which the regression model is a Gaussian process, and each
step of the search process uses the whole data set. The
technique used in that method does not directly apply to our
progressive sampling-based Bayesian optimization method
[97], which uses a random forest as the regression model, and
a gradually expanded training sample over rounds of the
search process.

As our progressive sampling-based Bayesian optimization
method starts from a moderate-sized training sample, we
could run into spurious peaks in the first few rounds of the
search process and get stuck at one of these peaks. To prevent
this undesirable situation, we include a performance stability
measure for hyper-parameter value combinations in the
acquisition function.

More specifically, our progressive sampling-based
Bayesian optimization method uses a random sample of the
data set termed the validation sample to evaluate trained
models. For each hyper-parameter value combination chosen
for testing, our original method [97] uses it to train a model
and records the model’s accuracy on the validation sample as
its accuracy measure without considering its performance
stability. To measure a combination’s performance stability,
we partition the validation sample into multiple subsets
before the search process starts. For a large data set, we use
a validation sample larger than that used in our paper [97] to
ensure each subset is of reasonable size. For each
combination chosen for testing, we record the trained
model’s accuracy on each subset and compute the variance
of these accuracies. A large variance indicates the
combination has unstable performance. We include this
variance as the combination’s performance stability measure
in the acquisition function.

In our progressive sampling-based Bayesian optimization
method, the training sample expands over rounds. To save
time, in each round that is neither the first nor the last one,
for each hyper-parameter value combination that looks
unpromising in the previous round, we do not use it and the
expanded training sample to train a model. Instead, we
multiply its accuracy measure from the previous round by a
computed factor as its estimated accuracy measure for the

current round [97]. Our rationale is that in the search process,
which new combinations are chosen for testing in each round
tends to be impacted mostly by the promising combinations’
accuracy measures [105]. Using the same rationale, for each
unpromising combination, we can handle its performance
stability measure over rounds in a similar way.

3.4.6 Technique 4: Normalizing the data before starting the
search process

Often, we can greatly improve a predictive model’s
accuracy by normalizing the data before training the model.
To do this, in each round of the search process, we could take
a sample of the data set, normalize it, and use it to test and
adjust hyper-parameter value combinations. Yet, for each
attribute, its mean and standard deviation in the sample are
different from those in the whole data set. This will lead to
imprecise accuracy estimates of the trained models and
subsequently degrade search result quality. To avoid this
problem, before the search process starts, we normalize the
entire data set that will be used for training and validation in
any way. During the search process, we obtain training and
validation samples from the normalized data set. Besides
boosting search result quality, this also improves search
efficiency, as data need to be normalized only once during
the search process.

3.5 Additional details

For each longitudinal attribute, one could train an LSTM
network using only that attribute without the others, and then
extract temporal features from the network’s memory cell
vector elements. But, this is unlikely to produce high-quality
features. A typical attribute has limited predictive power by
itself. An LSTM network built using only this attribute
without the others tends to have low prediction accuracy.

Once developed, chronic diseases rarely disappear and
usually have a longer lasting impact on future visits than
acute diseases. When each input vector includes one patient
visit’s information, Bai et al. [46, 62] improved LSTM
prediction accuracy by learning different time decay factors
for differing diseases to reflect this. We can make this more
explicit to help LSTM remember long-span history and
further boost prediction accuracy. For each common chronic
disease, researchers have developed some phenotyping
algorithms using medical data to detect whether a patient has
this disease [64-66, 106, 107]. After spotting that a patient
has a chronic disease at a specific time step, we add this
disease’s diagnosis information into the input vector at each
subsequent time step for the patient, regardless of whether
this diagnosis is recorded at that time step.

For our temporal feature extraction method to work, we
rely on three properties of LSTM. First, LSTM has memory
cell vectors, whose elements depict the learned temporal
features. Second, the memory cell vector 𝑐௧ሬሬሬ⃑ at time step t is a
function of the input vector 𝑥௧ሬሬሬ⃑ , 𝑐௧ିଵሬሬሬሬሬሬሬ⃑ , and the hidden state
vector ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ . Third, ℎ௧
ሬሬሬ⃑ is a function of 𝑥௧ሬሬሬ⃑ , 𝑐௧ିଵሬሬሬሬሬሬሬ⃑ , and ℎ௧ିଵ

ሬሬሬሬሬሬሬሬ⃑ .
Besides LSTM, several other types of RNN like those given

19

in Zoph et al. [108] also have these three properties. These
RNNs can outperform LSTM for certain modeling tasks. We
can also apply our method to these RNNs to extract
predictive and clinically meaningful temporal features from
medical data for predictive modeling.

4. Automatically Explaining Machine Learning
Prediction Results

In this section, we outline a method of using the extracted
temporal features to automatically explain machine learning
prediction results and to suggest tailored interventions.

Each extracted temporal feature is clinically meaningful
and has a precise mathematical definition. Using these
temporal features, we convert the longitudinal medical data
to an initial table, with one column per temporal feature.
Then we add the static attributes to form the final table. Each
column of it has an easy-to-understand meaning. Using a
supervised machine learning algorithm that can maximize
prediction accuracy, we build a predictive model on the final
table. Then we use our previously developed method [30] to
automatically explain the model’s prediction results and
suggest tailored interventions.

4.1 Review of our prior automatic explanation method

For tabular data, our prior method [30] can automatically
explain any machine learning model’s prediction results with
no accuracy loss. It works in the following way. We use the
final table to mine class-based association rules. Each rule
contains a feature pattern linking to a value of the outcome
variable and is of the form: e1 AND e2 AND … AND eu
v. The rule suggests that a patient’s outcome variable tends
to take value v if the patient satisfies conditions e1, e2, …, and
eu. Each condition is on a feature taking a specific value or a
value in a given range. An example rule for predicting asthma
patient outcome is: the patient’s body mass index kept rising
over 12 months AND the patient had an emergency
department visit for asthma last year high risk.

After the association rules are mined, a clinician examines
them and drops those that make little or no clinical sense. For
each remaining rule with a poor outcome on its right hand
side, the clinician pre-compiles zero or more interventions
addressing the reason shown by the rule. One such
intervention for the example rule mentioned above is to
advise the patient to lose weight with a healthy diet and
regular exercise. For each patient who is predicted by the
machine learning model to have a poor outcome, our method
lists zero or more rules. Each rule gives a reason why the
patient is predicted to have the poor outcome. Moreover, our
method suggests tailored interventions by listing the
interventions linking to these rules.

4.2 Shortcomings of our prior automatic explanation
method

Our prior automatic explanation method [30] has two
shortcomings.

4.2.1 Shortcoming 1: Using an association rule mining
method suboptimal for imbalanced data

Consider an association rule R with value v on its right
hand side. Among all data instances satisfying R’s left hand
side, the percentage of data instances whose outcome
variables have value v reflects R’s accuracy and is termed R’s
confidence. The percentage of data instances satisfying R’s
left hand side and whose outcome variables have value v
reflects R’s coverage and is termed R’s support. Our prior
automatic explanation method uses a standard approach to
mine association rules, obtaining rules at a fixed level of
minimum confidence (e.g., 50%) and support (e.g., 1%). Yet,
this approach is suboptimal on imbalanced data.

Medical data are often imbalanced, with one value of the
outcome variable occurring much more frequently than
another. In this case, using the same minimum support for
different values of the outcome variable is inadequate [109].
If the minimum support is high, we cannot find enough
association rules for the rare values. As a result, for many
patients whose outcome variables are predicted by the
machine learning model to take these values, we cannot
explain the model’s prediction results. On the other hand, if
the minimum support is too low, the rule mining process will
produce too many rules as intermediate results and generate
many overfitted rules in the end. The former makes the rule
mining process rather slow and the computer easily run out
of memory. The latter makes it daunting, if not infeasible, for
the clinician to examine the many mined rules.

4.2.2 Shortcoming 2: Ignoring those interventions that target
the conditions on the mined association rules’ left hand side
linking to good outcomes

Our prior automatic explanation method uses only
interventions linking to the association rules with poor
outcomes on their right hand side. Consider a rule with a
good outcome on its right hand side. An intervention helping
patients fulfill the conditions on the rule’s left hand side
could improve outcomes [53]. Yet, our prior method ignores
such interventions and misses the related opportunities for
improving outcomes.

4.3 Improving our prior automatic explanation method

We use two techniques to address the two shortcomings
mentioned above and to improve our prior automatic
explanation method [30].

4.3.1 Technique 1: Replacing support by commonality

To address the shortcoming mentioned in Section 4.2.1, we
use the approach developed by Paul et al. [109], instead of
the standard approach, to mine class-based association rules.
There, we replace support by commonality, which is a value-
specific support. Consider an association rule R with value v
on its right hand side. R’s commonality is defined as the
percentage of data instances satisfying R’s left hand side
among all data instances whose outcome variables have
value v. Intuitively, we want to keep R if the feature pattern

20

on its left hand side is frequent for v, but rare for any other
value of the outcome variable. Based on this insight, we mine
rules at a fixed level of minimum confidence (e.g., 50%) and
commonality (e.g., 10%). If several mined rules have the
same left hand side, we keep only the rule with the highest
confidence for the value on its right hand side [110].

Compared to using support, using commonality has three
advantages. First, the rule mining process produces fewer
association rules as intermediate results. This expedites the
process, which is important for large data sets. Second, the
rule mining process generates fewer overfitted rules in the
end. This reduces the time the clinician needs to examine the
mined rules. Third, we find more rules for the rare values of
the outcome variable. As a result, we can explain the machine
learning model’s prediction results for more patients whose
outcome variables are predicted by the model to take one of
these values.

In clinical applications, the rare values of the outcome
variable usually denote poor outcomes and are of more
interest to us than frequent values. The mined rules related to
the rare values reflect common feature patterns linking to
these values. Some patients have these values as their
outcomes for uncommon reasons and are covered by none of
these rules, no matter how we improve our association rule-
based automatic explanation method. Yet, by improving our
method, we reduce the number of patients for whom we are
unable to explain the machine learning model’s prediction
results.

4.3.2 Technique 2: Adding interventions that target the
conditions on the mined association rules’ left hand side
linking to good outcomes

To address the shortcoming mentioned in Section 4.2.2, we
add interventions beyond those used in our prior automatic
explanation method [30]. For each kept association rule with
a good outcome on its right hand side, the clinician pre-
compiles zero or more interventions helping patients fulfill
some or all of the conditions on its left hand side. For some
patients at high risk for poor outcomes, using these
interventions could improve outcomes [53]. We consider
these interventions when suggesting tailored interventions.

The patients suitable for these interventions are not those
satisfying the rule’s left hand side. This is different from the
case of the interventions linking to the association rules with
poor outcomes on their right hand side. Instead, for each of
these interventions, the clinician pre-compiles one or more
sets of conditions, under each of which a patient is regarded
suitable for the invention. For each patient who is predicted
by the machine learning model to have a poor outcome and
satisfies one of these sets of conditions, we list the
intervention as one of the suggested ones.

4.4 Advantages of and a potential use case for our
automatic explanation method for machine learning
prediction results on longitudinal medical data

As mentioned in the introduction, our automatic
explanation method for machine learning prediction results
on longitudinal medical data can enable machine learning
models to be used in clinical practice, and help transform
healthcare to be more proactive. At present, healthcare is
often reactive, resulting in suboptimal outcomes and
increased costs. Our feature extraction method can find many
temporal features reflecting trends. By using these features
and our automatic explanation method to identify risky
trends early, we can proactively apply preventive
interventions to stop further deterioration of health. The
automatically generated explanations can help us identify
new interventions, warn clinicians of risky patterns, and
reduce the time clinicians need to review patient records to
find the reasons why a specific patient is at high risk for a
poor outcome. The automatically suggested interventions
can reduce the likelihood of missing suitable interventions
for a patient. All of these factors can help improve outcomes
and cut costs.

Below are several examples of temporal features with
potential preventive interventions for asthma patients:
(1) Air pollution: Consider the number of days in the past

week in which the concentration of a given air pollutant
like sulfur dioxide stayed above a fixed level. If either
this number or the concentration’s rate of increase
exceeds its own specific threshold, the following
preventive interventions could be used:
(a) Suggest the patient to stay indoors as much as

possible until the pollutant concentration drops
below a safe threshold.

(b) Ensure the patient is compliant with his/her current
controller therapy like inhaled corticosteroid. If the
patient is compliant and symptomatic, consider a
temporary increase in controller medication dose
during the next two to four weeks.

(c) Ask the patient to increase the dose and/or dosing
frequency of quick-relief asthma medication during
the next two to four weeks. For example, increase
albuterol dose from two to four puffs per dose
and/or dosing frequency to four to six doses per day
as needed.

(2) Pollen count: Consider the number of days in the past
week in which a given type of pollen count stayed above
a fixed level. If either this number or the pollen count’s
rate of increase exceeds its own specific threshold, the
following preventive interventions could be used:
(a) Recommend the patient to use allergy medication

like antihistamine or nasal steroid spray during the
pollen season (February to October depending on
the pollen type).

(b) If asthma control worsens during the pollen season
despite medication compliance, consider initiating
or increasing the dose of the daily controller
medication regimen (inhaled corticosteroid).

(c) Consider adding a leukotriene inhibitor to the daily
controller medication regimen.

21

(3) Fractional exhaled nitric oxide (FeNO): Rising FeNO
levels over time despite treatment may indicate non-
compliance with or non-responsiveness to inhaled
corticosteroid, or worsening asthma. If this increase
occurs, the following preventive interventions could be
used:
(a) Assess and address reasons for non-compliance

with inhaled corticosteroid.
(b) Adjust the medication type or dose of inhaled

corticosteroid.
(c) Perform allergy testing on the patient and prescribe

allergy medication as needed.
(4) Forced expiratory volume in 1 second (FEV1):

Decreasing FEV1 over the past year to below 80% of the
predicted normal value or prior personal best may
indicate poor asthma control or progressive lung injury
from asthma. If this decrease occurs, the following
preventive interventions could be used:
(a) Assess the patient for asthma triggers and ensure

avoidance of them.
(b) Assess asthma controller medication compliance

and dosage. Adjust the medication as indicated.
(c) Assess asthma control and intervene based on the

National Heart, Lung and Blood Institute step
therapy guidelines.

(5) Oral corticosteroid prescription: Increasing frequency of
filling oral corticosteroid prescription over the past year
indicates poor asthma control. If this increase occurs, the
following preventive interventions could be used:
(a) Assess the patient for asthma triggers and ensure the

patient avoids them.
(b) Assess asthma controller medication compliance.

Prescribe, change, or increase the dose of the
medication if indicated.

(c) Prepare a new asthma action plan to intervene more
aggressively in the yellow zone [111].

(d) Assess asthma control and intervene based on the
National Heart, Lung and Blood Institute step
therapy guidelines.

(6) Body mass index: The status that a patient’s body mass
index keeps rising over 12 months or exceeds 25, the
threshold value for overweight, is associated with poorer
asthma control. If the patient reaches this status, the
following preventive interventions could be used:
(a) Advise the patient to lose weight with a healthy diet

and regular exercise. Provide education and
information on weight loss to caregivers.

(b) Refer the patient to a dietician and/or a dedicated
weight loss clinic.

(7) Asthma control test score: The asthma control test score
reflects a patient’s asthma control status [112, 113] and
can be assessed every week [114]. A lower score
indicates worse asthma control. If over a period of two
weeks, the score has trended down but stayed between
15 and 18, the following preventive intervention could
be used:

(a) Ensure the patient is compliant with asthma
controller medications and avoids asthma triggers.
Ask the patient to see his/her care provider for
further interventions/instructions.

If the score is below 15 at any time, the following
preventive intervention could be used:
(b) Besides the actions listed in (a), refer the patient to

his/her personalized asthma action plan for acute
interventions including initiating oral
corticosteroids.

(8) Asthma controller medication compliance: Lack of
compliance with daily controller medication can lead to
poor asthma control. Yet, medication compliance data
are rarely provided to a patient’s care provider. We can
track medication compliance data electronically in two
ways. First, we track monthly asthma controller
medication refills from claims data as a surrogate for
medication compliance, as compliance should link to
monthly refills. Second, we use the electronic-Asthma
Tracker [114, 115], an asthma control tracker with a
symptom diary tool that also monitors a patient’s daily
use of asthma controller medications. When monitoring
frequency of monthly refills or daily use of asthma
controller medications, the patient’s compliance is
expected to be ≥80% of prescribed asthma controller
medications [116]. If this is not the case, the following
preventive intervention could be used:
(a) The care provider assesses over the phone or during

clinic visits potential barriers to compliance, and
provides education about the importance of
achieving and maintaining medication compliance.

The above preventive interventions are useful for asthma
care management [117]. Currently, care managers handle
most of the care management process and provide limited
input on the patient to physicians. Using our automatic
explanation method to identify risk trends early and obtain
suggestions on potential preventive interventions, care
managers can pass this tailored information to physicians for
them to act accordingly. This transforms the care
management process and makes it more effective via closer
collaboration between care managers and physicians.

We can use the final predictive model and automatic
explanations to give early warnings for high-risk patients. To
measure the number of days of early warning provided by the
model, we use an approach illustrated by the following
example. Suppose the model predicts an individual patient’s
hospitalization in the next 365 days. A patient could be
hospitalized more than once during a one-year period.
Consider a patient admitted to the hospital on date D. To
measure the number of days of early warning the model
provides for the patient, we use D-365 as the initial prediction
time point and input the patient’s history up to D-365 into the
model. If it predicts hospitalization, it warns 365-j1 days in
advance, with D-j1 being the first day between D-365 and D
when the patient was admitted to the hospital. Otherwise, if
the model predicts no hospitalization, we move the prediction

22

time point one day forward to D-364 and input the patient’s
history up to D-364 into the model. If it predicts
hospitalization, it warns 364-j2 days in advance, with D-j2
being the first day between D-364 and D when the patient
was admitted to the hospital. Otherwise, if the model still
predicts no hospitalization, we move the prediction time
point another day forward. We keep moving the prediction
time point forward until the model predicts hospitalization or
we reach D, whichever occurs first. If we reach D, the model
warns zero day in advance. For patients ever hospitalized
during a certain period, the average number of days of early
warning provided by our model reflects how early it gives
warnings.

5. Related Work

Much related work is mentioned in the previous sections.
In this section, we describe some other related work not
covered in any of the previous sections.

5.1 Automating feature engineering on tabular data

Several papers have been published on automating feature
engineering on tabular data.

As a form of meta-learning, Bilalli et al. [118] used
knowledge learned from processing prior data sets to
automatically suggest data pre-processing operators for the
current data set. That method considers only a few pre-
defined operators and cannot handle longitudinal data. In
comparison, MCLSTM handles longitudinal data and does
not limit the types of temporal features it can learn.
Numerous types of clinically meaningful temporal features
could be useful for predictive modeling with medical data.
The exact forms of many of these types are often unknown
beforehand and need to be discovered in a data-driven way.

Khurana [119] automated feature engineering on data
stored in a single table, by recursively applying a set of pre-
defined transformations on the table’s columns to form new
features. That method cannot handle longitudinal data. Often,
a feature formed by recursive transformations has no clear
medical meaning. It is difficult to use the feature to
automatically explain machine learning prediction results.
Yet, this function is needed in our case.

Kanter et al. [120-122] described three methods for
automating feature engineering on data stored in multiple
tables. Each method supports a few pre-defined aggregate
operators like sum and average, and allows them to be
applied to temporal data over the same period. Yet, this is
insufficient for handling longitudinal medical data. On
medical data, many types of temporal features could be
useful for predictive modeling. Each feature could be
computed on data over a distinct period. For example, one
feature is whether a patient’s body mass index kept rising
over the past 12 months. Another feature is whether the
patient had at least two emergency department visits for
asthma in the past six months. Our feature extraction method
can obtain features computed on data over different periods.

Lam et al. [123] described a method for automatically
learning features from data stored in multiple tables. That
method can handle temporal data, if each temporal attribute’s
values are stored in a separate table or a separate column of
a table linking to the main table via key-foreign key
relationships. That method learns temporal features by
forming one RNN per temporal attribute. As a result, each
learned feature involves only one attribute. Also, the learned
features are not guaranteed to be meaningful. In comparison,
on medical data, a useful feature could involve more than one
longitudinal attribute. Our feature extraction method can find
such features and ensures each kept feature is clinically
meaningful.

5.2 Temporal and sequential pattern mining

Our temporal feature extraction method is also a pattern
mining method, as each temporal feature obtained by it
captures a pattern that is temporal and/or sequential. The data
mining community has developed many temporal [17, 18]
and sequential [19] pattern mining techniques, some of which
use visualization to facilitate pattern discovery [77, 90, 124].
Existing techniques [77, 124-129] usually handle a single
type of attribute. For example, standard sequential pattern
mining techniques handle only categorical attributes. This
does not serve our feature extraction purpose. In our case,
medical data often contain several types of attributes
(numeric, categorical, and interval). An extracted temporal
feature can involve more than one type of attribute.

Many temporal and sequential pattern mining techniques
[125, 126, 130] ignore pattern interactions and mine each
pattern independently of the others. On a data set of non-
trivial size, such a technique often finds numerous patterns,
many of which are clinically meaningless and highly
redundant with each other, e.g., differ by only one item with
all other items in the pattern being the same. It is daunting, if
not infeasible, for the clinician to examine these patterns and
identify the clinically meaningful ones. Without dropping the
redundant patterns, using all mined patterns, each as a feature,
to build a machine learning predictive model would degrade
model accuracy. In comparison, MCLSTM model training
considers pattern interactions. Hence, our MCLSTM-based
pattern mining method finds mostly non-redundant patterns
and avoids the pattern explosion problem. For the clinician
and the data scientist involved in the feature extraction
process, this greatly reduces the manual examination work
needed by them.

Many temporal and sequential pattern mining techniques
mine frequent patterns without thinking about building an
accurate predictive model [130, 131]. As a result, many
mined patterns have little or no predictive power for the
outcome variable. In comparison, our pattern mining method
starts from building an MCLSTM predictive model for the
outcome variable. The model often has a reasonable accuracy.
Thus, the patterns mined by our method tend to have high
predictive power for the outcome variable.

23

Existing temporal and sequential pattern mining
techniques either ignore the time gap between consecutive
events or require a human expert to specify a threshold,
above which the consecutive events in the same sequence are
regarded as unrelated to each other [126]. The time gap
between consecutive events should be used, as it gives useful
information on how closely these events relate to each other.
Yet, manually specifying the threshold for the time gap is
difficult, particularly because each type of event can have its
own optimal threshold that is often unknown beforehand. In
comparison, our pattern mining method considers the time
gap between consecutive events, requires no manual
specification of any threshold for the time gap, and learns
which consecutive events in the same sequence relate to each
other in a data-driven way.

Some temporal pattern mining techniques use temporal
abstraction, which converts a time series of a variable into a
sequence of time-interval events [132, 133]. Each event
denotes a property of the time series. Temporal abstraction
requires manual specification of its primitives and thresholds
that are often specific to a given disease. This is difficult to
do, particularly in a thorough fashion.

Some temporal pattern mining techniques use shapelets
[134]. Each shapelet is a univariate time series subsequence
that represents a class well in some sense. In comparison, in
our case, an extracted temporal feature can involve more than
one attribute.

Using shapelets, Ghalwash et al. [135] developed a method
to extract multivariate temporal patterns from medical time
series. That method assumes time series are evenly spaced,
which is often not true in our case. Also, certain temporal
patterns can be learned by MCLSTM, but not by that method.
One such pattern is that an attribute’s value shows a specific
trend, and then after a period of variable length, the
attribute’s value shows another specific trend.

Nguyen et al. [136] used a convolutional neural network
built on medical data to find sequence patterns of a fixed
length. That method handles only categorical attributes and
does not fit our case, where temporal patterns can have
varying lengths and other types of attributes exist.

Wang et al. [127] used non-negative matrix factorization
to mine temporal patterns from medical data. That method
handles only binary event attributes, and does not require the
mined patterns to correlate with the outcome variable.

Liu et al. [126] used a graph-based method to mine
temporal patterns from medical data. That method handles
only categorical event attributes.

5.3 Visualizing deep neural networks

Many papers have been published on visualizing deep
neural networks [137, 138]. Most of these papers focus on
convolutional neural network. Only a few of these papers
address RNN [138]. Our temporal feature extraction method
includes a technique of visualizing MCLSTM.

5.4 Automatically explaining machine learning
prediction results

Much work has been done on automatically explaining
machine learning prediction results [139, 140]. Most of the
work focuses on tabular data, images, and texts. To the best
of our knowledge, no paper has been published on this
paper’s topic of automatically providing rule-based
explanations for machine learning prediction results on
longitudinal medical data and suggesting tailored
interventions [139]. Compared to other forms of explanations
for machine learning prediction results used in the literature,
rule-based explanations are easier to understand and easier to
use for designing tailored interventions. Among the work
published on automatically explaining deep neural network’s
prediction results [138, 141-143], most targets convolutional
neural network rather than RNN [141].

Automatically explaining LSTM’s prediction results on
genomic and text data

Several papers on automatically explaining LSTM’s
prediction results focus on genomic and text data. Unlike a
patient’s medical data that have multiple attribute values at
each time step, a genomic or text sequence has only one value
at every position of the sequence.

For an LSTM network built on genomic data, Lanchantin
et al. [144] automatically explained its positive prediction
result on a genomic sequence by displaying the sub-sequence
of a fixed length that gives the largest score change from
negative to positive output score. This approach does not fit
our case, where temporal patterns can have varying lengths.

For an LSTM network built on text data, researchers have
automatically explained its classification result on a text
sequence by showing which words [145], pieces of text [146],
or phrases [147] in the sequence are responsible for the
classification result. Ming et al. [148] explained the function
of each hidden state vector element in the network using the
words highly correlated with the element. Strobelt et al. [149]
built a tool to visualize the network’s hidden state sequences.
For a text sequence, the tool can find other text sequences
producing hidden state sequences similar to that produced by
this one. In comparison, our feature extraction method uses
the memory cell vector elements at the last time step to
identify the top and bottom training instances, and visualize
their effective segments rather than hidden state sequences.

Besides that done for LSTM on text data, researchers have
also done some automatic explanation work for non-LSTM
RNN on text data. In particular, Foerster et al. [150] proposed
a non-LSTM RNN on text data. That RNN takes a character
sequence as its input and computes each input character’s
linear contribution to its classification result on the sequence.

Automatically explaining LSTM’s prediction results on
medical data

For an LSTM network built on medical data, researchers
have automatically explained its prediction result on a patient
by highlighting the data elements [22] or medical codes [46]

24

that influence the prediction. Neither of these methods offers
rule-based explanations or suggests tailored interventions.

5.5 Other relevant topics

For medical data of a fixed sequence length, Che et al. [151]
used a gradient boosting tree to mimic an LSTM network
built on them and to learn interpretable features. That method
neither extracts temporal features nor handles medical data
of varying sequence lengths.

To support feature engineering on text data, Brooks et al.
[152] built a tool, which visually summarizes misclassified
data instances to help find features that can be used to
improve model accuracy. Our temporal feature extraction
method supports feature engineering on longitudinal medical
data.

On non-longitudinal medical data, Ho et al. [153] used
tensor factorization to find patterns as features.

Suo et al. [154] used deep neural network to identify non-
temporal risk factors. In comparison, many temporal features
found by our feature extraction method reflect temporal risk
factors.

The usual goal of longitudinal data analysis [155] is to
model the expected value of an outcome variable measured
repeatedly over time. This is different from our goal of using
independent variables measured repeatedly over time to
predict an outcome variable that usually has one value per
data instance.

6. Conclusions

Identifying predictive and clinically meaningful temporal
features is critical for improving the accuracy and
transparency of machine learning predictive models on
medical data. This paper sketches a method for semi-
automatically extracting such features from medical data,
and shows how to use these features to automatically explain
machine learning prediction results and suggest tailored
interventions. This provides a roadmap for future research.
Besides being useful for healthcare, our proposed methods
can also be used to handle temporal data for non-medical
applications.

Acknowledgments

We thank Dae Hyun Lee, Bryan L. Stone, Flory L. Nkoy,
Adam B. Wilcox, and Philip J. Brewster for helpful
discussions. Gang Luo was partially supported by the
National Heart, Lung, and Blood Institute of the National
Institutes of Health under Award Number R01HL142503.
The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Authors’ contributions

GL was mainly responsible for the paper. He performed
the literature review, conceptualized the presentation
approach, and drafted the manuscript.

Conflicts of interest
None declared.

References
[1] E.W. Steyerberg, Clinical Prediction Models: A

Practical Approach to Development, Validation, and
Updating, Springer, New York, NY, 2009.

[2] Kaggle homepage. https://www.kaggle.com/, 2018
(accessed September 5, 2018).

[3] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning,
MIT Press, Cambridge, MA, 2016.

[4] G. Lee, S. Wang, F. Dipuro, J. Hou, P. Grover, L.L.
Low, N. Liu, C.Y. Loke, Leveraging on predictive
analytics to manage clinic no show and improve
accessibility of care, Proc. DSAA (2017) 429-438.
https://doi.org/10.1109/DSAA.2017.25.

[5] N.C. Dean, B.E. Jones, J.P. Jones, J.P. Ferraro, H.B.
Post, D. Aronsky, C.G. Vines, T.L. Allen, P.J. Haug,
Impact of an electronic clinical decision support tool for
emergency department patients with pneumonia, Ann
Emerg Med 66(5) (2015) 511-520.
https://doi.org/10.1016/j.annemergmed.2015.02.003.

[6] J.C. Hsu, Y.F. Chen, W.S. Chung, T.H. Tan, T. Chen,
J.Y. Chiang, Clinical verification of a clinical decision
support system for ventilator weaning, Biomed Eng
Online 12 Suppl 1 (2013) S4.
https://doi.org/10.1186/1475-925X-12-S1-S4.

[7] C. Barbieri, M. Molina, P. Ponce, M. Tothova, I.
Cattinelli, J. Ion Titapiccolo, F. Mari, C. Amato, F.
Leipold, W. Wehmeyer, S. Stuard, A. Stopper, B.
Canaud, An international observational study suggests
that artificial intelligence for clinical decision support
optimizes anemia management in hemodialysis patients,
Kidney Int 90(2) (2016) 422-429.
https://doi.org/10.1016/j.kint.2016.03.036.

[8] M.E. Brier, A.E. Gaweda, A. Dailey, G.R. Aronoff, A.A.
Jacobs, Randomized trial of model predictive control for
improved anemia management, Clin J Am Soc Nephrol,
5(5) (2010) 814-820.
https://dx.doi.org/10.2215/CJN.07181009.

[9] A.E. Gaweda, G.R. Aronoff, A.A. Jacobs, S.N. Rai,
M.E. Brier, Individualized anemia management reduces
hemoglobin variability in hemodialysis patients, J Am
Soc Nephrol 25(1) (2014) 159-166.
https://doi.org/10.1681/ASN.2013010089.

[10] A.E. Gaweda, A.A. Jacobs, G.R. Aronoff, M.E. Brier,
Model predictive control of erythropoietin
administration in the anemia of ESRD, Am J Kidney Dis
51(1) (2008) 71-79.
https://doi.org/10.1053/j.ajkd.2007.10.003.

[11] K.S. Hamlet, A. Hobgood, G.B. Hamar, A.C. Dobbs,
E.Y. Rula, J.E. Pope, Impact of predictive model-
directed end-of-life counseling for Medicare
beneficiaries, Am J Manag Care 16(5) (2010) 379-384.

[12] Jvion’s latest predictive analytics in healthcare survey
finds that advanced predictive modeling solutions are

25

taking a strong foothold in the industry.
http://chimecentral.org/jvion-releases-findings-latest-
predictive-analytics-healthcare-survey/, 2015 (accessed
September 5, 2018).

[13] G. Press, Cleaning big data: most time-consuming, least
enjoyable data science task, survey says. Forbes, March
23, 2016.
https://www.forbes.com/sites/gilpress/2016/03/23/data-
preparation-most-time-consuming-least-enjoyable-data-
science-task-survey-says/ (accessed September 5, 2018).

[14] S. Lohr, For big-data scientists, ‘janitor work’ is key
hurdle to insights. NY Times, August 17, 2014.
https://www.nytimes.com/2014/08/18/technology/for-
big-data-scientists-hurdle-to-insights-is-janitor-
work.html (accessed September 5, 2018).

[15] M.A. Munson, A study on the importance of and time
spent on different modeling steps, SIGKDD
Explorations 13(2) (2011) 65-71.
https://doi.org/10.1145/2207243.2207253.

[16] B.A. Goldstein, A.M. Navar, M.J. Pencina, J.P.
Ioannidis, Opportunities and challenges in developing
risk prediction models with electronic health records
data: a systematic review, J Am Med Inform Assoc 24(1)
(2017) 198-208. https://doi.org/10.1093/jamia/ocy068.

[17] B.D. Fulcher, Feature-based time-series analysis, in: G.
Dong, H. Liu (Eds.), Feature Engineering for Machine
Learning and Data Analytics, CRC Press, Boca Raton,
FL, 2018, pp. 87-116.

[18] G. Hripcsak, D.J. Albers, A. Perotte, Exploiting time in
electronic health record correlations, J Am Med Inform
Assoc 18 Suppl 1 (2011) i109-115.
https://doi.org/10.1136/amiajnl-2011-000463.

[19] G. Dong, L. Duan, J. Nummenmaa, P. Zhang, Feature
generation and feature engineering for sequences, in: G.
Dong, H. Liu (Eds.), Feature Engineering for Machine
Learning and Data Analytics, CRC Press, Boca Raton,
FL, 2018, pp. 145-166.

[20] S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural Computation 9(8) (1997) 1735-80.
https://doi.org/10.1162/neco.1997.9.8.1735.

[21] F.A. Gers, J. Schmidhuber, F.A. Cummins, Learning to
forget: continual prediction with LSTM, Neural
Computation 12(10) (2000) 2451-2471.
https://doi.org/10.1162/089976600300015015.

[22] A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, M.
Hardt, P.J. Liu, X. Liu, J. Marcus, M. Sun, P. Sundberg,
H. Yee, K. Zhang, Y. Zhang, G. Flores, G.E. Duggan, J.
Irvine, Q. Le, K. Litsch, A. Mossin, J. Tansuwan, D.
Wang, J. Wexler, J. Wilson, D. Ludwig, S.L.
Volchenboum, K. Chou, M. Pearson, S. Madabushi,
N.H. Shah, A.J. Butte, M. Howell, C. Cui, G.S. Corrado,
J. Dean, Scalable and accurate deep learning with
electronic health records, npj Digital Medicine 1 (2018)
18. https://doi.org/10.1038/s41746-018-0029-1.

[23] Z.C. Lipton, D.C. Kale, C. Elkan, R.C. Wetzel, Learning
to diagnose with LSTM recurrent neural networks, Proc.
ICLR (2016) 1-18.

[24] H.J. Kam, H.Y. Kim, Learning representations for the
early detection of sepsis with deep neural networks,
Comput Biol Med 89 (2017) 248-255.
https://doi.org/10.1016/j.compbiomed.2017.08.015.

[25] N. Razavian, J. Marcus, D. Sontag, Multi-task
prediction of disease onsets from longitudinal laboratory
tests, Proc. MLHC (2016) 73-100.

[26] P. Velickovic, L. Karazija, N.D. Lane, S. Bhattacharya,
E. Liberis, P. Liò, A. Chieh, O. Bellahsen, M. Vegreville,
Cross-modal recurrent models for weight objective
prediction from multimodal time-series data, Proc.
PervasiveHealth (2018) 178-186.

[27] J. Ren, Y. Hu, Y. Tai, C. Wang, L. Xu, W. Sun, Q. Yan,
Look, listen and learn - a multimodal LSTM for speaker
identification, Proc. AAAI (2016) 3581-3587.

[28] A. Karpathy, J. Johnson, F. Li, Visualizing and
understanding recurrent networks, Proc. ICLR
Workshop (2016) 1-12.

[29] V. Krakovna, F. Doshi-Velez, Increasing the
interpretability of recurrent neural networks using
hidden Markov models, Proc. ICML WHI (2016) 46-50.

[30] G. Luo, Automatically explaining machine learning
prediction results: a demonstration on type 2 diabetes
risk prediction, Health Inf Sci Syst 4 (2016) 2.
https://doi.org/10.1186/s13755-016-0015-4.

[31] D.C. Kale, Z. Che, M.T. Bahadori, W. Li, Y. Liu, R.
Wetzel, Causal phenotype discovery via deep networks,
AMIA Annu Symp Proc 2015 (2015) 677-686.

[32] P. Gupta, P. Malhotra, L. Vig, G. Shroff, Transfer
learning for clinical time series analysis using recurrent
neural networks, Proc. KDD MLMH (2018) 1-4.

[33] I.M. Baytas, C. Xiao, X. Zhang, F. Wang, A.K. Jain, J.
Zhou, Patient subtyping via time-aware LSTM networks,
Proc. KDD (2017) 65-74.
https://doi.org/10.1145/3097983.3097997.

[34] J. Futoma, S. Hariharan, K.A. Heller, M. Sendak, N.
Brajer, M. Clement, A. Bedoya, C. O'Brien, An
improved multi-output Gaussian process RNN with real-
time validation for early sepsis detection, Proc. MLHC
(2017) 243-254.

[35] T. Pham, T. Tran, D. Phung, S. Venkatesh, Predicting
healthcare trajectories from medical records: a deep
learning approach, J Biomed Inform 69 (2017) 218-29.
https://doi.org/10.1016/j.jbi.2017.04.001.

[36] B. Jin, C. Che, Z. Liu, S. Zhang, X. Yin, X. Wei,
Predicting the risk of heart failure with EHR sequential
data modeling, IEEE Access 6 (2018) 9256-9261.
https://doi.org/10.1109/ACCESS.2017.2789324.

[37] C. Esteban, O. Staeck, S. Baier, Y. Yang, V. Tresp,
Predicting clinical events by combining static and
dynamic information using recurrent neural networks,
Proc. ICHI (2016) 93-101.
https://doi.org/10.1109/ICHI.2016.16.

26

[38] H. Suresh, N. Hunt, A. Johnson, L.A. Celi, P. Szolovits,
M. Ghassemi, Clinical intervention prediction and
understanding with deep neural networks, Proc. MLHC
(2017) 322-337.

[39] S. Biswal, J. Kulas, H. Sun, B. Goparaju, M.B. Westover,
M.T. Bianchi, J. Sun, SLEEPNET: automated sleep
staging system via deep learning,
https://arxiv.org/abs/1707.08262.

[40] J. Futoma, S. Hariharan, K.A. Heller, Learning to detect
sepsis with a multitask Gaussian process RNN classifier,
Proc. ICML (2017) 1174-1182.

[41] Y. Yang, P.A. Fasching, V. Tresp, Modeling
progression free survival in breast cancer with
tensorized recurrent neural networks and accelerated
failure time models, Proc. MLHC (2017) 164-176.

[42] P. Nguyen, T. Tran, S. Venkatesh, Finding algebraic
structure of care in time: a deep learning approach, Proc.
NIPS ML4H (2017) 1-5.

[43] Y. Jia, C. Zhou, M. Motani, Spatio-temporal
autoencoder for feature learning in patient data with
missing observations, Proc. BIBM (2017) 886-890.
https://doi.org/10.1109/BIBM.2017.8217773.

[44] P. Nguyen, T. Tran, S. Venkatesh, Resset: a recurrent
model for sequence of sets with applications to
electronic medical records, Proc. IJCNN (2018) 1-9.
https://doi.org/10.1109/IJCNN.2018.8489390.

[45] Z.C. Lipton, D.C. Kale, R.C. Wetzel, Phenotyping of
clinical time series with LSTM recurrent neural
networks, Proc. NIPS MLHC (2015) 1-5.

[46] T. Bai, S. Zhang, B.L. Egleston, S. Vucetic,
Interpretable representation learning for healthcare via
capturing disease progression through time, Proc. KDD
(2018) 43-51.
https://doi.org/10.1145/3219819.3219904.

[47] T. Ching, D.S. Himmelstein, B.K. Beaulieu-Jones, A.A.
Kalinin, B.T. Do, G.P. Way, E. Ferrero, P.M. Agapow,
M. Zietz, M.M. Hoffman, W. Xie, G.L. Rosen, B.J.
Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A.E.
Carpenter, A. Shrikumar, J. Xu, E.M. Cofer, C.A.
Lavender, S.C. Turaga, A.M. Alexandari, Z. Lu, D.J.
Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L.K.
Wiley, M.H.S. Segler, S.M. Boca, S.J. Swamidass, A.
Huang, A. Gitter, C.S. Greene, Opportunities and
obstacles for deep learning in biology and medicine, J R
Soc Interface 15(141) (2018) 20170387.
https://doi.org/10.1098/rsif.2017.0387.

[48] B. Shickel, P.J. Tighe, A. Bihorac, P. Rashidi, Deep
EHR: a survey of recent advances in deep learning
techniques for electronic health record (EHR) analysis,
IEEE J Biomed Health Inform 22(5) (2018) 1589-1604.
https://doi.org/10.1109/JBHI.2017.2767063.

[49] R. Miotto, F. Wang, S. Wang, X. Jiang, J.T. Dudley,
Deep learning for healthcare: review, opportunities and
challenges, Brief Bioinform (2017).
https://doi.org/10.1093/bib/bbx044.

[50] C. Xiao, E. Choi, J. Sun, Opportunities and challenges
in developing deep learning models using electronic
health records data: a systematic review, J Am Med
Inform Assoc 25(10) (2018) 1419-1428.
https://doi.org/10.1093/jamia/ocy068.

[51] E. Choi, M.T. Bahadori, A. Schuetz, W.F. Stewart, J.
Sun, Doctor AI: predicting clinical events via recurrent
neural networks, JMLR Workshop Conf Proc. 56 (2016)
301-318.

[52] E. Choi, A. Schuetz, W.F. Stewart, J. Sun, Using
recurrent neural network models for early detection of
heart failure onset, J Am Med Inform Assoc 24(2) (2017)
361-370. https://doi.org/10.1093/jamia/ocw112.

[53] E. Choi, M.T. Bahadori, J. Sun, J. Kulas, A. Schuetz,
W.F. Stewart, RETAIN: an interpretable predictive
model for healthcare using reverse time attention
mechanism, Proc. NIPS (2016) 3504-3512.

[54] C. Che, C. Xiao, J. Liang, B. Jin, J. Zho, F. Wang, An
RNN architecture with dynamic temporal matching for
personalized predictions of Parkinson’s disease, Proc.
SDM (2017) 198-206.
https://doi.org/10.1137/1.9781611974973.23.

[55] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole:
diagnosis prediction in healthcare via attention-based
bidirectional recurrent neural networks, Proc. KDD
(2017) 1903-1911.
https://doi.org/10.1145/3097983.3098088.

[56] T. Ma, C. Xiao, F. Wang, Health-ATM: a deep
architecture for multifaceted patient health record
representation and risk prediction, Proc. SDM (2018)
261-269. https://doi.org/10.1137/1.9781611975321.30.

[57] Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu,
Recurrent neural networks for multivariate time series
with missing values, Sci Rep 8(1) (2018) 6085.
https://doi.org/10.1038/s41598-018-24271-9.

[58] Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP:
learning to prescribe effective and safe treatment
combinations for multimorbidity, Proc. KDD (2017)
1315-1324. https://doi.org/10.1145/3097983.3098109.

[59] E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun,
GRAM: graph-based attention model for healthcare
representation learning, Proc. KDD (2017) 787-795.
https://doi.org/10.1145/3097983.3098126.

[60] C. Xiao, T. Ma, A.B. Dieng, D.M. Blei, F. Wang,
Readmission prediction via deep contextual embedding
of clinical concepts, PLoS One 13(4) (2018) e0195024.
https://doi.org/10.1371/journal.pone.0195024.

[61] P. Gupta, P. Malhotra, L. Vig, G. Shroff, Using features
from pre-trained TimeNet for clinical predictions, Proc.
IJCAI-ECAI KDH (2018) 38-44.

[62] K. Zheng, W. Wang, J. Gao, K.Y. Ngiam, B.C. Ooi,
J.W.L. Yip, Capturing feature-level irregularity in
disease progression modeling, Proc. CIKM (2017) 1579-
1588. https://doi.org/10.1145/3132847.3132944.

[63] S. Purushotham, C. Meng, Z. Che, Y. Liu,
Benchmarking deep learning models on large healthcare

27

datasets, J Biomed Inform 83 (2018) 112-134.
https://doi.org/10.1016/j.jbi.2018.04.007.

[64] A. Oellrich, N. Collier, T. Groza, D. Rebholz-
Schuhmann, N. Shah, O. Bodenreider, M.R. Boland, I.
Georgiev, H. Liu, K. Livingston, A. Luna, A.M. Mallon,
P. Manda, P.N. Robinson, G. Rustici, M. Simon, L.
Wang, R. Winnenburg, M. Dumontier, The digital
revolution in phenotyping, Brief Bioinform 17(5) (2016)
819-830. https://doi.org/10.1093/bib/bbv083.

[65] J. Pathak, A.N. Kho, J.C. Denny, Electronic health
records-driven phenotyping: challenges, recent
advances, and perspectives, J Am Med Inform Assoc
20(e2) (2013) e206-211.
https://doi.org/10.1136/amiajnl-2013-002428.

[66] G. Hripcsak, D.J. Albers, Next-generation phenotyping
of electronic health records, J Am Med Inform Assoc
20(1) (2013) 117-121. https://doi.org/10.1136/amiajnl-
2012-001145.

[67] I. Lenz, H. Lee, A. Saxena, Deep learning for detecting
robotic grasps, I J Robotics Res 34(4-5) (2015) 705-724.
https://doi.org/10.1177/0278364914549607.

[68] G. Luo, A review of automatic selection methods for
machine learning algorithms and hyper-parameter
values, Netw Model Anal Health Inform Bioinform 5
(2016) 18. https://doi.org/10.1007/s13721-016-0125-6.

[69] Y. Zhou, R. Jin, S.C.H. Hoi, Exclusive Lasso for multi-
task feature selection, Proc. AISTATS (2010) 988-995.

[70] F. Campbell, G.I. Allen, Within group variable selection
through the exclusive Lasso, Electron J Statist 11(2)
(2017) 4220-4257. https://doi.org/10.1214/17-EJS1317.

[71] M. Yuan, Y. Lin, Model selection and estimation in
regression with grouped variables, J R Statist Soc B 68(1)
(2006) 49-67. https://doi.org/10.1111/j.1467-
9868.2005.00532.x.

[72] R. Pascanu, Ç. Gülçehre, K. Cho, Y. Bengio, How to
construct deep recurrent neural networks, Proc. ICLR
(2014) 1-13.

[73] Z. Tang, Y. Shi, D. Wang, Y. Feng, S. Zhang, Memory
visualization for gated recurrent neural networks in
speech recognition, Proc. ICASSP (2017) 2736-2740.
https://doi.org/10.1109/ICASSP.2017.7952654.

[74] T.A. Lasko, J.C. Denny, M.A. Levy, Computational
phenotype discovery using unsupervised feature
learning over noisy, sparse, and irregular clinical data,
PLoS One 8(6) (2013) e66341.
https://doi.org/10.1371/journal.pone.0066341.

[75] Z. Che, D.C. Kale, W. Li, M.T. Bahadori, Y. Liu, Deep
computational phenotyping, Proc. KDD (2015) 507-516.
https://doi.org/10.1145/2783258.2783365.

[76] D. Kale, Z. Che, Y. Liu, R. Wetzel, Computational
discovery of physiomes in critically ill children using
deep learning, Proc. DMMI (2014) 1-2.

[77] D. Gotz, F. Wang, A. Perer, A methodology for
interactive mining and visual analysis of clinical event
patterns using electronic health record data, J Biomed

Inform 48 (2014) 148-159.
https://doi.org/10.1016/j.jbi.2014.01.007.

[78] G.S. Halford, R. Baker, J.E. McCredden, J.D. Bain,
How many variables can humans process? Psychol Sci
16(1) (2005) 70-76. https://doi.org/10.1111/j.0956-
7976.2005.00782.x.

[79] G.S. Halford, W.H. Wilson, S. Phillips, Processing
capacity defined by relational complexity: implications
for comparative, developmental, and cognitive
psychology, Behav Brain Sci 21(6) (1998) 803-831.
https://doi.org/10.1017/S0140525X98001769.

[80] Q.V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado,
K. Chen, J. Dean, A.Y. Ng, Building high-level features
using large scale unsupervised learning, Proc. ICML
(2012) 507-514.

[81] D. Kotsakos, G. Trajcevski, D. Gunopulos, C.C.
Aggarwal, Time-series data clustering, in: C.C.
Aggarwal, C.K. Reddy (Eds.), Data Clustering:
Algorithms and Applications, CRC Press, Boca Raton,
FL, 2013, pp. 357-380.

[82] D.C. Kale, D. Gong, Z. Che, Y. Liu, G.G. Medioni, R.C.
Wetzel, P. Ross, An examination of multivariate time
series hashing with applications to health care, Proc.
ICDM (2014) 260-269.
https://doi.org/10.1109/ICDM.2014.153.

[83] L. Rabiner, B. Juang, Fundamentals of Speech
Recognition, Prentice Hall, Englewood Cliffs, NJ, 1993.

[84] P. Siirtola, P. Laurinen, J. Röning, A weighted distance
measure for calculating the similarity of sparsely
distributed trajectories, Proc. ICMLA (2008) 802-807.
https://doi.org/10.1109/ICMLA.2008.118.

[85] J. Paparrizos, L. Gravano, k-Shape: efficient and
accurate clustering of time series, Proc. SIGMOD (2015)
1855-1870. https://doi.org/10.1145/2723372.2737793.

[86] C.K. Reddy, B. Vinzamuri, A survey of partitional and
hierarchical clustering algorithms, in: C.C. Aggarwal,
C.K. Reddy (Eds.), Data Clustering: Algorithms and
Applications, CRC Press, Boca Raton, FL, 2013, pp. 87-
110.

[87] F. Petitjean, A. Ketterlin, P. Gançarski, A global
averaging method for dynamic time warping, with
applications to clustering, Pattern Recognition 44(3)
(2011) 678-693.
https://doi.org/10.1016/j.patcog.2010.09.013.

[88] B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel,
Unsupervised pattern discovery in electronic health care
data using probabilistic clustering models, Proc. IHI
(2012) 389-398.
https://doi.org/10.1145/2110363.2110408.

[89] T.D. Wang, K. Wongsuphasawat, C. Plaisant, B.
Shneiderman, Visual information seeking in multiple
electronic health records: design recommendations and
a process model, Proc. IHI (2010) 46-55.
https://doi.org/10.1145/1882992.1883001.

[90] D. Gotz, J.J. Caban, A.T. Chen, Visual analytics for
healthcare, in: C.K. Reddy, C.C. Aggarwal (Eds.),

28

Healthcare Data Analytics, CRC Press, Boca Raton, FL,
2015, pp. 403-431.

[91] J.M. Engels, P. Diehr, Imputation of missing
longitudinal data: a comparison of methods, J Clin
Epidemiol 56(10) (2003) 968-976.
https://doi.org/10.1016/S0895-4356(03)00170-7.

[92] Z.C. Lipton, D.C. Kale, R.C. Wetzel, Directly modeling
missing data in sequences with RNNs: improved
classification of clinical time series, Proc. MLHC (2016)
253-270.

[93] I. Duncan, Healthcare Risk Adjustment and Predictive
Modeling, ACTEX Publications Inc., Winsted, CT,
2011.

[94] A. Ash, N. McCall, Risk assessment of military
populations to predict health care cost and utilization.
http://www.rti.org/pubs/tricare_riskassessment_final_re
port_combined.pdf, 2005 (accessed September 5, 2018).

[95] R. Pivovarov, D.J. Albers, J.L. Sepulveda, N. Elhadad,
Identifying and mitigating biases in EHR laboratory
tests, J Biomed Inform 51 (2014) 24-34.
https://doi.org/10.1016/j.jbi.2014.03.016.

[96] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown,
Auto-WEKA: combined selection and hyperparameter
optimization of classification algorithms, Proc. KDD
(2013) 847-855.
https://doi.org/10.1145/2487575.2487629.

[97] X. Zeng, G. Luo, Progressive sampling-based Bayesian
optimization for efficient and automatic machine
learning model selection, Health Inf Sci Syst 5(1) (2017)
2. https://doi.org/10.1007/s13755-017-0023-z.

[98] G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, H.
Samulowitz, An effective algorithm for hyperparameter
optimization of neural networks, IBM J Res Dev 61(4)
(2017) 9. https://doi.org/10.1147/JRD.2017.2709578.

[99] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J.
Karro, D. Sculley, Google Vizier: a service for black-
box optimization, Proc. KDD (2017) 1487-1495.
https://doi.org/10.1145/3097983.3098043.

[100] G. Luo, B.L. Stone, M.D. Johnson, P. Tarczy-Hornoch,
A.B. Wilcox, S.D. Mooney, X. Sheng, P.J. Haug, F.L.
Nkoy, Automating construction of machine learning
models with clinical big data: proposal rationale and
methods, JMIR Res Protoc 6(8) (2017) e175.
https://doi.org/10.2196/resprot.7757.

[101] G. Luo, PredicT-ML: a tool for automating machine
learning model building with big clinical data, Health Inf
Sci Syst 4 (2016) 5. https://doi.org/10.1186/s13755-016-
0018-1.

[102] F.J. Provost, D. Jensen, T. Oates, Efficient progressive
sampling, Proc. KDD (1999) 23-32.
https://doi.org/10.1145/312129.312188.

[103] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink,
J. Schmidhuber, LSTM: a search space odyssey, IEEE
Trans Neural Netw Learning Syst 28(10) (2017) 2222-
2232. https://doi.org/10.1109/TNNLS.2016.2582924.

[104] T.D. Nguyen, S.K. Gupta, S. Rana, S. Venkatesh,
Stable Bayesian optimization, Proc. PAKDD (2) (2017)
578-591. https://doi.org/10.1007/978-3-319-57529-
2_45.

[105] K. Eggensperger, F. Hutter, H.H. Hoos, K. Leyton-
Brown, Efficient benchmarking of hyperparameter
optimizers via surrogates, Proc. AAAI (2015) 1114-
1120.

[106] R.L. Richesson, S.A. Rusincovitch, D. Wixted, B.C.
Batch, M.N. Feinglos, M.L. Miranda, W.E. Hammond,
R.M. Califf, S.E. Spratt, A comparison of phenotype
definitions for diabetes mellitus, J Am Med Inform
Assoc 20(e2) (2013) e319-326.
https://doi.org/10.1136/amiajnl-2013-001952.

[107] I. Duncan, Dictionary of Disease Management
Terminology, 2nd ed., Disease Management
Association of America, Washington DC, 2006.

[108] B. Zoph, Q.V. Le, Neural architecture search with
reinforcement learning, Proc. ICLR (2017) 1-16.

[109] R. Paul, T. Groza, J. Hunter, A. Zankl, Inferring
characteristic phenotypes via class association rule
mining in the bone dysplasia domain, J Biomed Inform
48 (2014) 73-83.
https://doi.org/10.1016/j.jbi.2013.12.001.

[110] B. Liu, W. Hsu, Y. Ma, Integrating classification and
association rule mining, Proc. KDD (1998) 80-6.

[111] Asthma action plan.
http://www.health.state.mn.us/asthma/AAP-
nonpro.html, 2015 (accessed September 5, 2018).

[112] R.A. Nathan, C.A. Sorkness, M. Kosinski, M. Schatz,
J.T. Li, P. Marcus, J.J. Murray, T.B. Pendergraft,
Development of the Asthma Control Test: a survey for
assessing asthma control, J Allergy Clin Immunol
113(1) (2004) 59-65.
https://doi.org/10.1016/j.jaci.2003.09.008.

[113] M. Schatz, C.A. Sorkness, J.T. Li, P. Marcus, J.J.
Murray, R.A. Nathan, M. Kosinski, T.B. Pendergraft, P.
Jhingran, Asthma Control Test: reliability, validity, and
responsiveness in patients not previously followed by
asthma specialists, J Allergy Clin Immunol 117(3)
(2006) 549-556.
https://doi.org/10.1016/j.jaci.2006.01.011.

[114] F.L. Nkoy, B.L. Stone, B.A. Fassl, D.A. Uchida, K.
Koopmeiners, S. Halbern, E.H. Kim, A. Wilcox, J. Ying,
T.H. Greene, D.M. Mosen, M.N. Schatz, C.G. Maloney,
Longitudinal validation of a tool for asthma self-
monitoring, Pediatrics 132(6) (2013) e1554-1561.
https://doi.org/10.1542/peds.2013-1389.

[115] F.L. Nkoy, B.L. Stone, B.A. Fassl, K. Koopmeiners, S.
Halbern, E.H. Kim, J. Poll, J. Hales, D. Lee, C. Maloney,
Development of a novel tool for engaging children and
parents in asthma self-management, AMIA Annu Symp
Proc. 2012 (2012) 663-672.

[116] S.J. Rolnick, P.A. Pawloski, B.D. Hedblom, S.E.
Asche, R.J. Bruzek, Patient characteristics associated

29

with medication adherence, Clin Med Res 11(2) (2013)
54-65. https://doi.org/10.3121/cmr.2013.1113.

[117] G. Luo, K. Sward, A roadmap for optimizing asthma
care management via computational approaches, JMIR
Med Inform 5(3) (2017) e32.
https://doi.org/10.2196/medinform.8076.

[118] B. Bilalli, A. Abelló, T. Aluja-Banet, R. Wrembel,
Intelligent assistance for data pre-processing, Computer
Standards & Interfaces 57 (2018) 101-109.
https://doi.org/10.1016/j.csi.2017.05.004.

[119] U. Khurana, Automating feature engineering in
supervised learning, in: G. Dong, H. Liu (Eds.), Feature
Engineering for Machine Learning and Data Analytics,
CRC Press, Boca Raton, FL, 2018, pp. 221-244.

[120] J.M. Kanter, K. Veeramachaneni, Deep feature
synthesis: towards automating data science endeavors,
Proc. DSAA (2015) 1-10.
https://doi.org/10.1109/DSAA.2015.7344858.

[121] H.T. Lam, J. Thiebaut, M. Sinn, B. Chen, T. Mai, O.
Alkan, One button machine for automating feature
engineering in relational databases,
https://arxiv.org/abs/1706.00327.

[122] J.M. Kanter, O. Gillespie, K. Veeramachaneni, Label,
segment, featurize: a cross domain framework for
prediction engineering, Proc. DSAA (2016) 430-439.
https://doi.org/10.1109/DSAA.2016.54.

[123] H.T. Lam, T.N. Minh, M. Sinn, B. Buesser, M.
Wistuba, Neural feature learning from relational
database, https://arxiv.org/abs/1801.05372.

[124] A. Perer, F. Wang, Frequence: interactive mining and
visualization of temporal frequent event sequences, Proc.
IUI (2014) 153-162.
https://doi.org/10.1145/2557500.2557508.

[125] I. Batal, Temporal data mining for healthcare data, in:
C.K. Reddy, C.C. Aggarwal (Eds.), Healthcare Data
Analytics, CRC Press, Boca Raton, FL, 2015, pp. 379-
402.

[126] C. Liu, F. Wang, J. Hu, H. Xiong, Temporal
phenotyping from longitudinal electronic health records:
a graph based framework, Proc. KDD (2015) 705-714.
https://doi.org/10.1145/2783258.2783352.

[127] F. Wang, N. Lee, J. Hu, J. Sun, S. Ebadollahi, A.F.
Laine, A framework for mining signatures from event
sequences and its applications in healthcare data, IEEE
Trans Pattern Anal Mach Intell 35(2) (2013) 272-285.
https://doi.org/10.1109/TPAMI.2012.111.

[128] I. Batal, H. Valizadegan, G.F. Cooper, M. Hauskrecht,
A temporal pattern mining approach for classifying
electronic health record data, ACM TIST 4(4) (2013) 63.
https://doi.org/10.1145/2508037.2508044.

[129] S. Saria, A. Duchi, D. Koller, Discovering deformable
motifs in continuous time series data, Proc. IJCAI (2011)
1465-1471. https://doi.org/10.5591/978-1-57735-516-8.

[130] S. Guo, X. Li, H. Liu, P. Zhang, X. Du, G. Xie, F.
Wang, Integrating temporal pattern mining in ischemic
stroke prediction and treatment pathway discovery for

atrial fibrillation, AMIA Jt Summits Transl Sci Proc.
2017 (2017) 122-130.

[131] T.D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D.
Roseman, G. Marchand, V. Mukherjee, M.S. Smith,
Temporal summaries: supporting temporal categorical
searching, aggregation and comparison, IEEE Trans Vis
Comput Graph 15(6) (2009) 1049-1056.
https://doi.org/10.1109/TVCG.2009.187.

[132] C. Combi, E. Keravnou-Papailiou, Y. Shahar,
Temporal Information Systems in Medicine, Springer,
New York, NY, 2010.

[133] T.B. Ho, T.D. Nguyen, S. Kawasaki, S.Q. Le, D.D.
Nguyen, H. Yokoi, K. Takabayashi, Mining hepatitis
data with temporal abstraction, Proc. KDD (2003) 369-
377. https://doi.org/10.1145/956750.956793.

[134] A. Mueen, E.J. Keogh, N.E. Young, Logical-shapelets:
an expressive primitive for time series classification,
Proc. KDD (2011) 1154-1162.
https://doi.org/10.1145/2020408.2020587.

[135] M.F. Ghalwash, V. Radosavljevic, Z. Obradovic,
Extraction of interpretable multivariate patterns for early
diagnostics, Proc. ICDM (2013) 201-210.
https://doi.org/10.1109/ICDM.2013.19.

[136] P. Nguyen, T. Tran, N. Wickramasinghe, S. Venkatesh,
Deepr: a convolutional net for medical records, IEEE J
Biomed Health Inform 21(1) (2017) 22-30.
https://doi.org/10.1109/JBHI.2016.2633963.

[137] F. Hohman, M. Kahng, R. Pienta, D.H. Chau, Visual
analytics in deep learning: an interrogative survey for the
next frontiers, IEEE Trans Vis Comput Graph.
https://doi.org/10.1109/TVCG.2018.2843369.

[138] I. Chalkiadakis, A brief survey of visualization
methods for deep learning models from the perspective
of explainable AI.
https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis
_RRR.pdf (accessed September 5, 2018).

[139] R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, F.
Giannotti, A survey of methods for explaining black box
models, ACM Comput Surv 51(5) (2018) 93.
https://doi.org/10.1145/3236009.

[140] O. Biran, C. Cotton, Explanation and justification in
machine learning: a survey, Proc. IJCAI Workshop on
Explainable AI (2017) 8-13.

[141] S. Chakraborty, R. Tomsett, R. Raghavendra, D.
Harborne, M. Alzantot, F. Cerutti, M. Srivastava, A.
Preece, S. Julier, R.M. Rao, T.D. Kelley, D. Braines, M.
Sensoy, C.J. Willis, P. Gurram, Interpretability of deep
learning models: a survey of results, Proc. DAIS (2017)
1-6. https://doi.org/10.1109/UIC-ATC.2017.8397411.

[142] T. Hailesilassie, Rule extraction algorithm for deep
neural networks: a review, International Journal of
Computer Science and Information Security 14(7) (2016)
376-381.

[143] G. Montavon, W. Samek, K. Müller, Methods for
interpreting and understanding deep neural networks,

30

Digital Signal Processing 73 (2018) 1-15.
https://doi.org/10.1016/j.dsp.2017.10.011.

[144] J. Lanchantin, R. Singh, B. Wang, Y. Qi, Deep motif
dashboard: visualizing and understanding genomic
sequences using deep neural networks, Pac Symp
Biocomput 22 (2017) 254-265.
https://doi.org/10.1142/9789813207813_0025.

[145] L. Arras, G. Montavon, K. Müller, W. Samek,
Explaining recurrent neural network predictions in
sentiment analysis, Proc. EMNLP WASSA (2017) 159-
168. https://doi.org/10.18653/v1/W17-5221.

[146] T. Lei, R. Barzilay, T.S. Jaakkola, Rationalizing neural
predictions, Proc. EMNLP (2016) 107-117.

[147] W.J. Murdoch, A. Szlam, Automatic rule extraction
from long short term memory networks, Proc. ICLR
(2017) 1-12.

[148] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song,
H. Qu, Understanding hidden memories of recurrent
neural networks, Proc. VAST (2017) 1-16.

[149] H. Strobelt, S. Gehrmann, H. Pfister, A.M. Rush,
LSTMVis: a tool for visual analysis of hidden state
dynamics in recurrent neural networks, IEEE Trans Vis
Comput Graph 24(1) (2018) 667-676.
https://doi.org/10.1109/TVCG.2017.2744158.

[150] J.N. Foerster, J. Gilmer, J. Sohl-Dickstein, J.
Chorowski, D. Sussillo, Input switched affine networks:
an RNN architecture designed for interpretability, Proc.
ICML (2017) 1136-1145.

[151] Z. Che, S. Purushotham, Y. Liu, Distilling knowledge
from deep networks with applications to healthcare
domain, Proc. MLHC (2015) 1-13.

[152] M. Brooks, S. Amershi, B. Lee, S.M. Drucker, A.
Kapoor, P.Y. Simard, FeatureInsight: visual support for
error-driven feature ideation in text classification, Proc.
VAST (2015) 105-112.
https://doi.org/10.1109/VAST.2015.7347637.

[153] J.C. Ho, J. Ghosh, S.R. Steinhubl, W.F. Stewart, J.C.
Denny, B.A. Malin, J. Sun, Limestone: high-throughput
candidate phenotype generation via tensor factorization,
J Biomed Inform 52 (2014) 199-211.
https://doi.org/10.1016/j.jbi.2014.07.001.

[154] Q. Suo, H. Xue, J. Gao, A. Zhang, Risk factor analysis
based on deep learning models, Proc. BCB (2016) 394-
403. https://doi.org/10.1145/2975167.2975208.

[155] G.M. Fitzmaurice, N.M. Laird, J.H. Ware, Applied
Longitudinal Analysis, 2nd ed., Wiley, Hoboken, NJ,
2011.

