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Abstract 
Background: Both chronic obstructive pulmonary disease (COPD) and asthma incur heavy healthcare burdens. To support 
tailored preventive care for these two diseases, predictive modeling is widely used to give warnings and to identify patients for 
care management. However, three gaps exist in current modeling methods owing to rarely factoring in temporal aspects 
showing trends and early health change: 
1)  Existing models seldom use temporal features and often give late warnings, making care reactive. A health risk is often 

found at a relatively late stage of declining health, when the risk of a poor outcome is high and resolving the issue is 
difficult and costly. A typical model predicts patient outcomes in the next, say, 12 months. This often does not warn early 
enough. If a patient will actually be hospitalized for COPD next week, intervening now could be too late to avoid the 
hospitalization. If temporal features were used, this patient could potentially be identified a few weeks earlier to institute 
preventive therapy. 

2)  Existing models often miss many temporal features with high predictive power and have low accuracy. This makes care 
management enroll many patients not needing it and overlook over half of the patients needing it the most. 

3)  Existing models often give no information on why a patient is at high risk, nor about possible interventions to mitigate risk, 
causing busy care managers to spend more time reviewing charts and to miss suited interventions. Typical automatic 
explanation methods cannot handle longitudinal attributes and fully address these issues. 

Objective: To fill these gaps so that more COPD and asthma patients will receive more appropriate and timely care, we will 
develop comprehensible data-driven methods to provide accurate early warnings of poor outcomes and to suggest tailored 
interventions, making care more proactive, efficient, and effective. 
Methods: By conducting secondary data analysis and surveys, the study will: a) use temporal features to provide accurate early 
warnings of poor outcomes, and assess the potential impact on prediction accuracy, risk warning timeliness, and outcomes; b) 
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automatically identify actionable temporal risk factors for each patient at high risk for future hospital use and assess the impact 
on prediction accuracy and outcomes; c) assess actionable information’s impact on clinicians’ acceptance of early warnings and 
on perceived care plan quality. 
Results: We are obtaining clinical and administrative data sets from three leading healthcare systems’ enterprise data 
warehouses. We plan to start data analysis in 2020 and finish our study in 2025. 
Conclusions: Techniques to be developed in this study can boost risk warning timeliness, model accuracy, and generalizability; 
improve patient finding for preventive care; help form tailored care plans; advance machine learning for many clinical 
applications; and generalize to many other chronic diseases. 
 
Keywords: decision support techniques; forecasting; machine learning; patient care management 
 
1. Introduction 
The current predictive modeling method for implementing chronic obstructive pulmonary disease (COPD) and asthma 
care management has three major gaps 

COPD and asthma are chronic respiratory diseases incurring heavy healthcare burdens on society, healthcare systems, and 
payers. In the U.S., COPD affects over 6.5% of adults, is the third leading cause of death, and incurs 700,000 inpatient stays, 1.5 
million emergency room visits, and U.S. $32 billion in cost annually [1]. Asthma affects 8% of adults [2] and 9.6% of children 
[3, 4], and incurs 3,630 deaths, 493,000 inpatient stays, 1.8 million emergency room visits, and U.S. $56 billion in cost annually 
[2, 5]. As a service intended to prevent poor outcomes like hospitalization, care management is widely adopted to provide 
tailored preventive care for COPD and asthma patients. Purchased by most large employers and offered by almost all private 
health plans [6-8], care management is a collaborative process to evaluate, plan, implement, coordinate, and monitor options 
and services in order to accommodate an individual’s health and service needs [9]. In care management, a care manager calls a 
patient regularly, helps arrange for medical appointments, and schedules health and related services. Appropriate use of care 
management can cut hospital use (emergency room visits and inpatient stays) by up to 40% [7, 10-15], lower cost by up to 15% 
[11-16], and enhance patient adherence, quality of life, and satisfaction by 30-60% [10]. 

Predictive models are widely used, e.g., by health plans in 9 of 12 regions [17], as the best method [18] to warn of poor 
outcomes and to identify COPD and asthma patients for care management [6-8]. Multiple models have been built for predicting 
the health outcomes of individual COPD and asthma patients [19-28]. But, current modeling methods have three major gaps 
restricting their effectiveness due to inadequate use of temporal features showing trends and early health change. A temporal 
feature, like the slope of pulmonary function across the last year, is an independent variable formed by transforming 
longitudinal attribute(s). 
 
Gap 1: Existing models often give late warnings, making care reactive and suboptimal 

Existing models for predicting the health outcomes of individual COPD and asthma patients seldom use temporal features 
[19-28] and often give late warnings, making care reactive and missing opportunities for clinical and therapy teams to intervene 
early to reduce the risk of poor outcomes. A health risk is often identified at a relatively late stage of declining health, when the 
chance of a poor outcome is high and resolving the issue is difficult and costly. A typical model predicts patient outcomes in the 
next, say, 12 months. For patients with imminent poor outcomes, this does not warn early enough. If a patient will actually be 
hospitalized for COPD next week, intervening now could be too late to avoid the hospitalization. If temporal features were 
used, this patient could be identified a few weeks or months earlier, when health decline is still at an early stage, resolving the 
issue is easier, and preventing hospitalization is likely. 

 
Gap 2: Typical models have low accuracy, leading to suboptimal and wasted care 

Models for predicting a patient’s health outcome and cost typically have low accuracy. When projecting the health outcome 
of a patient, the accuracy measure of area under the receiver operating characteristic curve (AUC) is typically much lower than 
0.8 [19-28]. When projecting the healthcare cost of a patient, the accuracy measure of R2 is typically lower than 25% [29, 30] 
and the mean error is as big as the mean cost [31]. These large errors in prediction results create difficulty in properly aligning 
care management’s use with the patients needing it the most [10]. 

Care management can require over U.S. $5,000 per person per year [11] and usually enrolls only 1-3% of patients because of 
resource limits [32]. For patients predicted to have the worst outcomes or the largest costs [10, 33], care managers review 
patient charts and manually make allocation decisions. 

A small percentage of patients use most of the healthcare resources and costs. The upper 20% of patients use 80% of the 
resources and costs. The upper 1% use 25% [19, 32, 34]. Accurately identifying patients at high risk for poor outcomes or large 
healthcare costs is critical for effective targeted application of care management resources. Yet, Weir et al. [33] showed that in 
the upper 10% of patients who actually spent the largest healthcare costs, over 60% of them were not included in the upper 10% 
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risk group identified by a predictive model. In the upper 1% of patients who actually spent the largest healthcare costs, around 
50% and over 80% of them were not included in the identified upper 10% and 1% risk groups, respectively. Assume the care 
management program could take 1% of all patients. In this case, even if the care managers could afford to examine the upper 
10% risk group found by the predictive model and manually made correct decisions for enrollment, the care managers would 
still not find around half of the upper 1% of patients who spent the largest healthcare costs. For COPD and asthma, if we could 
identify 10% more of the upper 1% of patients who spent the largest healthcare costs and enroll them in care management, we 
could boost outcomes and spare possibly up to U.S. $120 million in COPD care [1] and U.S. $210 million in asthma care each 
year [19-21]. In general, due to the large patient population, a small boost in accuracy will benefit numerous patients and have 
a big positive impact. 

Current models for predicting the health outcomes and healthcare costs of individual COPD and asthma patients have low 
prediction accuracy for several reasons: 
1)  Many temporal features with high predictive power are either frequently unused in an existing model or yet to be found. 

Google recently applied long short-term memory (LSTM) [35], one kind of deep neural network, to all of the attributes in 
the electronic health record to automatically learn temporal features from longitudinal data [36]. For forecasting each of the 
three outcomes: long hospital stay, unanticipated readmissions within 30 days, and in-hospital mortality, this increased the 
AUC by ~+10% [36]. Multiple other studies [37-39] showed similar results for a variety of clinical prediction tasks. This 
aligns with what has taken place in areas like video classification, natural language processing, and speech recognition, 
where temporal features that LSTM automatically learned from data outperform those mined from data by other methods 
or specified by experts [40, 41]. 

2)  Although >40 risk factors for undesirable outcomes in COPD/asthma have been identified [19, 20, 23, 28, 42-48], an 
existing model usually uses only a few (e.g., <10) [19-24, 26-28]. Existing models were often constructed based on data 
obtained from clinical trials or old-fashioned electronic health records collecting limited variables [49]. No published 
model adopts all of the known risk factors available in modern electronic health records collecting extensive variables [49]. 

3)  Environmental information like air quality and weather variables are known to impact COPD and asthma outcomes [43, 
50-52], but with rare exceptions [25], are infrequently used in existing models. 
 

Gap 3: Typical models give no information on why a patient is at high risk for a poor outcome and on possible 
interventions to mitigate risk, often causing busy care managers to spend more time and to miss suited interventions 

Before enrolling a patient, care managers need to know why the patient is at high risk for a poor outcome and about possible 
interventions to mitigate risk. Complex predictive models, which include most machine learning models like LSTM, give no 
explanatory or prescriptive information. Frequently, a patient’s records have many variables on hundreds of pages accumulated 
over a long period of time [53]. Unlike physicians who see patients from time to time, care managers often have not previously 
seen the records when needing to make enrollment decisions. When the model offers no explanation, busy care managers often 
spend extra time reviewing the records to find the reasons. This is time-consuming and difficult. 

A care manager may use subjective, variable judgment to form a care plan, but may miss some suited interventions because 
of two factors: 
1)  Several reasons can make a patient at high risk for a poor outcome. Each reason is shown by a feature combination as a risk 

pattern. For instance, the ratio of inhaled steroid to beta agonist dispensing to the patient decreased over 12 months AND 
sulfur dioxide level was ≥3 parts per million for ≥5 days in the past week. Many features exist. Like any human, an 
ordinary care manager can deal with ≤9 information items simultaneously [54], making it difficult to identify all reasons 
from numerous possible feature combinations. 

2)  Huge variation in practice, often by 1.6-5.6 times, appears across care managers, facilities, and regions [34, 55-58]. 
Missing suited interventions can degrade outcomes. Typical automatic explanation methods [59, 60] do not handle longitudinal 
attributes and cannot fully address these issues. 
 
To fill the gaps, we will provide accurate early warnings of poor outcomes and suggest tailored interventions in a 
data-driven and comprehensible way 

To fill the gaps for more COPD and asthma patients to receive appropriate and timely care, we will 1) use temporal features 
to provide accurate early warnings of poor outcomes, and assess potential impact on prediction accuracy, risk warning 
timeliness, and outcomes; 2) automatically identify actionable temporal risk factors for each patient at high risk for future 
hospital use and assess the impact on prediction accuracy and outcomes; 3) assess actionable information’s impact on 
clinicians’ acceptance of early warnings and on perceived care plan quality. Here, actionable information refers to the 
explanations and their linked interventions provided by our automated approach. 

 
Innovation 
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This study will lead to several innovations. We will develop new, general informatics techniques. We will transform care 
management for COPD and asthma by directing it to the patients needing it in a more timely fashion and more precisely than 
current methods: 
a)  We will build models to predict a patient’s hospital use earlier and more accurately than current models, which often give 

late warnings and have low accuracy. 
b) We will be the first to semi-automatically extract predictive and clinically meaningful temporal features from longitudinal 

medical data. This process helps us address data quality issues, and automatically find and drop uninformative variables. 
All of these boost model accuracy and generalizability, and reduce the effort needed to build models usable in clinical 
practice. Currently, to build such models, clinicians typically need to manually identify such features, which is difficult and 
time-consuming. 

c) We will be the first to provide rule-based automatic explanations of machine learning prediction results directly on 
longitudinal data. Explanations are critical for care managers to understand the results to make appropriate care 
management enrollment and intervention decisions. Compared with other forms of automatic explanations like that used in 
Rajkomar et al. [36], rule-based explanations are easier to understand and can more directly suggest actionable 
interventions. Most automatic explanation methods [60], including our prior one [59], for machine learning prediction 
results cannot handle longitudinal attributes. Also, our prior method [59] gives explanations for a limited portion of 
patients. We will improve our prior method, handle longitudinal attributes, and expand automatic explanations’ coverage 
of patients. 

d) We will be the first to automatically identify actionable temporal risk factors and suggest interventions based on inclusion 
of objective data. Currently, care managers use subjective, variable judgment to manually form care plans. Some suited 
interventions for patients at high risk for a poor outcome get missed. Also, care managers provide finite input on the patient 
to the other clinical care team members. With automatic explanations and suggested interventions in hand, care managers 
can pass this tailored information to the other clinical care team members so they can act accordingly. This could transform 
the care management process and make it more effective via closer collaboration between care managers and the other 
clinical care team members. 

e) Current models for predicting the health outcomes of individual COPD and asthma patients were built mostly using a small 
number of patients (e.g., <1,000) or variables (e.g., <10) [19-28], making it difficult to identify many predictive features 
and the interactions among them. Air quality and weather variables impact COPD and asthma outcomes [43, 50-52], but 
are rarely used in existing models. The predictive power of many known risk factors for undesirable outcomes is unused. 
Also, many predictive features have not yet been found. In contrast, we will use many patients and variables, enabling us to 
identify more predictive features and the interactions among them. The variables will include air quality, weather, and 
patient variables, cover many known risk factors for undesirable outcomes, and be used to find new predictive features in a 
data-driven way. Many features are new, capturing trends that existing models rarely touch. 

To build and validate models for predicting the health outcomes of individual COPD and asthma patients, we will use data 
from four different electronic health record systems HELP, HELP2, Cerner, and Epic. This boosts model generalizability. In 
contrast, every existing model for predicting the health outcomes of individual COPD and asthma patients was built using data 
from only one electronic health record system [19-28]. 

 
In short, this study is significant as it will produce new techniques to advance machine learning for clinical applications and 

potentially transform preventive care for more patients to receive appropriate and timely care. Wide use of these techniques 
could boost outcomes and save resources. 
 
2. Methods 
Computing environment 

All experiments will be done on a secure computer cluster at University of Washington Medicine (UWM) that is encrypted 
and password-protected. With proper authorization, all of the UWM care manager and physician test participants and research 
team members can log into this computer cluster from their UWM computers. We will install Oracle database, R, Weka [61], 
and TensorFlow [62] to be used in the study on the computer cluster. Weka is a major open-source machine learning toolkit. It 
incorporates many popular machine learning algorithms including both base and ensemble algorithms, feature selection 
techniques, and methods for dealing with imbalanced classes [63]. TensorFlow is Google’s open-source deep neural network 
package. 
 

Data sets 
We will employ clinical and administrative data from the enterprise data warehouses (EDWs) of three leading healthcare 

systems Intermountain Healthcare (IH), Kaiser Permanente Southern California (KPSC), and UWM, as well as publicly 
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available air quality and weather data. All of the data to be used are structured. We will use all patients’ data, which are needed 
for computing healthcare system features [64, 65], rather than only COPD and asthma patients’ data. As the largest healthcare 
system in Utah, IH has 185 clinics and 22 hospitals. The EDW of IH contains numerous variables [66]. In this study, we will 
start with using the following of these variables: “admission date and time; age; orders (medications, labs, exams, 
immunizations, imaging, counseling, etc.), including order name, ordering provider, performing date, and result date; allergies; 
barriers (hearing, language, learning disability, mental status, religion, vision, etc.); cause of death; chief complaint; death date; 
diagnoses; discharge date; exam result; facility seen for the patient visit; gender; health insurance; healthcare cost; height; home 
address; immunizations; lab test result; language(s) spoken; medication refills; primary care physician as listed in the electronic 
medical record; problem list; procedure date; procedures; provider involved in the visit; race/ethnicity; referrals; religion; visit 
type (inpatient, outpatient, urgent care, or emergency department); vital signs; weight” [65]. An IH data analyst will download 
a de-identified IH data set, encrypt it, and transfer it to the secure computer cluster. The IH data set has information on clinical 
encounters in the previous 14 years (2005-2018). For the previous five years, the IH data for adults cover over 5,786,414 
clinical encounters and 878,448 adult patients (age≥18) per year. The IH data for children cover over 1,557,713 clinical 
encounters and 360,698 pediatric patients (age<18) per year. COPD prevalence is ~4.1% in the IH adult population. Asthma 
prevalence is ~8.6% and ~7.6% in the IH adult and pediatric population, respectively. The IH data set provides the electronic 
record of care for ~60% of adults and ~95% of children in Utah [56, 67]. IH devotes many resources to maintain data integrity 
and accuracy. Because of its huge size and variable richness, the data set provides many advantages for us to explore the 
proposed predictive models. 

KPSC and UWM have similar strengths. KPSC is the largest integrated healthcare system in Southern California, providing 
care to ~16% of residents in 227 clinics and 15 hospitals [68]. A KPSC data analyst will download a de-identified KPSC data 
set, encrypt it, and transfer it to the secure computer cluster. The KPSC data set has information on clinical encounters in the 
previous 10 years (2009-2018). For the previous five years, the KPSC data for adults cover over 9,448,987 clinical encounters 
and 2,890,027 adult patients per year. The KPSC data for children cover more than 1,380,900 clinical encounters and 975,249 
pediatric patients per year. COPD prevalence is ~4.1% in the KPSC adult population. Asthma prevalence is ~10.8% and 
~10.9% in the KPSC adult and pediatric population, respectively. 

As the largest academic healthcare system in Washington, UWM has 12 clinics and 4 hospitals. A UWM data analyst will 
download a de-identified UWM data set, encrypt it, and transfer it to the secure computer cluster. The UWM data set has 
information on adult patient encounters in the previous 7 years (2012-2018). The UWM data cover over 1,714,196 clinical 
encounters and 277,289 adult patients per year. COPD prevalence among patients is ~4.1%. Asthma prevalence is ~9%. 

In addition to the clinical and administrative data, we will use 11 air quality and weather variables, which were recorded over 
the previous 14 years (2005-2018) by the monitoring stations in the regions served by UWM, IH, and KPSC and are available 
from federal data sources [69, 70]. These variables include ozone, sulfur dioxide, particulate matter up to 10 μm in size and 2.5 
μm in size, nitrogen dioxide, temperature, carbon monoxide, wind speed, relative humidity, precipitation, and dew point. 

 
In the following, we sketch our techniques. Our design paper [71] describes the ideas in more detail. In this study, for each 

technique, we will flesh out its technical details, do computer coding, tune its parameters, and test it. The discussion below 
focuses on COPD. Whenever we mention COPD, the same applies to asthma. 

 
Aim 1: Use temporal features to provide accurate early warnings of poor outcomes and assess impact on prediction 
accuracy. 

We will semi-automatically extract predictive and clinically meaningful temporal features from patient, air quality, and 
weather data, and build models to predict a patient’s health outcome. Each feature involves one or more raw variables. The 
number of possible features is almost infinite. Also, factors like environmental variables beyond air quality and weather can 
influence patient outcomes. This study does not intend to exhaust all of the possible features and factors that can influence 
patient outcomes, and achieve the highest possible prediction accuracy in theory. Rather, our purpose is to show that using 
temporal features can improve risk warning timeliness, prediction accuracy, and care management. A non-trivial boost in health 
outcomes can greatly benefit society. As is adequate for our target decision support application and typical with predictive 
modeling, our study focuses on associations. 

 
Data pre-processing 

We will write Oracle database SQL queries and R and Java programs for data pre-processing. Our source code will be made 
freely available on a project Web site hosted by UWM. In our future publications on this study’s results, we will describe all of 
the decisions made for data pre-processing, such as the thresholds used for determining the physiologically impossible and 
invalid values of an attribute. We will transform all of the data sets into the Observational Medical Outcomes Partnership 
(OMOP) common data model format [72] and its related standardized terminologies [73]. We will extend the data model to 
include patient, air quality, and weather variables that are in our data sets, but not covered by the original data model. We will 
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adopt conventional techniques like imputation to manage missing values and to find, rectify, or drop invalid values [74, 75]. To 
avoid using too many longitudinal attributes, we will employ grouper models like the Diagnostic Cost Group system to merge 
diseases, drugs, and procedures [31, 34]. We will use the method given in our paper [71] to select the most relevant lab tests. 

Variables: We will use patient, air quality, and weather variables. The patient variables include standard variables like 
diagnoses that the clinical predictive modeling literature [34, 55, 74] has studied, and many known risk factors for undesirable 
COPD outcomes listed in Bahadori et al. [45]. For air quality and weather variables, we will do spatial interpolation [76] to 
obtain their daily average values at the patient’s home address from those at regional monitoring stations [77]. 

 
COPD and asthma cases and outcomes 

As test cases, we will develop and test our approach using (i) COPD, (ii) pediatric asthma, and (iii) adult asthma. For COPD, 
we will adjust the criteria used by the Centers for Medicare and Medicaid Services and National Quality Forum [78-80] to 
incorporate outpatient and emergency room visit data [81] to find COPD patients. A patient is deemed to have COPD if he/she 
is ≥40 and has 
1) 1 outpatient visit diagnosis code of COPD (ICD-9 (International Classification of Diseases, Ninth Revision): 491.21, 

491.22, 491.8, 491.9, 492.8, 493.20, 493.21, 493.22, 496; ICD-10 (International Classification of Diseases, Tenth 
Revision): J41.8, J42, J43.*, J44.*) and ≥1 prescription of tiotropium within 6 months of the outpatient visit, 

2) ≥2 outpatient or ≥1 emergency room visit diagnosis codes of COPD (ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8, 493.20, 
493.21, 493.22, 496; ICD-10: J41.8, J42, J43.*, J44.*), 

3) ≥1 hospital primary discharge diagnosis code of COPD (ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8, 493.20, 493.21, 
493.22, 496; ICD-10: J41.8, J42, J43.*, J44.*), or 

4) ≥1 hospitalization with a primary discharge diagnosis code of respiratory failure (ICD-9: 518.81, 518.82, 518.84, 799.1; 
ICD-10: J80, J96.0*, J96.2*, J96.9*, R09.2) and a secondary discharge diagnosis code of acute exacerbation of COPD 
(ICD-9: 491.21, 491.22, 493.21, 493.22; ICD-10: J44.0, J44.1). 

The outcome measure is whether a patient used the hospital (inpatient stay and emergency room visit) with a primary diagnosis 
of COPD (ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8, 493.20, 493.21, 493.22, 496; ICD-10: J41.8, J42, J43.*, J44.*) in the 
subsequent year. 

For asthma, we will use Schatz et al.’s [20, 82, 83] method to find asthma patients. A patient is deemed to “have asthma if 
he/she has 1) ≥1 diagnosis code of asthma (ICD-9 493.*; ICD-10 J45/J46.*) or 2) ≥2 asthma-related medication dispensing 
records (excluding oral steroids) in a one-year period, including β-agonists (excluding oral terbutaline), inhaled steroids, other 
inhaled anti-inflammatory drugs, and oral leukotriene modifiers.” [84] The outcome measure is whether a patient used the 
hospital with a primary diagnosis of asthma (ICD-9 493.*; ICD-10 J45/J46.*) in the subsequent year. 
 
Temporal feature extraction 

We will use a new method to semi-automatically extract predictive and clinically meaningful temporal features from 
longitudinal data. These features will be used to build the final predictive model and to automatically identify actionable 
temporal risk factors for each patient at high risk for future hospital use. Our new method is semi-automatic, as its final step 
involves a human to extract features through visualization [71]. It generalizes to many clinical applications and is sketched as 
follows, with more details described in our design paper [71]. 

Our method uses LSTM [35], a type of deep neural network that models long-range dependencies and often reaches higher 
prediction accuracy than other algorithms [40]. A lot of work has been performed using LSTM to construct predictive models 
on medical data [36-39, 85]. LSTM performs computations on a sequence of input vectors from the same patient, one vector 
after another. Every input vector 𝑥௧ሬሬሬ⃑  is marked by a time step t. After finishing the whole sequence, LSTM gains results that are 
combined with static attributes like gender [86] to predict the outcome of the patient. Every input vector contains information of 
one patient visit like vital signs and diagnoses. The sequence length can differ across patients. This helps increase model 
accuracy, because LSTM can use as much of each patient’s information as possible, without dropping information to make 
every patient have the same length of history. In addition, this enables us to make timely predictions on new patients without 
waiting until every patient acquires history of a certain length. With information from only one visit, LSTM can start making 
projections on the patient. 

As Figure 1 shows, an LSTM network includes a sequence of units, one for each time step. In the figure, each unit is denoted 
by a rounded rectangle.  represents the element-wise multiplication.  represents the element-wise sum. A unit contains an 
input gate it, a hidden state ht, an output gate ot, a forget gate ft, and a memory cell ct. The memory cell maintains long-term 
memory and keeps summary information from all of the previous inputs. Every element of the memory cell vector 𝑐௧ሬሬሬ⃑  represents 
some learned temporal feature. As shown by Karpathy et al. [87], only ~10% of the memory cell vector elements could be 
interpreted [88]. This is because LSTM puts no limit on the number of input vector elements that can connect to every memory 
cell vector element. All of the input vector elements could be adopted in every element of the input and forget gates’ activation 
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vectors, and connect to every memory cell vector element. Consequently, no limit is put on the number of attributes utilized in 
every learned temporal feature. 

 
 
 
 
 

 
 
 

Figure 1. A long short-term memory network. 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

 
Figure 2. A multi-component long short-term memory network having K components. 

 
It is difficult to understand a feature that involves many attributes. To address this issue, we will use multi-component LSTM 

(MCLSTM), a new type of LSTM that can automatically drop uninformative attributes. As Figure 2 shows, an MCLSTM has 
several component LSTM networks, each using some rather than all of the longitudinal attributes. By limiting the number of 
attributes connecting to every memory cell vector element, more memory cell vector elements will depict clinically meaningful 
and more generalizable temporal features. Since LSTM often produces more accurate models than other algorithms [36-39], the 
learned features tend to be predictive. As patient attributes are collected at a different frequency from air quality and weather 
attributes, we specify certain component networks for the former and the others for the latter. To let data tell which component 
network uses which attributes, we use a new exclusive group Lasso (least absolute shrinkage and selection operator) 
regularization method. It combines exclusive Lasso [89, 90] and group Lasso [91] to reach two goals jointly. First, in each 
component network, every attribute competes with every other attribute. When one is employed, the others are less likely to be 
employed. Second, in each component network, all of the input vector weight matrix elements connecting to the same attribute 
tend to become non-zero (or zero) concurrently. Non-zero means the attribute is employed. We will use TensorFlow [62] to 
train MCLSTM, and use our prior method [84, 92] to automate hyper-parameter value selection. 

Kale et al. [93-97] showed that in a deep neural network, we can use training instances that incur the highest activations of a 
neuron to find clinically meaningful features. After training the MCLSTM network, we proceed as follows to identify zero or 
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more such features from every memory cell vector element at the final time step of the network. First, we find several training 
instances that incur the highest activations in the memory cell vector element. Second, in each of those training instances, we 
find one or more segments of the input vector sequence termed effective segments, each tending to represent a useful temporal 
feature. Third, we partition all spotted effective segments into multiple clusters, and visualize each cluster separately to identify 
zero or more clinically meaningful temporal features. As shown in Wang et al. [98], such visualization could help us find and 
address data quality issues like an implausible order of events, boosting model accuracy. For each identified feature, Dr. Luo 
and a clinician in our team will jointly arrive at an exact mathematical definition of an extracted feature. Many extracted 
features capture trends more precisely than the raw features learned by LSTM. This also boosts model accuracy. 

 
Aim 1’s final predictive models 

We will use the extracted temporal features to convert longitudinal data to tabular data, with one column per feature, and add 
static features. Healthcare system features like the number of a physician’s patients of a given race can boost model accuracy 
[64, 65, 99] and are included as static features. We will employ Weka [61] to construct Aim 1’s final predictive models. As 
shown in Aim 4, these models are suitable for automatic explanation. We will use supervised algorithms and our prior method 
[84, 92] to automatically select the algorithm, feature selection technique, imbalanced class handling method, and 
hyper-parameter values among all of the applicable ones. We will do manual fine-tuning if needed. 

Using historical data up to the prediction time point, we will build three sets of models, one for each of three combinations: 
COPD at IH, KPSC, and UWM. For each of IH, KPSC, and UWM, the corresponding set of COPD models will be built for all 
of the COPD patients in that healthcare system. Unlike integrated healthcare systems IH and KPSC, UWM has most of its 
patients referred from other healthcare systems and fairly incomplete data on many of its patients. To reduce incomplete data’s 
impact on model accuracy, we will use our prior constraint-based method [100] to find patients tending to receive most of their 
care at UWM, and build models on and apply models to them. Previously, we showed that a good constraint for all types of 
UWM patients on average is that the patient lives within 5 miles of a UWM hospital and has a UWM primary care physician 
[100]. Yet, the optimal distance threshold could vary across various types of patients because of their different characteristics. 
Intuitively, a UWM COPD patient is likely to keep using and get a large portion of his/her care from UWM, even if the patient 
lives at some distance away from the closest UWM hospital. In comparison, a patient who visited a UWM emergency room 
once due to a car accident may no longer use UWM after that visit. We will use the approach in our prior work [100] to find an 
optimal distance threshold for COPD patients. As noted earlier, we will develop and test our techniques on asthma as well. 
 
Accuracy evaluation and justification of the sample size 

The discussion below is for IH data. The cases with KPSC and UWM data are similar. As we need to compute outcomes for 
the subsequent year, we essentially possess 13 years of IH data over the past 14 years. We will train and test models in a usual 
way. We will do stratified 10-fold cross validation [61] on the data in the first 12 years to train models and to estimate their 
accuracy. The data in the 13th year will be employed to gauge the performance of the best models, mirroring future use in 
clinical practice. We will select the best model using the standard performance metric AUC [61]. A care management program 
typically enrolls 1-3% of COPD patients [32]. Of the upper 1% of COPD patients the model projects to be at the highest risk of 
using the hospital, we will report the percentage of patients using the hospital in the subsequent year. For a program taking 1% 
of COPD patients based on the model’s prediction results, this percentage reflects the degree of correct enrollment. To find the 
variables vital for high accuracy, we will conduct backward elimination [74] to remove features on the condition that accuracy 
does not drop >0.02. We will compare the variables vital for high accuracy on IH data with those on KPSC and UWM data. 
Using the variables available in both the IH and KPSC/UWM data sets, we will build a best predictive model on IH data, and 
compare the model’s accuracy on IH data with that on KPSC/UWM data. 

We will test the hypothesis that using our techniques can boost model accuracy. To do this, we will use a two-sided Z-test to 
compare the AUCs of two predictive models built in a way like that in Obuchowski [101]. The first predictive model will use 
the best machine learning algorithm and take all features essential for high accuracy. The second model will be adapted from 
those in the literature. For each predictive model for hospital usage reported in the literature [19-28], we will retrain it on our 
data set using the attributes appearing in both the original model and our data set. The most accurate one of the retrained models 
will be the second model. Our hypothesis is: 
Null hypothesis: The first model reaches the same AUC as the second. 
Alternative hypothesis: The first model reaches a higher AUC than the second. 

The categorical outcome variable of hospital usage has two possible values (classes). To the best of our knowledge, every 
predictive model for hospital usage reported in the literature reaches an AUC <0.8 [19-28]. “Using a two-sided Z-test at a 
significance level of 0.05 and assuming for both classes a correlation coefficient of 0.6 between the two models’ prediction 
results, a sample size of 137 instances per class has 90% power to detect a difference of 0.1 in AUC between the two models,” 
[65] like an increase of AUC from 0.8 to 0.9. The IH data in the 13th year include around 35,000 COPD patients, offering 
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enough power to test our hypothesis. This conclusion remains valid if the actual correlation coefficient differs somewhat from 
the assumed one. 
 
Aim 2: Assess using temporal features’ impact on risk warning timeliness. 

The discussion below is for IH data. The cases with KPSC and UWM data and with asthma are similar. 
 
Outcome of the number of days of early warning the model provides for the patient and the estimation approach 

Consider a predictive model and a patient who used the hospital on date D in the 14th year. The outcome is the number of days 
of early warning the model provides for the patient. To measure the number, we find the first date D' (D-365≤D'≤D-1) such that 
if we use D' as the prediction time point and input the patient’s history up to D' into the model, the model predicts hospital use 
in the subsequent year. In this case, the model warns the first hospital use k (0≤k≤D-D') days in advance, with D'+k being the 
first day between D' and D when the patient used the hospital. k is the outcome number. Otherwise, if the model still predicts no 
hospital use when we reach D-1, the model warns zero day in advance and zero is the outcome number. We expect using our 
techniques will raise the outcome number. We will assess the outcome on the cohort of COPD patients who ever used the 
hospital during the 14th year. For these patients, the average number of days of early warning given by the model shows how 
timely it warns. 
 
Outcome evaluation and justification of the sample size 

We will test the hypothesis that using our techniques can boost risk warning timeliness. To do this, for the patient cohort, we 
will use an F-test to compare the number of days of early warnings provided by the two models mentioned in Aim 1’s accuracy 
evaluation section, assuming a Poisson model with an offset of 365 days. Our hypothesis is: 
Null hypothesis: The number of days of early warning provided by the first model is the same as that provided by the second. 
Alternative hypothesis: The number of days of early warning provided by the first model is larger than that provided by the 
second. 

Assuming the number of days of early warning has an exponential distribution and employing an F-test at a one-sided 
significance level of 0.05, a sample size of 600 patients offers 80% power to detect a minimum raise of 27.8 days of early 
warning by the first model, when the second model warns on average 180 days in advance. About 2,000 COPD patients ever 
used IH hospitals during the 14th year, giving enough power to test our hypothesis. The conclusion remains valid if the actual 
situation differs somewhat from the assumed one. 
 

For Aims 1 and 2, our goal is to reach a boost of ≥0.1 in accuracy and ≥30 days in risk warning timeliness, respectively. If we 
cannot reach this goal on the entire COPD patient group, we will construct distinct models for differing patient subgroups. The 
patient subgroups are described by characteristics like age or co-morbidity, which are often independent variables in the 
original predictive models. If we still cannot reach this goal, we will do subanalyses to find the patient subgroups, for which our 
predictive models show good performance, and then apply our ultimate predictive models only to these patient subgroups. 
 
Aim 3: Assess using temporal features’ potential impact on outcomes via simulations. 

To assess the value of a predictive model for future clinical deployment, we need to appraise care management outcomes if 
the model is adopted, and decide how to generalize the predictive model to other sites gathering differing sets of variables. Our 
predictive models will be constructed on IH, KPSC, and UWM data. Our simulations will guide how to employ the predictive 
models in other healthcare systems. No prior study has decided the variables most crucial for COPD and asthma model 
generalization. We will apply our simulation method to care management of 1) COPD patients, 2) asthmatic children, and 3) 
asthmatic adults. 

 
Outcomes of the number of inpatient stays and the number of emergency room visits in the subsequent year and the 
estimation approach 

The number of inpatient stays in the subsequent year is the primary outcome. The number of emergency room visits in the 
subsequent year is the secondary outcome. The following discussion focuses on IH data and inpatient stays. The cases with 
KPSC and UWM data and/or emergency room visits can be handled similarly. From statistics reported in the literature [102, 
103], we will obtain the percentage of inpatient stays p a care management program can help avoid. Given a set of variables, we 
will adopt the same method used in Aim 1 to train a predictive model on the data in the first 12 years. For the data in the 13th 
year, we will gather prediction results, then estimate the outcome. Consider a patient who will have ne inpatient stays in the 
subsequent year without enrolling in the program. If the patient gets enrolled, for each inpatient stay of the patient, we will 
simulate whether it will occur or not based on probability 1-p. The gross outcome estimate will be the sum of the estimated 
outcomes of all patients. Adopting a similar method, we will find the minimum accuracy required for the predictive model to be 
valuable in clinical practice. 
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Sensitivity analysis 

IH, KPSC, and UWM collect many variables. Another healthcare system may collect fewer. To ensure generalizability, we 
will evaluate various variable combinations and obtain the estimated outcomes when the revised model is adopted. These 
estimates will pinpoint crucial variables. If a crucial variable is not available in a given healthcare system, these estimates can 
hint alternative variables having minimal adverse impact on the outcomes. 

We will employ a variable grouping approach relating variables likely to co-exist, such as those linked in a lab test panel, 
according to the judgment of our clinical experts. We will create and post a table showing many possible combinations of 
variables by groups, encompassing the trained parameters and the simulated outcomes of the predictive model. A healthcare 
system wanting to deploy the model can employ this table to estimate the expected outcomes in the system’s data environment, 
as well as to determine the variables to be gathered. The table has three columns, one for each of IH, KPSC, and UWM. Many 
variables collected by IH, KPSC, and UWM and used in this study are commonly available in many other systems. Thus, all 
variables used in each of many rows in the table will already exist in these systems. 

 
Outcome evaluation and justification of the sample size 

The following discussion focuses on IH data. The cases with KPSC and UWM data are similar. We will employ McNemar’s 
test to compare the paired-sample outcomes reached by the two predictive models mentioned in Aim 1’s accuracy evaluation 
section. We will test two hypotheses: using our techniques will link to a potential drop in 1) inpatient stays and 2) emergency 
room visits in the subsequent year. Our primary hypothesis is: 
Null hypothesis: The number of inpatient stays in the subsequent year reached by the first model is the same as that reached by 
the second. 
Alternative hypothesis: The number of inpatient stays in the subsequent year reached by the first model is smaller than that 
reached by the second. 

Among the patients truly at high risk for future hospital use, the first model will find some missed by the second and vice 
versa. Assuming the former cuts inpatient stays in the subsequent year by 5% and the latter increases them by 1%, at a one-sided 
significance level of 0.05, a sample size of 251 instances provides 80% power to verify the primary hypothesis. The IH data in 
the 13th year cover about 35,000 COPD patients, offering enough power to test the primary hypothesis. 
 
Aim 4: Automatically identify actionable temporal risk factors for each patient at high risk for future hospital use and 
assess the impact on prediction accuracy and outcomes. 

Care managers currently give finite input on the patient to the other clinical care team members. Due to bandwidth constraint, 
care managers can afford to examine only a finite number of patients top ranked by the predictive model - those whose 
projected risk for future hospital use is over a given threshold like the 95th percentile. For those patients, we will automatically 
explain early warnings, identify actionable temporal risk factors, and suggest tailored interventions. This helps care managers 
make enrollment decisions and form tailored care plans. This also enables care managers to pass actionable information on to 
the other members in the clinical care teams and collaborate more closely with them. To implement the new function, we will 
improve our prior method [59] to automatically explain a machine learning model’s prediction results without incurring any 
accuracy loss. For non-longitudinal tabular data, our prior method separates explanation and prediction by employing two 
models simultaneously, each for a distinct purpose. The first model gives predictions to maximize accuracy. The second 
employs class-based association rules mined from historical data to explain the first model’s results. Our prior method cannot 
handle longitudinal attributes and has not yet been applied to COPD, asthma, or care management. 

As mentioned in Aim 1, we will use temporal features to convert longitudinal data to tabular data, with one column per 
feature. Then we can apply our prior automatic explanation method [59]. Each patient is represented by the same set of features 
and is marked as either high risk for future hospital use or not. From historical data, our method mines association rules linked 
to high risk. An example rule is: the ratio of inhaled steroid to beta agonist dispensing to the patient decreased over 12 months 
AND sulfur dioxide level was ≥3 parts per million for ≥5 days in the past week  high risk. The first item on the left hand side 
of the rule is an actionable temporal risk factor. Two interventions for the first item are to 1) assess COPD controller medication 
compliance, and change, prescribe, or raise the dose of the medication if needed; and 2) assess the patient for COPD triggers 
and ensure the patient stays away from them. Our paper [71] listed several interventions for a few other temporal risk factors. 
By discussion and consensus, the clinical experts in our team will check the mined rules and drop those making little or no sense 
clinically. For every rule that remains, our clinical team will mark the actionable temporal risk factors in it and list zero or more 
interventions that address the reason shown by the rule. 

At the time of prediction, for every patient our most accurate model projects to be at high risk for future hospital use, we will 
find and show all of the association rules whose left hand side conditions the patient satisfies, and list the interventions linking 
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to these rules as our suggestions. Each rule shows a reason why high risk is anticipated for the patient. Users of our automatic 
explanation function can give feedback to help us find and drop unreasonable rules [64]. 

 
Boost automatic explanations’ coverage of patients, model accuracy, and generalizability 

For a non-trivial portion of patients, our prior automatic explanation method [59] cannot explain the prediction results of the 
model. Our prior method employs a conventional approach to mine association rules at a specific level of two parameters: 
minimum confidence and support. This approach is suboptimal for imbalanced data. There, the outcome variable takes the 
high-risk value for future hospital use much more often than the low-risk one. Adopting the same minimum support for both 
values is inadequate [104]. If the minimum support is too small, the rule mining process will form many overfitted rules, 
making it daunting for clinicians to check all of the mined rules. If the minimum support is large, we cannot identify enough 
rules for the high-risk value. Consequently, for many patients projected to be at high risk for future hospital use, we cannot 
explain the prediction results of the model. 

To enlarge automatic explanations’ coverage of patients, we will use a new technique. It generalizes to many clinical 
applications and is sketched as follows, with more details given in our design paper [71]. We will use Paul et al.’s [104] 
approach to mine association rules, by replacing support by value-specific support termed commonality. This has two 
advantages. First, the rule mining process produces fewer overfitted rules, cutting the time clinicians need to check the mined 
rules. Second, we obtain more rules for the high-risk value of the outcome variable. Thus, for more patients projected to be at 
high risk for future hospital use, we can explain the prediction results of the model. 

Using automatic explanations and the method described in our paper [64], we will find and drop uninformative features, and 
retrain the predictive model. For the model, this can boost its accuracy, as well as make it generalize better to other healthcare 
systems beyond where it was originally built. On non-medical data, Ribeiro et al. [105] showed a similar method with a 
narrower scope boosted model accuracy by ~10%. 
 
Performance evaluation 

We will compare the association rules obtained from IH, KPSC, and UWM data. The following discussion focuses on IH 
data. The cases with KPSC and UWM data are similar. We will do analyses similar to those in Aim 1 to compare using our new 
techniques in Aim 4 vs. the current method of offering no explanation. We will compare the outcomes of the number of 
inpatient stays and the number of emergency room visits in the subsequent year and the accuracy reached by two models: the 
best ones produced in Aims 1 and 4, respectively. We will test three hypotheses: using our new techniques in Aim 4 will link to 
a potential drop in 1) inpatient stays and 2) emergency room visits in the subsequent year, and 3) boost prediction accuracy. Our 
primary hypothesis is: 
Null hypothesis: The number of inpatient stays in the subsequent year reached by the second model is the same as that reached 
by the first. 
Alternative hypothesis: The number of inpatient stays in the subsequent year reached by the second model is smaller than that 
reached by the first. 
We will employ McNemar’s test to compare the paired-sample outcomes reached by the two models. 

Among the patients truly at high risk for future hospital use, the second model will find some cases missed by the first and 
vice versa. Assuming the former cuts inpatient stays in the subsequent year by 2.5% and the latter increases them by 0.5% and 
using McNemar’s test, at a one-sided significance level of 0.05, a sample size of 503 instances provides 80% power to verify 
the primary hypothesis. The IH data in the 13th year cover ~35,000 COPD patients, offering enough power to test the primary 
hypothesis. 

To assess our technique’s impact on model generalizability, we will compare two predictive models’ accuracy on 
KPSC/UWM data. The first model is the best one produced in Aim 1 on IH data using the variables available in both the IH and 
KPSC/UWM data sets. The second is produced by using our technique to drop uninformative features from the first model and 
retrain it on IH data. We will develop and test our techniques on asthma as well. 
 
Aim 5: Assess actionable information’s impact on clinicians’ acceptance of early warnings and on perceived care plan 
quality. 

As an essential preparatory step for future clinical deployment, we will evaluate actionable information’s impact on UWM 
care managers and physicians’ decision making in a test setting. For physicians, we will use primary care physicians, 
pulmonologists, and allergists managing COPD patients. The discussion below focuses on care managers. The case of 
evaluating with 10 physicians is similar. 
 
Subject recruitment 

As an operational project at UWM, we are working on COPD outcome prediction and can access ~25 UWM care managers 
for adults. Via making announcements in their email lists and personal contact, we will recruit 10 care managers. We will adopt 
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purposeful sampling to ensure adequate variability in work experience [106]. All evaluation test participants will give consent 
and be up-to-date on privacy and information security policy training required by UWM. Participants will obtain pseudonyms 
connecting their responses to questions to protect privacy. After completing the task, each will obtain U.S. $2,400 as 
compensation for participation for ~40 hours’ work. We will conduct two experiments. 
 
Experiment 1 
Procedures 

From the IH data in the 13th year, we will randomly select 400 IH COPD patients who used the hospital in the subsequent 
year, and automatically explain the prediction results of the best IH model built in Aim 4. We will use patients outside of UWM 
to help ensure no care manager is aware of any of those patients’ outcome in the subsequent year. We will show every care 
manager a different subset of 40 patients and proceed in three steps: 
(1)  Step 1: For every patient, we will present the historical de-identified patient attributes and the prediction result to the care 

manager, and ask him/her to record the enrollment decision and interventions, if any, that he/she plans to use on the patient. 
For the historical patient attributes, we will show the static attributes’ values at the top, followed by the longitudinal 
attributes’ values in reverse chronological order. No care manager will see any automatic explanation in this step. 

(2)  Step 2: For every patient, we will present the automatic explanations and their linked interventions to the care manager, and 
survey him/her using both semi-structured and open-ended questions. The automatic explanations will appear as a list of 
association rules. Below each rule is the list of interventions linked to the rule. The questions will include whether these 
explanations would change the enrollment decision for the patient, whether he/she believes they would improve care plan 
quality, their usefulness on a 1-7 scale with anchors of not at all/very useful, and their perceived trustworthiness on a 1-7 
scale with anchors of not at all/completely. Our questionnaire will embrace a text field for writing comments. 

(3)  Step 3: We will use the standard Technology Acceptance Model (TAM) satisfaction questionnaire [107] to survey the care 
manager about the automatic explanations. A technology is unimportant unless people will accept and use it. Developed 
based on multiple well-accepted behavioral theories, TAM is the most widely adopted model of people’s acceptance and 
usage of a technology. The TAM satisfaction questionnaire will measure the perceived usefulness and the perceived ease 
of use of automatic explanations. Perceived usefulness is known to link strongly to future usage intentions and to actual 
function usage [108, 109]. Multiple studies have demonstrated the validity and reliability of the TAM satisfaction 
questionnaire [110, 111]. 

 
Analysis 

We will adopt the inductive approach described in Patton et al. [106, 112] to conduct qualitative analysis. Care managers’ 
textual comments will be put into ATLAS.ti qualitative analysis software [113]. Three people in our research team will 
independently highlight quotations on prediction results and automatic explanations for all records. Quotations will be 
examined, classified into pre-codes, and merged into categories via discussion and negotiated consensus in several iterations. 
We will find general themes via synthesis of categories. The quantitative analyses will include giving descriptive statistics for 
every quantitative outcome measure. We will test the hypothesis that for the patients who will use the hospital in the next year, 
giving actionable information will improve the perceived care plan quality. Our hypothesis is: 
Null hypothesis: For the patients who will use the hospital in the next year, the care manager does not believe that showing the 
automatic explanations and their linked interventions would improve care plan quality. 
Alternative hypothesis: For the patients who will use the hospital in the next year, the care manager believes that showing the 
automatic explanations and their linked interventions would improve care plan quality 
We will fit a random effect logistic model to account for correlation among the outcomes of the same care manager on whether 
the perceived care plan quality is improved. 
 
Justification of the sample size 

Assuming a moderate intra-class correlation of 0.1 within the same care manager on the outcome of whether the perceived 
care plan quality is improved, a sample size of 40 instances per care manager for 10 care managers is equivalent to totally 82 
independent instances after adjusting for the clustering effect. At a two-sided significance level of 0.05, we will have 80% 
power to identify a 9.7% increase in the odds of improving the perceived care plan quality with actionable information. A 
similar conclusion holds if the actual correlation differs somewhat from the assumed one. 

If giving actionable information has no significant impact on the perceived care plan quality on the whole group of COPD 
patients, we will do subanalyses to find those patient subgroups on which significant impact occurs. 
 
Experiment 2 
Procedures 
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We will randomly partition the 10 care managers into two disjoint groups: the intervention group and the control group. Each 
group has five care managers. From the IH data in the 13th year, we will randomly select 200 IH COPD patients who used the 
hospital in the subsequent year and whose data are unused in Experiment 1, and automatically explain the prediction results of 
the best IH model built in Aim 4. For each group, we will show every care manager in the group a different subset of 40 
patients. With random assignment, each patient is shown to two care managers, one in the intervention group and the other in 
the control group. In the control group, for every patient, we will show the care manager the historical de-identified patient 
attributes and the prediction result, but no automatic explanation. In the intervention group, for every patient, we will show the 
care manager the historical de-identified patient attributes, the prediction result, the automatic explanations and their linked 
interventions. In both groups, we will ask the care managers to record their enrollment decisions. 
 
Analysis 

We will test the hypothesis that for a patient who will use the hospital in the next year, giving actionable information will 
increase the likelihood that a care manager decides to enroll the patient in care management. Our hypothesis is: 
Null hypothesis: For a patient who will use the hospital in the next year, the likelihood that a care manager in the intervention 
group decides to enroll the patient in care management is the same as that in the control group. 
Alternative hypothesis: For a patient who will use the hospital in the next year, the likelihood that a care manager in the 
intervention group decides to enroll the patient in care management is higher than that in the control group. 
We will fit a random effect logistic model to compare care managers’ enrollment decision outcomes between the intervention 
group and the control group, while accounting for correlation among the enrollment decision outcomes of the same care 
manager and correlation between the enrollment decision outcomes of the same patient examined by two care managers. 
 
Justification of the sample size 

Assuming a moderate intra-class correlation of 0.1 within the same care manager and within the same patient examined by 
two care managers on the enrollment decision outcome, a sample size of 40 instances per care manager for 10 care managers is 
equivalent to totally 74 independent instances after adjusting for the clustering effect. At a two-sided significance level of 0.05, 
we will have 80% power to identify a 9.7% boost in the intervention group in the odds that a care manager decides to enroll the 
patient in care management. A similar conclusion holds if the actual correlations differ somewhat from the assumed ones. 
 

As mentioned right before Aim 1, the above discussion focuses on COPD. Whenever we mention COPD, the same applies to 
asthma and will be developed and tested on asthma also in Aims 1-5. 
 
Ethics approval 

We have obtained from IH, UWM, and KPSC institutional review board approvals for this study. 
 
3. Results 

We are currently downloading clinical and administrative data from the EDWs of UWM, KPSC, and IH. We plan to start data 
analysis in 2020 and finish our study in 2025. 

 
4. Discussion 
Clinical use of our results 

Care managers collaborate with the other members in the clinical care teams. We will automatically explain early warnings 
and suggest possible interventions to help clinical care teams form tailored care plans on the grounds of objective data. This 
could facilitate clinicians to review structured data in patient charts faster, and enable closer collaboration between care 
managers and the other members in the clinical care teams. Once our methods find patients at the largest projected risks for 
future hospital use and provide explanations, clinicians will check patient charts, examine factors like social dimensions and 
potential for improvement [102], and make care management enrollment and intervention decisions. 

As time goes by, both the feature patterns linked to high risk for future hospital use and patient status keep changing. In 
clinical practice, we can re-apply our techniques regularly to the latest clinical, administrative, air quality, and weather data sets 
to move patients into and out of care management and to find new feature patterns over time. 

As in the case with LSTM, with information from only one visit, our proposed predictive models can start making projections 
on the patient. Yet, all else being equal, we would expect the prediction accuracy and risk warning timeliness reached by our 
models to improve as the length of patient history increases. 
 
Generalizability 
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We will semi-automatically extract predictive and clinically meaningful temporal features from longitudinal data, solving an 
open computer science challenge [60]. Both our feature extraction and automatic explanation methods will help drop 
uninformative variables, reducing the variables used in the model. This boosts model generalizability and partly addresses the 
limitation that one study cannot afford to test models on all U.S. patients. As Gupta et al. [114] showed, many extracted features 
represent general properties of the attributes used in the features, and can be valuable for other predictive modeling tasks. Using 
the extracted features to build a temporal feature library to aid feature reuse, we can cut down the effort required to construct 
models for other predictive modeling tasks. 

The principles of our techniques are general, depending on no unique characteristic of a specific disease, patient cohort, or 
healthcare system. Care management is also widely used for patients with diabetes and heart diseases [34], where our 
techniques could be used. Our simulation will find out how to generalize a predictive model to other sites gathering differing 
sets of variables, and those variables most crucial for generalization. We will use data from three healthcare systems IH, KPSC, 
and UWM to illustrate our techniques on the cases of COPD and asthma patients. These healthcare systems include two 
integrated systems (IH and KPSC), an academic system with most patients referred from other systems (UWM), and many 
heterogeneous facilities. These facilities cover 41 hospitals and 424 clinics spread over three large geographic areas, ranging 
from rural and community urban clinics staffed by a variety of clinicians including physicians, nurses, therapists, and advanced 
practice practitioners with limited resources to metropolitan tertiary care hospitals staffed by sub-specialists. These systems use 
four different electronic health record systems: IH uses Cerner, HELP, and HELP2; UWM uses Cerner and Epic; KPSC uses 
Epic. Variation in scope of services, staff composition, geographic location, cultural background, patient population, healthcare 
system type, and electronic health record system allows us to find factors generalizable to other facilities nationwide. Our 
models will be based on the OMOP common data model [72] and its related standardized terminologies [73], which standardize 
clinical and administrative variables from ≥10 large U.S. healthcare systems [115, 116]. At a minimum, our models will apply 
to those systems using OMOP. 

After extension, our techniques can be applied to various decision support applications and diseases and advance clinical 
machine learning: 1) More precise models giving earlier warnings will boost decision support tools for managing limited 
resources, like planning for healthcare resource allocation [117], and automatically finding patients tending to be readmitted 
soon, triggering home visits by nurses to cut readmissions. 2) Using our techniques can boost prediction accuracy and risk 
warning timeliness of other outcomes like missed appointments [118], patient satisfaction [119], and adherence to treatment 
[120]. This will help target resources, such as reminder phone calls to cut missed appointments [118], or interventions to boost 
adherence to treatment [120]. 

We expect our more accurate predictive models giving earlier warnings to have value for clinical practice. Future studies will 
test our techniques on some other patient cohorts and diseases, implement our techniques at UWM, IH, and KPSC for care 
management for COPD and asthma, and evaluate the impacts in randomized controlled trials. 

In summary, the techniques that will be developed in this study will advance machine learning for many clinical applications 
and help transform preventive care to be more efficient, effective, and timely. This will boost outcomes and save resources. 
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