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Abstract 
Background: Asthma is a major chronic disease posing a heavy burden on healthcare. To facilitate allocation of care 
management resources to improve outcomes for high-risk asthmatic patients, we recently built a machine learning model to 
predict asthma hospital visits in the subsequent year in asthmatic patients. Our model is more accurate than the prior models. 
However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for use in 
care management, where interpretability is desired. 
Objective: To address this limitation, this study aims to develop a method to automatically explain the model’s prediction 
results and to recommend tailored interventions without lowering the model’s performance measures. 
Methods: Our data are imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To 
handle imbalanced data, we extended our prior method for automatically offering rule-formed explanations for any machine 
learning model’s prediction results on tabular data without lowering the model’s performance measures. In a secondary analysis 
of the 334,564 data instances from Intermountain Healthcare during 2005-2018 used to form our model, we employed the 
extended method to automatically explain our model’s prediction results and to recommend tailored interventions. The patient 
cohort consisted of all asthmatic patients who obtained care at Intermountain Healthcare during 2005 to 2018 and resided in 
Utah or Idaho as recorded at the visit. 
Results: Our method explained the prediction results for 89.68% (391/436) of the asthmatic patients whom our model correctly 
predicted to incur asthma hospital visits in the subsequent year. 
Conclusions: This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for any 
machine learning model’s prediction results on imbalanced tabular data without lowering the model’s performance measures. 
After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could be 
used by clinicians to guide allocation of limited asthma care management resources and identification of appropriate 
interventions. 
 
International Registered Report Identifier (IRRID): PRR2-10.2196/5039 
 
Keywords: Asthma; forecasting; machine learning; patient care management 
 
Introduction 
Background 

About 8.4% of American people have asthma [1]. Each year in the US, asthma costs over 50 billion US dollars and results 
in over two million emergency department (ED) visits, about half a million inpatient stays, and over three thousand deaths 
[1,2]. A major goal in managing asthmatic patients is to reduce their hospital visits including both ED visits and inpatient stays. 
As employed by health plans in 9 of 12 metropolitan communities [3] and by healthcare systems like Intermountain Healthcare, 
Kaiser Permanente Northern California [4], and University of Washington Medicine, the state-of-the-art method for achieving 
this goal is to employ a predictive model to predict which asthmatic patients are highly likely to have poor outcomes in the 
future. Once identified, such patients are enrolled in care management. Care managers then call these patients on the phone 
regularly and help them make appointments for health and related services. By offering such tailored preventive care properly, 
up to 40% of future hospital visits by asthmatic patients can be avoided [5-8]. 

A care management program has a limited enrollment capacity [9]. As a result, the program’s effectiveness depends critically 
on the predictive model’s accuracy. Not enrolling a patient who will have future hospital visits in the program is a missed 
opportunity to improve the patient’s outcomes. Unnecessarily enrolling a patient who will have no future hospital visit would 
increase healthcare costs and waste scarce care management resources with no potential benefit. The current models for 
predicting hospital visits in asthmatic patients are inaccurate, with published sensitivity ≤49% and area under the receiver 
operating characteristic curve (AUC) ≤0.81 [4,10-22]. When employed for care management, these models miss more than 
half of the patients who will have future hospital visits and erroneously label many other patients as likely to have future 
hospital visits [23]. To address these issues, we recently built an extreme gradient boosting (XGBoost) [24] machine learning 
model to predict asthma hospital visits in the subsequent year in asthmatic patients [23]. Compared with the prior models, our 
model raised the AUC by at least 0.049. However, like most machine learning models, our model offers no explanation of its 
prediction results. This creates a barrier for use in care management, where care managers need to understand why a patient is 
at risk for poor outcomes in order to make care management enrollment decisions and identify suitable interventions for the 
patient. 
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Objectives 
To overcome the barrier, this study aims to develop a method to automatically explain our model’s prediction results and to 

recommend tailored interventions without lowering any of our model’s performance measures, such as AUC, accuracy, 
sensitivity, specificity, positive predictive value, and negative predictive value. 

 
In the following sections, we describe our method and the evaluation results. A list of abbreviations adopted in the paper is 

given at the end of the paper. 
 

Methods 
We used the same patient cohort, data set, prediction target, cutoff threshold for binary classification, method for data pre-

processing including data cleaning and data normalization, and method for partitioning the whole data set into the training and 
test sets that we described in our prior paper [23]. 
 
Ethics approval and study design 

This study consists of a secondary analysis on retrospective data and was evaluated and approved by the institutional review 
boards of University of Washington Medicine, University of Utah, and Intermountain Healthcare. 
 
Patient population 

Our patient cohort included all asthmatic patients who obtained care at any Intermountain Healthcare facility during 2005 to 
2018 and resided in Utah or Idaho as recorded at the visit. Intermountain Healthcare is the largest healthcare system in Utah 
and southeastern Idaho, operates 185 clinics and 22 hospitals, and provides care for ~60% of people living in that region. A 
patient was considered asthmatic in a specific year if, in the encounter billing database, the patient had one or more asthma 
diagnosis codes during that year (International Classification of Diseases, Ninth Revision [ICD-9]: 493.0x, 493.1x, 493.8x, 
493.9x; International Classification of Diseases, Tenth Revision [ICD-10]: J45.x) [12,25,26]. The only exclusion criterion from 
analysis in any given year is patient death during that year. 
 
Data set 

We used a structured, clinical and administrative data set provided by the enterprise data warehouse of Intermountain 
Healthcare. The data set covered all of the visits by the patient cohort within Intermountain Healthcare during 2005-2018. 
 
Prediction target (a.k.a. the dependent or outcome variable) 

For each patient identified as asthmatic in a specific year, the outcome was whether any asthma hospital visit occurred in the 
subsequent year. Here, an asthma hospital visit refers to an ED visit or an inpatient stay at Intermountain Healthcare having a 
principal diagnosis of asthma (ICD-9: 493.0x, 493.1x, 493.8x, 493.9x; ICD-10: J45.x). In training and testing our XGBoost 
model and automatic explanation method, every asthmatic patient’s data up to the end of every year were used to predict the 
patient’s outcome in the subsequent year. 

 
Predictive model and features (a.k.a. independent variables) 

Our recent XGBoost model [23] uses 142 features to predict asthma hospital visits in the subsequent year in asthmatic 
patients. As listed in Table 2 in our paper’s online appendix [23], these features were computed from the structured attributes 
in our data set covering a wide range of categories, such as patient demographics, visits, medications, laboratory tests, vital 
signs, diagnoses, and procedures. Each input data instance for our model has these 142 features, targets an (asthmatic patient, 
year) pair, and is employed to predict the patient’s outcome in the subsequent year. We set the cutoff threshold for binary 
classification to the top 10% of asthmatic patients having the largest predicted risk. These patients were predicted to incur 
asthma hospital visits in the subsequent year. 
 
Automatic explanation method 

Previously, we developed an automated method to offer rule-formed explanations for any machine learning model’s 
prediction results on tabular data, as well as to recommend tailored interventions without lowering the model’s performance 
measures [27,28]. Our method was initially demonstrated on predicting diagnoses of type 2 diabetes [27]. Later, other 
researchers successfully applied our method to predict death or lung transplantation in cystic fibrosis patients [29], to predict 
cardiac death in cancer patients, and to use predictions to manage preventive care, a heart transplant waiting list, and post-
transplant follow-ups in patients with cardiovascular diseases [30]. In our method, each rule used for giving explanations has 
a performance measure termed confidence that must be  a given minimum confidence threshold cmin. Our original automatic 
explanation method [27] was designed for reasonably balanced data, where distinct values of the outcome variable appear with 
relatively similar frequencies. Recently, we outlined an extension of this method [31,32] to handle imbalanced data, where one 
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value of the outcome variable appears much less often than another. This data imbalance exists when predicting asthma hospital 
visits in asthmatic patients, where only about 4% of the data instances link to future asthma hospital visits [23]. In our extended 
method, each rule used for giving explanations has a second performance measure termed commonality that must be  a given 
minimum commonality threshold mmin. So far, no technique has been developed to efficiently mine the rules whose 
commonality is mmin, compute their confidence, and eliminate those rules whose confidence is <cmin in the extended method, 
although such techniques are essential for handling large data sets. No guideline exists for setting the values of the parameters 
used in the extended method, although they greatly impact the extended method’s performance. The extended method has never 
been implemented in computer code before. Also, the effectiveness of the extended method has not been evaluated or 
demonstrated. 

In this study, we make the following innovative contributions: 
1) We provide several techniques for efficiently mining the rules whose commonality is mmin, computing their confidence, 

and eliminating those rules whose confidence is <cmin in the extended automatic explanation method. This completes our 
extended method. Although our extended method was designed for imbalanced data, it can also be used on reasonably 
balanced data to improve the efficiency of mining the rules needed for giving automatic explanations. Among all of the 
existing automatic explanation methods for machine learning prediction results, our method is the only one that can 
automatically recommend tailored interventions [33,34]. This capability is desired for many medical applications. 

2) We present a guideline to set the values of the parameters used in the extended method (see the Discussion section). 
3) We completed the first computer coding implementation of the extended method and explain it in this paper. 
4) We demonstrate the extended method’s effectiveness on predicting asthma hospital visits in asthmatic patients. 
 
Review of our original automatic explanation method 
a. Main idea 

Our automatic explanation method separates explanation and prediction by employing two models concurrently, each for a 
distinct purpose. The first model is used to make predictions and can be any model taking continuous and/or categorical features 
as its inputs. Usually, we adopt the most accurate model as the first model to avoid lowering the model’s performance measures. 
The second model uses class-based association rules [35,36] mined from historical data to explain the first model’s prediction 
results rather than to make predictions. Before using a standard association rule mining method like Apriori to mine the rules 
[36], each continuous feature is first transformed to a categorical feature through automatic discretization [35,37]. Each rule 
shows a feature pattern associated with a value w of the outcome variable in the form of q1 AND q2 AND … AND qn  w. 
The values of n and w can change across rules. For binary classification distinguishing poor vs. good outcomes, w is usually 
the poor outcome value. Every item qi (1≤i≤n) is a feature-value pair (f, u) showing feature f has value u or a value within u, 
depending on whether u is a value or a range. The rule points out that a patient’s outcome variable is inclined to have value w 
if the patient fulfills q1, q2, …, and qn. An example rule is: 

The patient had ≥12 ED visits in the past year 
AND the patient had ≥21 distinct medications in all of the asthma medication orders in the past year 
 the patient will incur one or more asthma hospital visits in the subsequent year. 

 
b. The association rule mining and pruning processes 

The association rule mining process is controlled by two parameters: the minimum support threshold smin and the minimum 
confidence threshold cmin [36]. For any rule l: q1 AND q2 AND … AND qn  w, the percentage of data instances satisfying q1, 
q2, …, and qn and linking to w is termed l’s support showing l’s coverage. Among all data instances satisfying q1, q2, …, and 
qn, the percentage of data instances linking to w is termed l’s confidence reflecting l’s precision. Our original automatic 
explanation method uses rules whose support is smin and whose confidence is cmin. For binary classification distinguishing 
poor vs. good outcomes, we usually focus on the rules whose right hand sides contain the poor outcome value. 

Usually, numerous association rules have support smin and confidence cmin. To not overwhelm the users of the automatic 
explanation function with too many rules, we use four techniques to reduce the number of rules in the second model. First, only 
features adopted by the first model are used to form rules. Second, a clinician in the automatic explanation function’s design 
team checks all possible values and value ranges of these features and marks those that could possibly have a positive 
correlation with the outcome variable’s values reflecting poor outcomes. Only those marked values and value ranges of these 
features are allowed to show up in the rules. Third, the rules are limited to having no more than a given small number of items 
on their left hand sides, as long rules are hard to understand. A typical value of this number is four. Fourth, each more specific 
rule is dropped when there exists a more general rule whose confidence is not lower by more than a given threshold 0. More 
specifically, consider two rules l1 and l2 whose right hand sides have the same value. The items on l2’s left hand side are a 
superset of those on l1’s left hand side. We drop l2 if l1’s confidence is  l2’s confidence - . 
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For the association rules remaining after the rule pruning process, a clinician in the automatic explanation function’s design 
team gathers zero or more interventions targeting at the reason the rule presents. A rule is called actionable if one or more 
interventions are compiled for it. Usually, each intervention links to one of the feature-value pair items on the rule’s left hand 
side. Such an item is called actionable. Thus, an actionable rule contains at least one actionable item. To expedite the 
intervention compilation process, the clinician can identify all of the actionable items and compile interventions for each of 
them. All of the interventions linking to the actionable items on a rule’s left hand side are automatically connected to the rule. 

Our automatic explanation method uses two types of knowledge manually compiled by a clinician: the values and value 
ranges of the features that could possibly have a positive correlation with the outcome variable’s values reflecting poor 
outcomes, and the interventions for the actionable items. Our automatic explanation method is fully automatic except for the 
knowledge compilation step. 
 
c. The explanation method 

For each patient whom the first model predicts to have a poor outcome, we explain the prediction result by listing the 
association rules in the second model whose right hand sides have the corresponding poor outcome value and whose left hand 
sides are fulfilled by the patient, while ignoring the rules in the second model whose right hand sides have a value that differs 
from the corresponding poor outcome value and whose left hand sides are fulfilled by the patient. Every rule listed offers a 
reason why the patient is predicted to have the poor outcome. For each actionable rule listed, the linked interventions are 
displayed next to it. This helps the user of the automatic explanation function find tailored inventions suitable for the patient. 
Typically, the rules in the second model describe common reasons for having a poor outcome. Yet, some patients will have 
poor outcomes for rare reasons not covered by these rules. Consequently, the second model can give explanations for most, but 
not all, of the patients whom the first model predicts to have poor outcomes. 
 
Our previously outlined extension of our original automatic explanation method 

Our original automatic explanation method was designed for reasonably balanced data and is unsuitable for imbalanced data, 
where one value of the outcome variable appears much less often than another. On imbalanced data, if the minimum support 
threshold smin is large, we cannot obtain enough association rules for the outcome variable’s rare values. Consequently, for a 
large portion of the first model’s prediction results on these values, we cannot give any explanation. Conversely, if smin is too 
small, the rule mining process will generate too many rules as intermediate results, most of which will be filtered out in the 
end. This easily exhausts computer memory and makes the rule mining process extremely slow. Also, many overfitted rules 
will be produced in the end, making it difficult for clinicians to examine the mined rules. 

In our recently outlined extension of the original automatic explanation method [31,32] to handle imbalanced data, we replace 
support with value-specific support termed commonality [38]. For any rule l: q1 AND q2 AND … AND qn  w, among all 
data instances linking to w, the percentage of data instances satisfying q1, q2, …, and qn is termed l’s commonality showing l’s 
coverage within the context of w. Moreover, we replace the minimum support threshold smin by the minimum commonality 
threshold mmin. Instead of using rules whose support is smin and whose confidence is  the minimum confidence threshold cmin, 
we use rules whose commonality is mmin and whose confidence is cmin. 

Each value of the outcome variable falls into one of two possible cases. In the first case, the value is interesting and represents 
an abnormal case. The prediction results of this value require attention and explanations. In the second case, the value is 
uninteresting and represents a normal case. The prediction results of this value require neither special attention nor explanation. 
Typically, each interesting value is a rare one reflecting poor outcome. The second model contains only association rules related 
to the interesting values. To mine these rules, we proceed in two steps: 
1) Step 1: For each interesting value w, we apply a standard association rule mining method like Apriori [36] to the set Sw of 

data instances linking to w to mine the rules related to w and with support on Sw  the minimum commonality threshold 
mmin. These rules have commonality mmin on the set Sall of all data instances. As Sw is much smaller than Sall, mining these 
rules from Sw is much more efficient than first applying the association rule mining method to Sall to obtain the rules with 
support on Sall  mmin×|Sw|/|Sall|, and then filtering out those rules unrelated to w. Here, |S| denotes the cardinality of set S. 

2) Step 2: For each rule mined from Sw, we compute its confidence on Sall. We keep it if and only if its confidence on Sall is  
the minimum confidence threshold cmin. 

 
Techniques for efficiently mining the association rules whose commonality is mmin, computing their confidence, and 
eliminating those rules whose confidence is <cmin in our extended automatic explanation method 

When the set Sall of all data instances includes many data instances and features, we often find that the set Sw of data instances 
linking to an interesting value w contains many data instances and the first model adopts many features. Without limiting the 
numbers of data instances in Sw and features, numerous (e.g., several billion) association rules would be mined from Sw in Step 
1. This makes the computer easily run out of memory and the rule mining process extremely slow. Also, many rules will be 
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produced in the end, making it difficult for the clinicians to examine them. To address this issue, we can use one or more of the 
following approaches: 
1) We take a random sample Ssample of data instances from Sall and use Ssample rather than Sall to mine the rules [39]. 
2) Before the rule mining process starts, each data instance is transformed to a transaction. To reduce its size, we remove 

from the transaction those values and value ranges that the clinician in the automatic explanation function’s design team 
marks as not allowed to show up in any of the rules. 

3) Instead of using all of the features adopted by the first model, we use only the top ones among them to mine the rules. 
Usually, the top features contain most of the predictive power possessed by all of the features adopted by the first model 
[23]. If the machine learning algorithm used to build the first model is like XGBoost [24] or random forest that 
automatically computes each feature’s importance value, the top features are those with the highest importance values. 
Otherwise, if the machine learning algorithm used to build the first model does not automatically compute each feature’s 
importance value, we can use an automatic feature selection method [40] like the information gain method to choose the 
top features. Alternatively, we can use XGBoost or random forest to construct a model, automatically compute each 
feature’s importance value, and choose the top features with the highest importance values. 

In the following, we focus on the case of using the set Sall of all data instances to mine the association rules. The case of 
using a random sample Ssample of data instances from Sall to mine the rules can be handled in a similar way. To compute the 
rules’ confidence values, we transform Sall to matrix format, with each row of the matrix linking to a distinct data instance and 
each column of the matrix linking to a distinct value or value range of a feature. For medical data, the matrix is often not very 
sparse. In this case, we can use a separate bitmap to represent each column of the matrix in a condensed way. For each rule l: 
q1 AND q2 AND … AND qn  w, we perform efficient bitmap operations to pinpoint the data instances satisfying q1, q2, …, 
and qn and needed for computing l’s confidence. 

Among all of the mined association rules related to an interesting value w, we need to identify those whose confidence on 
the set Sall of all data instances is  the minimum confidence threshold cmin. To expedite the identification process, we proceed 
as follows. For each rule l: q1 AND q2 AND … AND qn  w, let lw denote the number of data instances satisfying q1, q2, …, 
and qn and linking to w, and lw denote the number of data instances satisfying q1, q2, …, and qn and not linking to w. Our key 
insight is that l’s confidence on Sall ≝ lw/(lw+lw) is < cmin if and only if lw is > Tl ≝ lw×(1-cmin)/cmin. We partition Sall into two 
subsets: Sw containing all of the data instances linking to w and Sw containing all of the data instances not linking to w. Using 
the bitmap method mentioned above, we go over all of the data instances in Sw to compute lw. Then we go over the data instances 
in Sw one by one to count the data instances satisfying q1, q2, …, and qn and not linking to w. Once this count is > Tl, we know 
l’s confidence on Sall is < cmin, stop the counting process, and drop l. This saves the overhead of going through the remaining 
data instances in Sw to compute lw. Otherwise, if this count is ≤ Tl when we reach the last data instance in Sw, we keep l, 
obtain lw, and compute l’s confidence on Sall that must be ≥ cmin. 
 
Computer coding implementation 

We implemented our extended automatic explanation method in computer code, using a hybrid of the C and R programming 
languages. As R is an interpreted language and inefficient at handling certain operations on large data sets, we wrote several 
parts of our code in C to improve our code’s execution speed. Considering that our asthma outcome variable is hard to predict, 
we limited the association rules to have at most five items on their left hand sides (see the guideline in the Discussion section). 
We set the minimum confidence threshold cmin to 50% and the minimum commonality threshold mmin to 0.2%. 

 
Data analysis 
The training and test set partitioning 

Since outcomes came from the subsequent year, our data set included 13 years of effective data (2005-2017) over the 14-
year period of 2005-2018. To mirror practical use of our XGBoost model and our extended automatic explanation method, the 
2005-2016 data were used as the training set to train our XGBoost model and mine the association rules used by our extended 
method. The 2017 data were used as the test set to evaluate the performance of our XGBoost model and extended method. We 
used the full set of 142 features to make predictions, and the top 50 features that our XGBoost model [23] ranked with the 
highest importance values to mine the association rules. Our XGBoost model reached an AUC of 0.859 using the full set of 
142 features [23], and an AUC of 0.857 using the top 50 features. 
 
Presenting five example association rules used in the second model

To give the reader a concrete feeling of the association rules used in the second model, we randomly chose five example 
rules to present in the paper. 
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Performance metrics 
We evaluated the performance of our extended automatic explanation method in several ways. The main performance metric 

we used to show our extended method’s explanation capability is: among the asthmatic patients whom our XGBoost model 
correctly predicted to incur asthma hospital visits in the subsequent year, the percentage of them for whom our extended method 
could provide explanations. We reported both the average number of rules and the average number of actionable rules fitting 
such a patient. A rule fits a patient if the patient fulfills all of the items on its left hand side. 

As shown in our paper [27], multiple rules fitting a patient frequently differ from each other by a single feature-value pair 
item on their left hand sides. When many rules fit a patient, the amount of non-redundant information embedded in them is 
often much less than the number of these rules. To give a full picture of the information richness of the automatic explanations 
provided for the patients, we present three distributions of the asthmatic patients whom our XGBoost model correctly predicted 
to incur asthma hospital visits in the subsequent year: 1) by the number of rules fitting a patient, 2) by the number of actionable 
rules fitting a patient, and 3) by the number of distinct actionable items appearing in all of the rules fitting a patient. 
 
Results 
Our patient cohort’s demographic and clinical characteristics 

Recall that every data instance targets a distinct asthmatic patient and year pair. Tables 1 lists the demographic and clinical 
characteristics of our patient cohort during 2005-2016, which includes 182,245 patients. Table 2 lists the demographic and 
clinical characteristics of our patient cohort in 2017, which includes 19,256 patients. These two sets of characteristics are 
reasonably similar. During 2005-2016, 3.59% (11,332/315,308) of data instances related to asthma hospital visits in the 
subsequent year. In 2017, this percentage was 4.22% (812/19,256). 

 
Table 1. Demographic and clinical characteristics of the Intermountain Healthcare asthmatic patients during 2005-2016. 

Characteristic Data instances related to 
no asthma hospital visit 
in the subsequent year 

(N=303,976), n (%) 

Data instances related to 
asthma hospital visits in 

the subsequent year 
(N=11,332), n (%) 

Data instances 
(N=315,308), n 

(%) 

Gender 
Female 181,928 (59.85) 6,163 (54.39) 188,091 (59.65)
Male 122,048 (40.15) 5,169 (45.61) 127,217 (40.35)

Age 
65+ 46,260 (15.22) 621 (5.48) 46,881 (14.87) 
18 to 65 172,436 (56.73) 5,003 (44.15) 177,439 (56.27)
6 to <18 50,572 (16.64) 2,590 (22.86) 53,162 (16.86) 
<6 34,708 (11.42) 3,118 (27.52) 37,826 (12.00) 

Ethnicity 
Non-Hispanic 244,442 (80.41) 8,157 (71.98) 252,599 (80.11)
Hispanic 27,014 (8.89) 2,279 (20.11) 29,293 (9.29) 
Unknown or not reported 32,520 (10.70) 896 (7.91) 33,416 (10.60) 

Race 
White 273,206 (89.88) 9,420 (83.13) 282,626 (89.63)
Native Hawaiian or other Pacific islander 3,877 (1.28) 411 (3.63) 4,288 (1.36) 
Black or African American 5,291 (1.74) 460 (4.06) 5,751 (1.82) 
Asian 2,120 (0.70) 77 (0.68) 2,197 (0.70) 
American Indian or Alaska native 2,295 (0.76) 214 (1.89) 2,509 (0.80) 
Unknown or not reported 17,187 (5.65) 750 (6.62) 17,937 (5.69) 

Duration of asthma in years 
>3 76,810 (25.27) 3,666 (32.35) 80,476 (25.52) 
≤3 227,166 (74.73) 7,666 (67.65) 234,832 (74.48)

Insurance 
Self-paid or charity 26,611 (8.75) 1,902 (16.78) 28,513 (9.04) 
Public 76,916 (25.30) 3,238 (28.57) 80,154 (25.42) 
Private 200,449 (65.94) 6,192 (54.64) 206,641 (65.54)

Smoking status 
Never smoker or unknown 251,501 (82.74) 8,952 (79.00) 260,453 (82.60)
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Former smoker 18,735 (6.16) 569 (5.02) 19,304 (6.12) 
Current smoker 33,740 (11.10) 1,811 (15.98) 35,551 (11.28) 

Comorbidity 
Sleep apnea 20,421 (6.72) 471 (4.16) 20,892 (6.63) 
Sinusitis 14,164 (4.66) 592 (5.22) 14,756 (4.68) 
Premature birth 5,102 (1.68) 440 (3.88) 5,542 (1.76) 
Obesity 35,215 (11.58) 1,076 (9.50) 36,291 (11.51) 
Gastroesophageal reflux 54,887 (18.06) 1,309 (11.55) 56,196 (17.82) 
Eczema 4,484 (1.48) 443 (3.91) 4,927 (1.56) 
Cystic fibrosis 447 (0.15) 11 (0.10) 458 (0.15) 
Chronic obstructive pulmonary disease 12,496 (4.11) 391 (3.45) 12,887 (4.09) 
Bronchopulmonary dysplasia 394 (0.13) 35 (0.31) 429 (0.14) 
Anxiety or depression 55,245 (18.17) 1,716 (15.14) 56,961 (18.07) 
Allergic rhinitis 4,534 (1.49) 181 (1.60) 4,715 (1.50) 

Asthma medication prescription 
Systemic corticosteroid 129,318 (42.54) 7,324 (64.63) 136,642 (43.34)
Short-acting, inhaled beta-2 agonist 121,983 (40.13) 7,545 (66.58) 129,528 (41.08)
Mast cell stabilizer 114 (0.04) 7 (0.06) 121 (0.04) 
Long-acting beta-2 agonist 1,744 (0.57) 69 (0.61) 1,813 (0.58) 
Leukotriene modifier 33,187 (10.92) 2,320 (20.47) 35,507 (11.26) 
Inhaled corticosteroid/long-acting beta2 
agonist combination 

42,796 (14.08) 2,196 (19.38) 44,992 (14.27) 

Inhaled corticosteroid 73,566 (24.20) 4,539 (40.05) 78,105 (24.77) 
 

Table 2. Demographic and clinical characteristics of the Intermountain Healthcare asthmatic patients in 2017. 
Characteristic Data instances related to 

no asthma hospital visit 
in the subsequent year 

(N=18,444), n (%) 

Data instances related to 
asthma hospital visits in 

the subsequent year 
(N=812), n (%) 

Data instances 
(N=19,256), n 

(%) 

Gender 
Female 11,001 (59.65) 439 (54.06) 11,440 (59.41) 
Male 7,443 (40.35) 373 (45.94) 7,816 (40.59) 

Age 
65+ 3,833 (20.78) 46 (5.67) 3,879 (20.14) 
18 to 65 9,879 (53.56) 386 (47.54) 10,265 (53.31) 
6 to <18 3,054 (16.56) 181 (22.29) 3,235 (16.80) 
<6 1,678 (9.10) 199 (24.51) 1,877 (9.75) 

Ethnicity 
Non-Hispanic 16,242 (88.06) 618 (76.11) 16,860 (87.56) 
Hispanic 2,020 (10.95) 192 (23.65) 2,212 (11.49) 
Unknown or not reported 182 (0.99) 2 (0.25) 184 (0.96) 

Race 
White 17,025 (92.31) 681 (83.87) 17,706 (91.95) 
Native Hawaiian or other Pacific islander 299 (1.62) 47 (5.79) 346 (1.80) 
Black or African American 361 (1.96) 42 (5.17) 403 (2.09) 
Asian 195 (1.06) 10 (1.23) 205 (1.06) 
American Indian or Alaska native 146 (0.79) 13 (1.60) 159 (0.83) 
Unknown or not reported 418 (2.27) 19 (2.34) 437 (2.27) 

Duration of asthma in years 
>3 7,734 (41.93) 389 (47.91) 8,123 (42.18) 
≤3 10,710 (58.07) 423 (52.09) 11,133 (57.82) 

Insurance 
Self-paid or charity 1,136 (6.16) 142 (17.49) 1,278 (6.64) 
Public 4,920 (26.68) 208 (25.62) 5,128 (26.63) 
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Private 12,388 (67.17) 462 (56.90) 12,850 (66.73) 
Smoking status 

Never smoker or unknown 13,956 (75.67) 583 (71.80) 14,539 (75.50) 
Former smoker 2,243 (12.16) 83 (10.22) 2,326 (12.08) 
Current smoker 2,245 (12.17) 146 (17.98) 2,391 (12.42) 

Comorbidity 
Sleep apnea 2,925 (15.86) 78 (9.61) 3,003 (15.60) 
Sinusitis 746 (4.04) 34 (4.19) 780 (4.05) 
Premature birth 435 (2.36) 41 (5.05) 476 (2.47) 
Obesity 3,389 (18.37) 116 (14.29) 3,505 (18.20) 
Gastroesophageal reflux 3,477 (18.85) 71 (8.74) 3,548 (18.43) 
Eczema 273 (1.48) 34 (4.19) 307 (1.59) 
Cystic fibrosis 94 (0.51) 1 (0.12) 95 (0.49) 
Chronic obstructive pulmonary disease 1,033 (5.60) 23 (2.83) 1,056 (5.48) 
Bronchopulmonary dysplasia 12 (0.07) 3 (0.37) 15 (0.08) 
Anxiety or depression 3,815 (20.68) 131 (16.13) 3,946 (20.49) 
Allergic rhinitis 382 (2.07) 10 (1.23) 392 (2.04) 

Asthma medication prescription 
Systemic corticosteroid 11,327 (61.41) 693 (85.34) 12,020 (62.42) 
Short-acting, inhaled beta-2 agonist 13,046 (70.73) 739 (91.01) 13,785 (71.59) 
Mast cell stabilizer 8 (0.04) 0 (0.00) 8 (0.04) 
Long-acting beta-2 agonist 47 (0.25) 5 (0.62) 52 (0.27) 
Leukotriene modifier 3,364 (18.24) 209 (25.74) 3,573 (18.56) 
Inhaled corticosteroid/long-acting beta2 
agonist combination 

4,178 (22.65) 222 (27.34) 4,400 (22.85) 

Inhaled corticosteroid 6,817 (36.96) 424 (52.22) 7,241 (37.60) 
 
For each demographic or clinical characteristic, Table 3 presents the statistical test results on whether the data instances 

related to asthma hospital visits in the subsequent year and those related to no asthma hospital visit in the subsequent year had 
the same distribution. When the P value is ≥.05, the two sets of data instances had the same distribution. Otherwise, they had 
different distributions. All of the P values <.05 are shown in italics in Table 3. 

 
Table 3. For each demographic or clinical characteristic, the statistical test results on whether the data instances related to 

asthma hospital visits in the subsequent year and those related to no asthma hospital visit in the subsequent year had the same 
distribution. 

Characteristic P value for the 2005-2016 
data 

P value for the 2017 
data 

Statistical test 

Gender <.001 .002 χ2 two-sample test 
Age <.001 <.001 Cochran-Armitage trend test [41]
Ethnicity <.001 <.001 χ2 two-sample test 
Race <.001 <.001 χ2 two-sample test 
Duration of asthma in years <.001 <.001 Cochran-Armitage trend test 
Insurance category <.001 <.001 χ2 two-sample test 
Smoking status <.001 <.001 χ2 two-sample test 
Comorbidity 
Sleep apnea <.001 <.001 χ2 two-sample test 
Sinusitis .006 .91 χ2 two-sample test 
Premature birth <.001 <.001 χ2 two-sample test 
Obesity <.001 .004 χ2 two-sample test 
Gastroesophageal reflux <.001 <.001 χ2 two-sample test 
Eczema <.001 <.001 χ2 two-sample test 
Cystic fibrosis .21 .20 χ2 two-sample test 
Chronic obstructive pulmonary disease <.001 <.001 χ2 two-sample test 
Bronchopulmonary dysplasia <.001 .02 χ2 two-sample test 
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Anxiety or depression <.001 .002 χ2 two-sample test 
Allergic rhinitis .38 .13 χ2 two-sample test 
Asthma medication prescription 
Systemic corticosteroid <.001 <.001 χ2 two-sample test 
Short-acting, inhaled beta-2 agonist <.001 <.001 χ2 two-sample test 
Mast cell stabilizer .29 1.00 χ2 two-sample test 
Long-acting beta-2 agonist .67 .11 χ2 two-sample test 
Leukotriene modifier <.001 <.001 χ2 two-sample test 
Inhaled corticosteroid/long-acting 
beta-2 agonist combination 

<.001 .002 χ2 two-sample test 

Inhaled corticosteroid <.001 <.001 χ2 two-sample test 
 
The number of association rules left at differing phases of the rule mining and pruning processes 

The association rules used in the second model were mined on the training set. Using the top 50 features that our XGBoost 
model ranked with the highest importance values, we obtained 559,834 association rules. Figure 1 presents the number of rules 
left vs. the confidence difference threshold . Recall that each more specific rule is dropped when there exists a more general 
rule whose confidence is not lower by more than . Initially when  is small, the number of rules left decreases quickly as  
increases. Once  becomes 0.15 or larger, the number of staying rules approaches an asymptote. Accordingly, in our computer 
coding implementation, we set  to 0.15, resulting in 132,816 remaining rules. 

 

 
Figure 1. The number of association rules left vs. . 

 
A clinical expert on asthma (MDJ) in our team marked the values and value ranges of the top 50 features that could possibly 

have a positive correlation with future asthma hospital visits. After dropping the rules including any other value or value range, 
124,506 rules were left. Each rule shows a reason why a patient is predicted to incur one or more asthma hospital visits in the 
subsequent year. Almost all (124,502) of these rules were actionable. These rules’ left hand sides contain various combinations 
of 208 distinct items related to 50 features. 
 
Example association rules in the second model

Table 4 presents five example association rules randomly chosen from the 124,502 actionable rules used in the second model. 
 

Table 4. Five example association rules. 
Rule Item on the rule’s left 

hand side 
Implication of the item Intervention compiled 

for the item 
The patient had ≥12 ED visits in the 
past year 
AND the patient had ≥21 distinct 
medications in all of the asthma 
medication orders in the past year 

The patient had ≥12 ED 
visits in the past year 

Having many ED visits reflects 
poor asthma control. 

Implement control 
strategies to avoid need 
for emergency care. 

The patient had ≥21 
distinct medications in 

Using many asthma medications 
reflects poor asthma control. 

Tailor prescribed asthma 
medications and help the 
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 the patient will incur one or more 
asthma hospital visits in the 
subsequent year. 

all of the asthma 
medication orders in the 
past year 

patient maximize asthma 
control medication 
adherence. 

The patient had ≥9 distinct asthma 
medication prescribers in the past 
year 
AND the block group where the 
patient lives has a national health 
literacy score [42] ≤244 
AND the patient had ≥21 distinct 
medications in all of the asthma 
medication orders in the past year 
 the patient will incur one or more 
asthma hospital visits in the 
subsequent year. 

The patient had ≥9 
distinct asthma 
medication prescribers 
in the past year 

Having many asthma medication 
prescribers reflects poor care 
continuity, which often leads to 
poor outcomes. 

Provide the patient 
social resources to 
address social chaos that 
leads to ineffective 
access to healthcare. 

The block group where 
the patient lives has a 
national health literacy 
score ≤244 

Having low health literacy is 
correlated with poor outcomes. 

Improve education 
access in the area where 
the patient lives to help 
increase health literacy. 

The patient had a total of ≥25 units 
of systemic corticosteroids ordered 
in the past year 
AND the patient had ≥12 ED visits 
in the past year 
AND the patient is Hispanic 
 the patient will incur one or more 
asthma hospital visits in the 
subsequent year. 

The patient had a total of
≥25 units of systemic 
corticosteroids ordered 
in the past year 

Systemic corticosteroids are one 
type of asthma medications 
intended for short-term use to 
relieve acute asthma 
exacerbations. Using a lot of 
systemic corticosteroids reflects 
poor asthma control. 

Tailor prescribed asthma 
medications and help the 
patient maximize asthma 
control medication 
adherence. 

The patient is Hispanic In the US, Hispanic people have a 
disproportionately high rate of 
poor asthma outcomes. 

 

The patient had ≥4 major visits for 
asthma in the past year 
AND the patient is between 11 and 
35 years old 
AND the patient had no outpatient 
visit in the past year 
AND the average length of an 
inpatient stay of the patient in the 
past year is >1.75 and ≤2.95 days 
 the patient will incur one or more 
asthma hospital visits in the 
subsequent year. 

The patient had ≥4 
major visits for asthma 
in the past year 

As defined in our paper [23], a 
major visit for asthma is an 
inpatient stay or ED visit having 
an asthma diagnosis code, or an 
outpatient visit having a primary 
diagnosis of asthma. Intuitively, all 
else being equal, a patient having 
major visits for asthma has a 
higher likelihood of incurring 
future asthma hospital visits than a 
patient having only outpatient 
visits with asthma as a secondary 
diagnosis. 

Implement control 
strategies to avoid need 
for emergency care. 

The average length of an 
inpatient stay of the 
patient in the past year is 
>1.75 and ≤2.95 days 

Having inpatient stays reflects 
poor asthma control. 

Implement control 
strategies to avoid need 
for emergency care. 

The patient had no 
outpatient visit in the 
past year 

For good asthma management, an 
asthmatic patient is supposed to 
see the primary care provider 
regularly. Having no outpatient 
visit often implies that the patient 
has no primary care provider. 

Help the patient obtain a 
primary care provider if 
the patient does not 
already have one. 

The patient had ≥4 major visits for 
asthma in the past year 
AND the patient’s last ED visit is 
within the last 49 days 
AND the patient had between six 
and eight distinct asthma medication 
prescribers in the past year 

The patient’s last ED 
visit is within the last 49 
days 

Having a recent ED visit reflects 
poor asthma control. 

Implement control 
strategies to avoid need 
for emergency care. 

The patient had a total of
≥36 units of asthma 
medications ordered in 
the past year 

Taking a lot of asthma medications 
reflects poor asthma control. 

Tailor prescribed asthma 
medications and help the 
patient maximize asthma 
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AND the patient had a total of ≥36 
units of asthma medications ordered 
in the past year 
AND >23.7% and ≤33.3% of 
families in the block group where the 
patient lives are below 150% of the 
federal poverty level 
 the patient will incur one or more 
asthma hospital visits in the 
subsequent year. 

control medication 
adherence. 

>23.7% and ≤33.3% of 
families in the block 
group where the patient 
lives are below 150% of 
the federal poverty level

Poverty is correlated with poor 
outcomes. 

Provide living wage 
programs in the area 
where the patient lives to 
increase resources for 
healthcare. 

 
Performance measures reached by our extended automatic explanation method

Our extended automatic explanation method was assessed on the test set. This method explained the prediction results for 
92.39% (182/197) of the asthmatic adults (age ≥ 18) and 87.45% (209/239) of the asthmatic children (age < 18) whom our 
XGBoost model correctly predicted to incur asthma hospital visits in the subsequent year. Combined, our extended method 
explained the prediction results for 89.68% (391/436) of the asthmatic patients whom our XGBoost model correctly predicted 
to incur asthma hospital visits in the subsequent year. For each such patient, our extended method offered an average of 974.01 
explanations, 974.00 of which were actionable. Each explanation came from one rule. When confined to using actionable rules, 
our extended method explained the prediction results for 89.68% (391/436) of the asthmatic patients whom our XGBoost model 
correctly predicted to incur asthma hospital visits in the subsequent year. 

For the patients for whom our extended automatic explanation method could offer explanations of our XGBoost model’s 
correct prediction results of incurring asthma hospital visits in the subsequent year, the average number of distinct actionable 
items appearing in all of the rules fitting a patient was 21.50. This number is much less than 974.01, the average number of 
actionable rules fitting such a patient. 

For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the subsequent 
year, Figure 2 exhibits the distribution of patients by the number of rules fitting a patient. This distribution has a long tail and 
is highly skewed towards the left. As the number of rules fitting a patient becomes larger, the number of patients, to each of 
whom this number of rules apply, is inclined to drop non-monotonically. The largest number of rules fitting a patient is high: 
9,223, though only one patient fits such a high number of rules. 

 

        
(a)                                                                                                    (b) 

 
Figure 2. For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the 

subsequent year, the distribution of patients by the number of rules fitting a patient. (a) When no limit is put on the number of 
rules fitting a patient. (b) When the number of rules fitting a patient is ≤250. 

 
For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the subsequent 

year, Figure 3 exhibits the distribution of patients by the number of actionable rules fitting a patient. This distribution is similar 
to that in Figure 2. The largest number of actionable rules fitting a patient is high: 9,223, though only one patient fits such a 
high number of actionable rules. 
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     (a)  

 
                                                     (b) 

Figure 3. For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the 
subsequent year, the distribution of patients by the number of actionable rules fitting a patient. (a) When no limit is put on the 

number of actionable rules fitting a patient. (b) When the number of actionable rules fitting a patient is ≤250. 
 
For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the subsequent 

year, Figure 4 exhibits the distribution of patients by the number of distinct actionable items appearing in all of the rules fitting 
a patient. The largest number of distinct actionable items appearing in all of the rules fitting a patient is 35, much smaller than 
the largest number of (actionable) rules fitting a patient. Frequently, two or more actionable items appearing in the rules fitting 
a patient link to the same set of interventions. For example, the intervention of tailoring prescribed asthma medications and 
helping the patient maximize asthma control medication adherence links to several value ranges of multiple medication-related 
features. 

 

 
Figure 4. For the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital visits in the 

subsequent year, the distribution of patients by the number of distinct actionable items appearing in all of the rules fitting a 
patient. 

 
Our extended automatic explanation method could offer explanations for 69.21% (562/812) of the asthmatic patients who 

will incur asthma hospital visits in the subsequent year. 
To evaluate the generalizability of our extended automatic explanation method for predicting asthma hospital visits, we tested 

our method on University of Washington Medicine data and Kaiser Permanente Southern California data. The results we 
obtained there are similar to the above results and are detailed in two separate papers [43,44]. 
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Discussion 
Principal results 

We developed a method to automatically offer rule-formed explanations for any machine learning model’s prediction results 
on imbalanced tabular data without lowering the model’s performance measures. We showed that this method explained the 
prediction results for 89.68% (391/436) of the asthmatic patients whom our XGBoost model correctly predicted to incur asthma 
hospital visits in the subsequent year. This percentage is high enough for routine clinical use of this method. After making 
further improvement on its accuracy, our asthma outcome prediction model coupled with the automatic explanation function 
could be used for decision support to guide allocation of limited asthma care management resources. This could help boost 
asthma outcomes as well as cut resource use and costs. 

Our extended automatic explanation method could offer explanations for 69.21% (562/812) of the asthmatic patients who 
will incur asthma hospital visits in the subsequent year. This percentage is smaller than the success rate of 89.68% (391/436) 
for our extended automatic explanation method to explain our XGBoost model’s correct prediction results of incurring asthma 
hospital visits in the subsequent year. One possible reason is that the association rules’ prediction results are correlated with 
our XGBoost model’s prediction results. Among the asthmatic patients who will incur asthma hospital visits in the subsequent 
year and on whom our XGBoost model gave incorrect predictions, many are difficult cases for any model to correctly predict 
or explain their outcomes. Among the asthmatic patients whom our XGBoost model correctly predicted to incur asthma hospital 
visits in the subsequent year, many are easy cases for using association rules to explain these cases’ outcomes. 

Asthma in adults differs from asthma in children. As shown in our paper [23], the AUC our XGBoost model reached on 
asthmatic adults is 0.034 higher than that on asthmatic children. That is, the outcome is easier to predict for asthmatic adults 
than for asthmatic children. Intuitively, the degree of difficulty of predicting the outcome is positively correlated with that of 
using association rules to explain the model’s prediction results, as each rule is a small predictive model. Hence, our extended 
automatic explanation method explained the prediction results for a larger portion of the asthmatic adults than the asthmatic 
children whom our XGBoost model correctly predicted to incur asthma hospital visits in the subsequent year. 

 
A guideline for setting the values of the parameters used in our extended automatic explanation method 

Our extended automatic explanation method has four parameters: the maximum number lmax of items allowed on an 
association rule’s left hand side, the minimum commonality threshold mmin, the minimum confidence threshold cmin, and the 
confidence difference threshold . These parameters greatly impact the method’s performance. Our prior papers [31,32] 
outlined the method, but gave no guideline for setting these parameters’ values. We offer such a guideline here. 

The maximum number lmax of items allowed on an association rule’s left hand side is usually small, as long rules are hard to 
understand [35]. Our paper [27] showed that for an outcome variable that is relatively easy to predict, an lmax of four works well 
for automatic explanation. When the outcome variable is hard to predict, we can increase lmax slightly to a number like five. 
Without making the rules too complex to understand, this helps ensure the second model can give explanations for a large 
portion of the data instances that the first model correctly predicts to take one of the interesting values of the outcome variable. 

In the original paper [38] that proposed the concept of commonality for class-based association rules, the mined rules were 
used to build a classifier. To maximize the classifier’s accuracy, the minimum commonality threshold mmin was set to 14%. 
However, this value is too high for automatic explanation. With such a high value, we cannot obtain enough rules for the 
outcome variable’s rare values. Consequently, for a large portion of the first model’s prediction results on these values, we 
cannot give any explanation. Also, the mined rules tend to be too general and have low confidence, causing the users of the 
automatic explanation function to have little trust in the automatically generated explanations. To avoid these problems, for 
automatic explanation, we recommend setting mmin to a value much smaller than 14%. More specifically, our paper [27] showed 
that on reasonably balanced data, a minimum support threshold smin of 1% and a minimum confidence threshold cmin of 50% 
work well for automatic explanation. By definition, commonality is value-specific support. Thus, we would expect mmin and 
smin to have relatively similar optimal values. Accordingly, we set mmin to a value close to 1% and cmin to a value close to 50%. 
Although a value close to 50% may not seem so high, it is already much larger than the percentage of data instances linking to 
an interesting value of the outcome variable. For instance, in our case of predicting asthma hospital visits in asthmatic patients, 
this percentage is 4% [23]. Moreover, a value close to 50% is also much larger than our XGBoost model’s positive predictive 
value of 22.65%. The concrete values of mmin and cmin depend on the data set and are chosen to meet two goals simultaneously 
and as much as possible. First, the second model can give explanations for a large portion of the data instances that the first 
model correctly predicts to take one of the interesting values of the outcome variable. Often, the harder the outcome variable 
is to predict, the smaller mmin and cmin need to be to meet this goal. Second, cmin is high enough for the users of the automatic 
explanation function to trust the automatically generated explanations. 

Recall that during the rule pruning process, each more specific rule is dropped when there exists a more general rule whose 
confidence is not lower by more than the confidence difference threshold . To determine ’s value, we plot the number of 
rules left vs. . As our paper [27] shows, initially when  is small, the number of rules left decreases quickly as  increases. 
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Once  becomes large enough, the number of rules left approaches an asymptote. This is the place to set ’s value to strike a 
balance between cutting the number of rules and retaining high-confidence rules. 
 
Five clarifications on using the automatic explanation function 

In practice, our automatic explanation method could produce a paradox. Two patients both fulfill the left hand side of the 
same rule linking to a poor outcome. The first model correctly predicts one of them to have the poor outcome. The automatic 
explanation function displays the rule to explain this prediction result. At the same time, the first model correctly predicts the 
other patient to have a good outcome, for which the automatic explanation function shows nothing. In this case, one should not 
think the automatic explanation function acts incorrectly because it behaves differently on these two patients. Rather, this 
difference occurs because the second patient fulfills some items not in the rule. These items counter the risk induced by those 
on the rule’s left hand side and reduce the second patient’s risk of having the poor outcome to a low level. 

When using the automatic explanation function, one needs to remember that the function is intended to serve as a reminder 
system for decision support rather than a replacement for clinical judgment. The function is used to help its user quickly identify 
some reasons why a patient is predicted to have a poor outcome, as well as some tailored interventions suitable for the patient. 
If successful, this helps the clinical user avoid substantial time laboriously reviewing the patient’s records to assess risk factors 
and devise interventions. This also helps reduce the number of interventions that are suitable for the patient, but the user forgets 
to consider. In the end, it is still the user who uses his or her own judgment to decide whether to use the first model’s prediction 
result and to apply suggested interventions to the patient. If there is doubt about the appropriateness of the function’s output, 
the clinical user can always check the patient’s records to resolve the doubt before making the final decisions with the patient. 

Different healthcare systems have differing properties and practice patterns. Consequently, the association rules mined from 
one healthcare system’s data may or may not directly apply to or work well for another healthcare system. Yet, our automatic 
explanation method is general. It relies on no special property of a specific disease, patient cohort, prediction target, or 
healthcare system; and can be applied to various predictive modeling problems and healthcare systems [27,29,30,43,44], 
regardless of whether the rules mined from one healthcare system’s data generalize to another healthcare system. For any 
healthcare system, we would recommend mining rules from its own data whenever possible, rather than reusing the rules mined 
from another healthcare system’s data. 

In our test case, the second model contained 124,506 association rules. The left hand sides of these rules contain various 
combinations of 208 distinct items related to 50 features. Within one day, a clinician in our team (MDJ) finished manually 
compiling the two types of knowledge needed by the automatic explanation function: the values and value ranges of the top 50 
features that could possibly have a positive correlation with future asthma hospital visit, and the interventions for the actionable 
items. The amount of time needed to perform this manual compilation is moderate and acceptable to the clinicians in our team. 

Although many association rules could fit a patient, the total number of distinct items included on their left hand sides is not 
large: at most 35. To avoid overwhelming the automatic explanation function’s user, we can use the rule diversification method 
in our paper [27] to rank these rules. The top few rules are likely to contain non-redundant information and are displayed by 
default. 

 
Related work 

As described in the survey paper [33] and the book [34], other researchers previously proposed various methods for 
automatically explaining machine learning models’ prediction results. These methods often lower the model’s performance 
measures by replacing the original model with a less accurate model, and usually give non-rule-formed explanations. Many of 
these methods work for only a specific machine learning algorithm rather than for all algorithms. Also, none of these methods 
can automatically recommend tailored interventions. In comparison, our extended automatic explanation method not only offers 
rule-formed explanations for any machine learning model’s prediction results on tabular data, but also recommends tailored 
interventions without lowering the model’s performance measures [27]. Compared with non-rule-formed explanations, rule-
formed explanations are easier to comprehend and can more directly recommend tailored interventions. 

Hatwell et al. [45] proposed a method to automatically give rule-formed explanations for an AdaBoost model’s prediction 
results. This method does not work for non-AdaBoost machine learning algorithms. The rules are unknown before prediction 
time, and hence cannot be used to automatically recommend tailored interventions at prediction time. In comparison, the rules 
used in our extended automatic explanation method are pre-compiled beforehand and used to automatically recommend tailored 
interventions at prediction time. 

 
Limitations 

This study has two limitations that both give interesting directions for future work: 
(1) Our data set contained no information on patients’ healthcare use outside of Intermountain Healthcare. Consequently, the 

features were computed using incomplete clinical and administrative data [46-49]. Also, the prediction target was limited 
to asthma hospital visits at Intermountain Healthcare rather than asthma hospital visits anywhere. It would be interesting 
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to see how the automatically generated explanations of the model’s prediction results would differ if we have access to 
more complete clinical and administrative data [50]. 

(2) Our study used one predictive modeling problem, predicting asthma hospital visits, as the test case. Although our original 
automatic explanation method [27] has been successfully applied to several predictive modeling problems [29,30], the 
generalizability of our extended automatic explanation method to other predictive modeling problems beyond predicting 
asthma hospital visits has not been evaluated. Conducting such evaluations would help inform the utility and refine the 
implementation of our extended method. 

 
Conclusions 

Using asthma outcome prediction as a demonstration case, this study shows for the first time the feasibility of automatically 
offering rule-formed explanations for any machine learning model’s prediction results on imbalanced tabular data without 
lowering the model’s performance measures. After further improvement, our asthma outcome prediction model coupled with 
the automatic explanation function could be used for decision support to guide allocation of limited asthma care management 
resources. This could simultaneously help improve asthma outcomes and reduce resource use and cost. 
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