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Abstract 
Sleep staging is the pattern recognition task of 
classifying sleep recordings into sleep stages. This 
task is one of the most important steps in sleep 
analysis. It is crucial for the diagnosis and treatment 
of various sleep disorders, and also relates closely to 
brain-machine interfaces. We report an automatic, 
online sleep stager using electroencephalogram 
(EEG) signal based on a recently-developed 
statistical pattern recognition method, conditional 
random field, and novel potential functions that have 
explicit physical meanings. Using sleep recordings 
from human subjects, we show that the average 
classification accuracy of our sleep stager almost 
approaches the theoretical limit and is about 8% 
higher than that of existing systems. Moreover, for a 
new subject snew with limited training data Dnew, we 
perform subject adaptation to improve classification 
accuracy. Our idea is to use the knowledge learned 
from old subjects to obtain from Dnew a regulated 
estimate of CRF’s parameters. Using sleep 
recordings from human subjects, we show that even 
without any Dnew, our sleep stager can achieve an 
average classification accuracy of 70% on snew. This 
accuracy increases with the size of Dnew and 
eventually becomes close to the theoretical limit. 
 
1. Introduction 

Sleep is indispensable to everybody. As have been 
reported in Ancoli-Israel and Roth1 that is consistent 
with other national studies, about one-third of 
Americans had some kind of sleep problem. Hence, 
the study of sleep pattern, much of which is through 
sleep recordings, has consistently been an important 
research topic. 

A typical sleep recording has one or more channels 
of electroencephalogram (EEG) waves coming from 
electrodes. Sleep staging is the pattern recognition 
task of classifying sleep recordings into sleep stages 
(e.g., wake, sleep) continuously. This task is crucial 
for the diagnosis and treatment of various sleep 
disorders19. In addition, it relates closely to both 
intensive care unit monitoring of brain activity20 and 
brain-machine interfaces2. In the latter case, 
successful classification can facilitate disabled people 
to control computers. Sleep staging is also of special 

interest to the study of avian bird song system3 and 
the evolutionary theory of mammalian sleep4. 

Many statistical pattern recognition methods, such 
as autoregression5, Kullback-Leibler divergence-
based nearest-neighbor classification6, and hidden 
Markov model (HMM)7, have been used to build an 
automatic, online sleep stager. Despite all these 
efforts, existing sleep stagers can only achieve an 
average classification accuracy below 80%8, 19, which 
is insufficient for physicians to quickly and correctly 
diagnose sleep disorders by establishing a clear 
classification of the problem. (In brain-computer 
interfaces, incorrect EEG wave classification can 
cause computers to receive wrong instructions.) In 
this work, we present an automatic, online sleep 
stager based on a recently-developed statistical 
pattern recognition method, conditional random field 
(CRF), and novel potential functions that have 
explicit physical meanings. According to our testing 
results on single-channel sleep recordings from 
human beings, our sleep stager can achieve an 
average classification accuracy that almost 
approaches the theoretical limit9 and is about 8% 
higher than that of existing systems. 

One challenge for sleep staging is that in practice, 
we often have enough training data Dold from several 
old subjects sold but very limited training data Dnew 
from a new subject snew, as it often takes several days 
or several weeks to manually label sufficient Dnew for 
snew

19. In this case, it is undesirable to train the 
parameter vector Θ of the CRF by only using Dnew. 
Instead, we perform subject adaptation to improve 
the classification accuracy on snew

10. Our high-level 
idea is to use the knowledge on Θ that is learned from 
Dold to obtain a regulated estimate of Θ from Dnew. In 
this way, the classification accuracy on snew increases 
with the size of Dnew and eventually becomes close to 
the theoretical limit9. Especially, even without any 
Dnew, the average accuracy on snew can be 70% 
according to our test results on sleep recordings from 
human beings. 

CRF was originally proposed by the natural 
language processing community in 200111. In contrary 
to HMM, CRF directly models the probabilities of 
possible label sequences given an observation 
sequence, without making unnecessary independence 



 
 

assumptions on the observation elements. 
Consequently, CRF overcomes HMM’s shortcoming 
of being unable to represent multiple interacting 
features or long-range dependencies among the 
observation elements. To the best of our knowledge, 
neither the application of CRF nor subject adaptation 
has been studied before in EEG wave classification. 

The rest of the paper is organized as follows. 
Section 2 provides a brief review of CRF. Section 3 
presents our automatic, online sleep stager based on 
CRF for a single subject. Section 4 describes the 
subject adaptation technique. Section 5 discusses 
feature extraction. We evaluate the performance of 
our techniques in Section 6 and conclude in Section 
7. 
 
2. Review of CRF 

We first review the concept of CRF. Let X be the 
observation sequence, and Y be the corresponding 
label (state) sequence. The CRF definition in Lafferty 
et al.11 is as follows: 
Definition. Let ),( EVG =  be a graph such that 

VvvyY ∈= )( , so that Y is indexed by the vertices of G. 

Then ),( YX  is a conditional random field in case, 

when conditioned on X, the random variables yv obey 
the Markov property with respect to the graph: 

)~,,|(),,|( vwyXyPvwyXyP wvwv =≠ , where 

w~v means that w and v are neighbors in G. 
 
 
 
 

 
Figure 1. Graphical structure of a linear-chain CRF. 

 
A special case of CRF is the linear-chain CRF 

(LCRF)11 as shown in Figure 1, where the graph G is a 
linear chain so that each yi has exactly two neighbors: 
yi-1 and yi+1. As has been shown in Lafferty et al.11, in 
this case, the distribution of the label sequence Y 
given the observation sequence X has the following 
form:  

∑ ∑= = −∝ n
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        ]}),,(2
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Here, fj and gj are called potential functions. λj and μj 
are parameters. The selection of appropriate potential 
functions is both application-dependent and critical 
to the success of the CRF method.  
 
 
 
 

3. CRF-based sleep stager for a single subject 
In our sleep stager, we use linear-chain CRFs. In 

this case, ),,,( 21 nxxxX
v

K
vv=  is the observation 

sequence, where each element 
T

miiii xxxx ],,,[ ,2,1, K
v = is an m-dimensional vector 

that represents the observed EEG wave signal 
(possibly after some transformation) at time point i 
( ni ≤≤1 ). ),,,( 21 nyyyY K=  is the label sequence. 

Each yi ( ni ≤≤1 ) belongs to the sleep stage space S 
(e.g., {wake, REM, NREM}) and represents the sleep 
stage at time point i that needs to be labeled. 

Our sleep stager uses the following two kinds of 
potential functions, the first one is for fj and the 
second one is for gj: 
(1) tysy ii ==−
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For each i ( ni ≤≤1 ), the number of potential 

functions is mSSk |||| 2 += . Our intuition is that 

local features are often the most important ones. 
Hence, at any time point i ( ni ≤≤1 ), we focus on the 
local observation elements and only consider the 
first-order term ix

v . Also, these potential functions are 

easy to compute, which is important for online 
classification. In fact, these potential functions can be 
justified from the statistical mechanics perspective: 

(1) The term }11exp{
1, tysyts ii ==−

λ  can be viewed as 

the spontaneous transition probability from state s to 
state t. (2) As discussed below, our X is the power 
spectral density, a quantity associated with energy. 

Hence, the term }1exp{ ,, hityht x
i =μ  can be viewed 

as an analogy to the Boltzmann factor 

)exp()( EEP β−∝ , which is related to the 

probability for a canonical ensemble to be in a state 
with energy E12. 

Given the 21 kkk +=  potential functions, 

parameter estimation (i.e., learning λj’s and μj’s from 
a labeled training data set) and inference making (i.e., 
given X, computing the most likely Y) in the CRF are 
performed using the forward-backward dynamic 
programming and Viterbi algorithms, as described in 
Lafferty et al.11 and Sha and Pereira18. 
 
4. Subject adaptation 

Next, we discuss subject adaptation. This technique 
combines the (usually sufficient) training data 
sequence (Xold, Yold) from several old subjects sold with 
the (possibly insufficient) training data sequence 

y1 y2 y3 
… 

yn-1 yn 

),,,( 21 nxxxX K=  
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(Xnew, Ynew) from a new subject snew to improve the 
classification accuracy on snew. Let Θ be the column 
parameter vector of the CRF that contains λj’s and 
μj’s. ),|(ln)( Θ=Θ oldoldold XYpL  and 

),|(ln)( Θ=Θ newnewnew XYpL  are the log-likelihood 

functions for sold and snew, respectively. Let Θ̂  denote 

the maximum-likelihood estimator (MLE) of Θ on 

sold. A theorem about MLE13 asserts that Θ̂  
asymptotically follows a normal distribution, whose 
mean vector and covariance matrix are Θ and 

12 )( −∇−=Σ oldL , respectively. Here, oldL2∇  is the 

Hessian matrix of )(ΘoldL . This can be viewed as a 

prior of Θ when we fit the same model to snew. The 
corresponding probability density function is  

}2/)ˆ()ˆ(exp{)( 1 Θ−Θ⋅Σ⋅Θ−Θ−∝Θ −Tp  

}2/)ˆ()ˆexp{( 2 Θ−Θ⋅∇⋅Θ−Θ= old
T L . 

From Bayes’ theorem, the posterior distribution of 
Θ is  

)(),|(),|( ΘΘ∝Θ pXYpYXp newnewnewnew

}2/)ˆ()ˆ()(exp{ 2 Θ−Θ⋅∇⋅Θ−Θ+Θ∝ old
T

new LL . 

The gradient of )(ΘoldL , oldL∇ , can be efficiently 

computed using a backward-forward dynamic 

programming method11. oldL2∇  can be computed 

numerically by taking difference quotients of oldL∇ . 

Then we can obtain the point estimate Θ for snew by 

maximizing 2/)ˆ()ˆ()( 2 Θ−Θ⋅∇⋅Θ−Θ+Θ old
T

new LL  

(e.g., using the BFGS method). 
 
5. Data collection and transformation 

We applied our sleep stager to four 24-hour human 
sleep recordings in the sleep-EDF database14 whose 
subject ids are sc4002e0, sc4012e0, sc4102e0, and 
sc4112e0. Each recording was from a different, 
healthy Caucasian male or female (21-35 years old) 
without any medication. The raw data has sampling 
rate 100Hz and a sleep stage is assigned for each 30-
second epoch by a human scorer. The sleep stage 
space S = {wake, REM, NREM1, NREM2, NREM3, 
NREM4}. 

Due to its large size and often existing artifacts, 
each EEG recording is first transformed to capture the 
embedded, useful information. This process is called 
feature extraction. The most popular signal 
processing techniques for feature extraction include 
wavelet transform, fast Fourier transform15, zero-
crossing, parametric waveform recognition16, etc. We 
adopted an approach based on power spectral 
properties of the EEG signal. The Thompson multi-
taper method17 is applied to 3-second moving window 

to obtain the localized power spectral density (PSD) 
with between-window-shift of 2.7 seconds. 
Consequently, we have 1,333 data points for each 
hour’s sleep recording. Figure 2 shows the average 
log PSD for each stage. For each frequency f and each 
time point i, the logarithm of the PSD is normalized 
across time to obtain the Z score 

ifZ ,
, where 

normalization is performed by first subtracting the 
mean and then dividing by the standard deviation. 

 

 
 

Figure 2. Stage-specific average logarithmic power 
spectral density of four human subjects. 

 
We choose m=6 disjoint frequency bands: 0.2Hz-

4Hz, 4.2Hz-8Hz, 8.2Hz-12Hz, 12.2Hz-16Hz, 16.2Hz-
23Hz, and 23.2Hz-29Hz, which jointly contain 99% 
of the power of EEG waves. The justifications for 
selecting these frequency bands are as follows. First, 
as Figure 2 shows, the PSD curves of various stages 
are well separated within these bands. Second, it is 
well known that human sleep is characterized into 
different stages based on the frequency content of the 
delta-wave (0Hz-4Hz), theta-wave (4Hz–8Hz), alpha-
wave (8Hz–13Hz), beta1-wave (13Hz–22Hz), and 
beta2-wave (22Hz–35Hz), which are similar to our 
frequency bands. Hence, the features contained 
within these bands should provide enough 
discrimination power for stage classification. 

For the jth ( 61 ≤≤ j ) band, at time point i, let 
jix ,

~  

denote the maximum Z score within this band. That 
is,  

},max{~
,, bandjththeinfsfrequencieallforZx ifji = .  

Since occasionally the recording has very large noise 
caused by movement, we truncate 

jix ,
~  by  

)|,~min{|)~( ,,, Axxsignx jijiji = , where 5=A . 
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Vector T
miiii xxxx ],,,[ ,2,1, K

v =  is the transformed 

observation element at time point i. The classification 
of the sleep recording is based on the xi’s across time. 
 
6. Results 

Our experiments were performed on a computer 
with one 2.2GHz Intel CoreTM Duo T2600 processor 
and 2GB of memory. Feature extraction code is 
written in Matlab R2006a and classification code is 
written in R. For each human subject, the training 
data contains four segments, each of 30 minutes. Two 
tests were performed on two disjoint test data 
segments, each of 60 minutes. Each sleep stage has 
sufficient occurrences in every test data segment. For 
comparison, we also applied the widely used 
benchmark classifier of Gaussian Observation Hidden 
Markov Models (GOHMM)7 to the same features as 
we used for the CRF classifier. 

The feature extraction time for each 30-minute data 
segment is 80 seconds. The training time of the CRF 
classifier varies from 38 seconds to 230 seconds and 
labeling on test data takes less than one second. Thus, 
the CRF classifier can be used online. Table 1 reports 
the accuracy obtained by the HMM classifier and the 
CRF classifier on human data. The same experiment 
is repeated using the feature of minimum Z-score in 
each frequency band and the results are similar. In 
most cases the CRF classifier achieves better 
accuracy than the HMM classifier with average 
improvement of about 8%. The average accuracy of 
the CRF classifier (83.7% for human data) already 
approaches the limit of automated sleep staging 
method, as there is only 80%-90% interscorer 
agreement in manual staging9. The HMM classifier, 
however, has an advantage of shorter training time, 
normally 30 seconds, which is expected given its 
strong model assumption of Gaussian observation. 

 
Table 1. Classification accuracy on human data. 

classification 
accuracy 

Test 1 Test 2 average accuracy 
of two tests 

subject id CRF HMM CRF HMM CRF HMM 
sc4002e0 81.6% 69.8% 77.8% 66.9% 79.7% 68.4% 
sc4012e0 87.0% 72.4% 71.5% 72.7% 79.3% 72.6% 
sc4102e0 89.7% 83.5% 86.7% 82.7% 88.2% 83.1% 
sc4112e0 82.2% 69.1% 93.0% 88.9% 87.6% 79.0% 

average accuracy of four subjects 83.7% 75.8% 
 

We evaluated our subject adaptation technique 
using the human data. In each test, we treated one 
human subject as the new subject snew and varied the 
length L of snew’s training data sequence Dnew from 0 
to 120 minutes. The other three human subjects are 
treated as old subjects and their entire training data 
sequences are used to obtain Θ’s prior distribution. 
The classification accuracy achieved by subject 
adaptation on the test data sequence of snew is called 
the adaptation accuracy. When snew’s entire training 
data sequence is used to train the CRF without 
subject adaptation, the accuracy obtained by the CRF 
classifier on the test data sequence of snew is called the 
final accuracy. Two tests were performed for each 
human subject. In six of these eight tests, even when 
L=0 (i.e., no training data from snew), we can obtain an 
adaptation accuracy between 70% and 90%, which is 
close to the final accuracy and improves slightly 
when L becomes larger. Figure 3 shows the 
classification accuracy for the other two tests (test 2 
of sc4012e0 and test 1 of sc4112e0). There, the 
adaptation accuracy is below 50% when L=0. When 
L becomes larger, the adaptation accuracy improves 
and eventually reaches the final accuracy. 

  
 
 
 
 
 
 
 
 
 

 
Figure 3. Classification accuracy achieved by subject 

adaptation. 
 
7. Conclusion 

One advantage of CRF is that the user can define 
potential functions that appropriately fit the specific 
application. This paper proposes using CRF and 
novel potential functions that have explicit physical 
meanings to perform the pattern recognition task of 
sleep staging. On human subjects, the average 
classification accuracy of our sleep stager almost 
approaches the theoretical limit and is about 8% 
higher than that of existing systems. Moreover, for a 
new subject snew with limited training data Dnew, we 



 
 

propose performing subject adaptation to improve 
classification accuracy. Even without any Dnew, the 
average accuracy on snew can be 70%. This accuracy 
increases with the size of Dnew and eventually 
becomes close to the theoretical limit. 

In addition to human sleep data, we also applied 
our sleep stager to bird sleep data and obtained 
similar results whose details are available in Luo and 
Min21.  
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