
Distance-Constrained Orthogonal Latin Squares for Brain-
Computer Interface

Gang Luo • Wanli Min
IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
{luog, wanlimin}@us.ibm.com

Abstract The P300 brain-computer interface (BCI) using
electroencephalogram (EEG) signals can allow
amyotrophic lateral sclerosis (ALS) patients to instruct
computers to perform tasks. To strengthen the P300
response and increase classification accuracy, we proposed
an experimental design where characters are intensified
according to orthogonal Latin square pairs. These
orthogonal Latin square pairs satisfy certain distance
constraint so that neighboring characters are not intensified
simultaneously. However, it is unknown whether such
distance-constrained, orthogonal Latin square pairs actually
exist. In this paper, we show that for every matrix size
commonly used in P300 BCI, thousands to millions of such
distance-constrained, orthogonal Latin square pairs can be
systematically and efficiently constructed and are sufficient
for the purpose of being used in P300 BCI.

Keywords Brain-computer interface ⋅ Orthogonal Latin

squares ⋅ Experimental design ⋅ Distance constraint

1. Introduction

A few diseases, e.g., end-stage amyotrophic lateral

sclerosis (ALS) and severe cerebral palsy, can make
patients fully paralyzed. These paralyzed patients can
neither speak nor move their body parts. Brain computer
interface (BCI) [1, 2] can allow these patients to instruct
computers to perform tasks and is often the only method for
them to communicate with the outside world. As patients
think about what they want, their thinking is classified
based on their electroencephalogram (EEG) waves
reflecting their brains’ electrical activities and the computer
automatically executes the corresponding instructions.
Accurate EEG wave classification is critical for the
computer to issue the correct instructions.

Fig. 1 Example of a matrix used in the P300 brain-
computer interface.

(a)

(b)

Fig. 2 Seven characters are intensified simultaneously. One
row of characters is intensified in (a), and one column of
characters is intensified in (b).

In order to be widely adopted, a BCI system needs to be
noninvasive, easy to use, easy to set up, and portable. The
P300 BCI system using EEG signals satisfies these
requirements and is one of the most promising among all
types of BCIs. P300 refers to a neurally evoked potential
component of EEG. The current P300 BCI communicates
one symbol at a time and works as shown in Fig. 1 and Fig.
2 [3]. A matrix of characters or pictures is displayed on the
computer screen. A predetermined number of
intensification rounds are performed for communicating
one character. During these rounds, the user focuses on the
matrix cell containing the desired character that she intends
to communicate. The user is also instructed to count the
number of times this desired character is intensified. In
each round, all the rows and columns of the matrix are
intensified once in a random order - one row or column at a
time. The row and column containing the desired character
form the rare set (the target), and the other rows and
columns form the frequent set (the nontargets). The
physiological rationale behind P300 BCI is that
intensification of the target row or column should elicit a
P300 response because it is an unexpected rare event in the
sequence of row or column intensifications. Using properly
calibrated signal processing algorithms, we can detect P300
responses from the recorded EEG signals of the user. Then
we can use these responses to classify the target row and

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 0 1

2 3 4 5 6 7 8

9 7 () ! @ #

$ % ^ & * , .

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 0 1

2 3 4 5 6 7 8

9 7 () ! @ #

$ % ^ & * , .

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 0 1

2 3 4 5 6 7 8

9 7 () ! @ #

$ % ^ & * , .

column whose intersection cell contains the character the
user intends to communicate.

Experimental design is the term describing how
characters are arranged and how intensification is
performed. To maximize both the classification accuracy
and communication speed of the P300 BCI system, a good
experimental design is needed to obtain strong P300
responses. However, the above-mentioned, row-column
experimental design is nonoptimal due to an undesirable
effect caused by neighboring characters. This effect
particularly affects ALS patients, who have eye movement
problems and form one of the most important user groups
of BCI. When neighboring characters in a row or a column
are intensified simultaneously, an ALS patient’s attention
can be distracted from the desired character [4]. This
weakens the P300 response and hence reduces the
classification accuracy. To reduce this interference, we
need to maintain minimal pair-wise distance among
simultaneously intensified characters. The larger the
distances between simultaneously intensified characters,
the less interference the ALS patient will receive.

In Min and Luo [5], we proposed using the mathematical
structure of the Latin square to intensify non-neighboring
characters simultaneously. A Latin square of order n is an
n×n matrix based on a set of n symbols, so that each row
and column contains each symbol exactly once [6, 7, 8].
Without loss of generality, the symbols are assumed to be
1, 2, …, and n. Fig. 3 shows an example of a Latin square
of order seven.

Fig. 3 A self-orthogonal Latin square of order seven.

Fig. 4 Seven characters are intensified simultaneously
according to the corresponding positions of the symbol “1”
in the Latin square in Fig. 3.

If we intensify characters according to a Latin square
(Fig. 4), the simultaneously intensified characters will not
be direct neighbors either horizontally or vertically. To
ensure the desired character can be uniquely determined
within each round of intensification, we proposed resorting
to the concept of orthogonal Latin squares [5]. Intuitively,

Latin squares L1 and L2 of the same order n are orthogonal
if the cells in L1 containing the same symbol can be
regarded as a conceptual row, the cells in L2 containing the
same symbol can be regarded as a conceptual column, and
each conceptual row and column has a unique intersection
cell. The formal definition of orthogonal Latin squares is as
follows [6, 7, 8]:
Definition of orthogonal Latin squares. Given two Latin
squares, L1 and L2, of order n, we can superimpose them on

one another and construct an n×n superposition matrix N of
ordered pairs. Here, (h, k) occupies position (i, j) of N if
and only if h occupies position (i, j) of L1 and k occupies
position (i, j) of L2. L1 and L2 are said to be orthogonal if
each of the n2 possible ordered pairs occurs exactly once in
N. L1 is said to be self-orthogonal if L1 and its transpose are
orthogonal.

The Latin square in Fig. 3 is self-orthogonal. Many more
self-orthogonal Latin squares are provided in Burger et al.
[6].

For an n×n character matrix M, the following new
experimental design proposed in Min and Luo [5] can
ensure unique character determination by mapping M to the
superposition of L1 on L2. Whenever the experimental
design intensifies the hth (1≤h≤n) row of M, the new
experimental design intensifies the characters in M

corresponding to the hth conceptual row in L1. Whenever
the experimental design intensifies the kth (1≤k≤n) column
of M, the new experimental design intensifies the
characters in M corresponding to the kth conceptual column
in L2. By detecting the P300 responses from the recorded
EEG signals of the user, we can classify the target
conceptual row and column whose unique intersection cell
contains the character the user intends to communicate. If
we expand nonsquare matrices into square matrices by
adding dummy rows or columns, this method also works
for nonsquare character matrices.

When choosing Latin squares, we can impose various
distance constraints [5]. One is that, in the Latin square, the
distance between any pair of cells containing the same
symbol is larger than a predetermined threshold t. Here, the
distance between two cells is defined as the Euclidean
distance between the centers of these two cells. Using this
constraint, we can ensure that, at any time, the distance
between any two simultaneously intensified characters is
larger than t, which can reduce interference for ALS
patients, lead to stronger P300 responses, and improve
classification accuracy.

Among all reasonable distance thresholds, the minimal
one is that 2=t units so that the simultaneously intensified

characters will not be direct neighbors horizontally,
vertically, or diagonally. However, it is unknown whether
orthogonal Latin square pairs satisfying this minimal
distance constraint actually exist. In this paper, we show
that for every matrix size commonly used in P300 BCI,
thousands to millions of orthogonal Latin square pairs
satisfying this minimal distance constraint can be

0 2 1 4 3 6 5

3 1 6 0 5 4 2

4 5 2 6 0 1 3

5 6 4 3 2 0 1

6 3 5 1 4 2 0

1 0 3 2 6 5 4

2 4 0 5 1 3 6

A B C D E F G

H I J K L M N

O P Q R S T U

V W X Y Z 0 1

2 3 4 5 6 7 8

9 7 () ! @ #

$ % ^ & * , .

systematically and efficiently constructed and are sufficient
for the purpose of being used in P300 BCI.

The rest of the paper is organized as follows. Section 2
presents our method for constructing distance-constrained,
orthogonal Latin square pairs. Section 3 provides some
experimental results. Section 4 concludes.

2. Distance-constrained orthogonal latin squares

For any positive integer n that is neither 2 nor 6, many

pairs of orthogonal Latin squares of order n exist [7, 8]. For
the order of 2 or 6, it has been proven that orthogonal Latin
squares do not exist. The pair of orthogonal Latin squares
used to communicate a character can vary from one
character to another through random selection. This
provides much flexibility and makes the character inten-
sification pattern more unexpected by the user. As
mentioned by Sellers et al. [3], such unexpectedness can
lead to stronger P300 responses and improve classification
accuracy.

In general, for a given order, a small number of
orthogonal Latin square pairs can be quickly constructed
using the mathematical structure of the finite field [7, 8].
To obtain more orthogonal Latin square pairs, the state-of-
the-art method is to perform an exhaustive search by
building a search tree and using various pruning rules to
limit the size of the tree [6]. This search procedure often
runs for multiple days without being finished and produces
a subset of all possible orthogonal Latin square pairs that
satisfy certain property. At present, many enumeration
results of orthogonal Latin square pairs have been compiled
and are publicly available [6]. In this section, we show how
to use these orthogonal Latin square pairs as seeds to
construct distance-constrained, orthogonal Latin square
pairs.

In the rest of the paper, we focus on the minimal distance
constraint, where the predetermined distance threshold is

2=t units. Other distance constraints can be handled in a

similar way, whereas fewer orthogonal Latin square pairs
will satisfy them compared to the case of the minimal
distance constraint. For the purpose of P300 BCI, there is
no need to find all possible orthogonal Latin square pairs
satisfying the minimal distance constraint. Rather, it is
sufficient to find many orthogonal Latin square pairs
satisfying the minimal distance constraint. This observation
can be used to improve the efficiency of constructing
distance-constrained, orthogonal Latin square pairs, as
early stopping becomes feasible in the construction process.

To systematically construct orthogonal Latin square pairs
satisfying the minimal distance constraint, the following
property of orthogonal Latin squares plays a key role [7, 8]:
Property of orthogonal Latin squares. Given a pair of
orthogonal Latin squares, we can simultaneously permute
their rows or columns. The resulting two matrices still form
a pair of orthogonal Latin squares.

Starting from a single “seed” orthogonal Latin square
pair, this property allows us to systematically construct a
large number of orthogonal Latin square pairs through
simultaneous row or column permutation. As mentioned
above, for any order n that is neither 2 nor 6, multiple seed
orthogonal Latin square pairs can be quickly constructed or
obtained from a publicly-available, pre-compiled pool of
orthogonal Latin square pairs [6, 7, 8]. There are n! distinct
permutations for the n symbols 1, 2, …, and n.
Consequently, there are n! distinct row permutations and
another n! distinct column permutations. Starting from a
single seed orthogonal Latin square pair, we can obtain
(n!)2 orthogonal Latin square pairs through simultaneous
row or column permutation. For each obtained orthogonal
Latin square pair, we can check whether it satisfies the
minimal distance constraint. For example, using the self-
orthogonal Latin square shown in Fig. 3 and its transpose
as the seed orthogonal Latin square pair, we can obtain 588
orthogonal Latin square pairs satisfying the minimal
distance constraint. One such distance-constrained,
orthogonal Latin square pair is shown in Fig. 5. If one seed
orthogonal Latin square pair cannot produce enough
distance-constrained, orthogonal Latin square pairs, we can
resort to more seed orthogonal Latin square pairs.

Fig. 5 A pair of orthogonal Latin squares of order seven
that satisfy the minimal distance constraint.

For each of the (n!)2 orthogonal Latin square pairs
obtained through simultaneous row or column permutation,
the minimal distance constraint is checked by processing
the n

2 matrix cells one by one for either of the two Latin
squares in the orthogonal Latin square pair. As shown in
Fig. 6, when processing the cell (i, j) of a Latin square,

where 1≤i≤n and 1≤j≤n, we need to consider its eight direct
neighboring cells to see whether any of them contains the
same symbol as that of itself. If so, this Latin square
violates the minimal distance constraint. The cell (i, j) has
four horizontal or vertical direct neighbors: the cells (i, j-1),
(i, j+1), (i-1, j), and (i+1, j). According to the definition of
Latin square, these four cells, which are on the same row or
column as the cell (i, j), do not contain the same symbol as

0 1 3 6 5 4 2

3 6 5 4 2 0 1

5 4 2 0 1 3 6

2 0 1 3 6 5 4

1 3 6 5 4 2 0

6 5 4 2 0 1 3

4 2 0 1 3 6 5

0 4 6 1 2 5 3

2 5 3 0 4 6 1

4 6 1 2 5 3 0

5 3 0 4 6 1 2

6 1 2 5 3 0 4

3 0 4 6 1 2 5

1 2 5 3 0 4 6

that of the cell (i, j) and hence need not to be checked.
Among the remaining four cells (i+1, j-1), (i+1, j+1), (i-1,
j-1), and (i-1, j+1) that are the diagonal direct neighbors of
the cell (i, j), only the two cells (i+1, j-1) and (i+1, j+1)
need to be checked. The checking of whether the cell (i-1,
j-1) and the cell (i, j) contain the same symbol is performed
when the cell (i-1, j-1) is processed. The checking of
whether the cell (i-1, j+1) and the cell (i, j) contain the
same symbol is performed when the cell (i-1, j+1) is
processed. In summary, two checks need to be performed
for each matrix cell.

Fig. 6 Neighboring cells of the cell (i, j) in the matrix.

(n!)2 is a large number for a moderately large n.
Consequently, even for a single seed orthogonal Latin
square pair, it can be time-consuming to enumerate all (n!)2
orthogonal Latin square pairs through simultaneous row or
column permutation and check whether they satisfy the
minimal distance constraint. Nevertheless, the time
overhead of constructing distance-constrained, orthogonal
Latin square pairs is not a major concern in practice for the
following reasons.

First, the distance-constrained, orthogonal Latin square
pairs need to be constructed only once. Then they can be
saved and repeatedly used in P300 BCI.

Second, the order n used in P300 BCI is usually not
large. If n is large, the computer screen will be cluttered
with too many objects (characters or pictures). Due to
insufficient space between neighboring objects, the
performance of the P300 BCI system will degrade.
Actually a multi-step selection procedure will be used when
the user needs to select from a large number of objects [9].
For example, suppose 256 objects are available for
selection. We divide these 256 objects into 16 disjoint
groups, each containing 16 objects. To select a particular
object, the user proceeds in two steps. In the first step, he is
presented with 16 groups and selects the group that
contains this object. In the second step, he is presented with
16 objects in that group and selects this object.

Third, similar to the method described in [6], our
procedure of searching distance-constrained, orthogonal

Latin square pairs can be easily parallelized to achieve
near-linear speedup on multiple computers.

Fourth, as will be shown in Section 3, exhaustive
enumeration is often unnecessary. Usually through partial
enumeration of simultaneous row or column permutations,
we can quickly obtain a large number of orthogonal Latin
square pairs satisfying the minimal distance constraint.
These distance-constrained, orthogonal Latin square pairs
are sufficient for the purpose of being used in P300 BCI.
On the other hand, suppose we use a distance constraint
that is much stricter than the minimal distance constraint
and hence can be satisfied by very few orthogonal Latin
square pairs. Then a lot of time may have to be spent on
enumerating many orthogonal Latin square pairs through
simultaneous row or column permutation, possibly using
multiple seed orthogonal Latin square pairs.

During our experiments, we notice that each orthogonal
Latin square pair seems to have some inherent, distance-
related property. For example, if we cannot use a seed
orthogonal Latin square pair to quickly (e.g., within two
minutes) obtain any orthogonal Latin square pair satisfying
the minimal distance constraint, then we are unlikely to
find any orthogonal Latin square pair satisfying the
minimal distance constraint even after all possible,
simultaneous row or column permutations are exhausted.
On the other hand, if we can use this seed orthogonal Latin
square pair to quickly obtain a few orthogonal Latin square
pairs satisfying the minimal distance constraint, then we are
likely to find many orthogonal Latin square pairs satisfying
the minimal distance constraint by exhausting all possible,
simultaneous row or column permutations.

One possible explanation of this phenomenon is as
follows. For a seed orthogonal Latin square pair of order n,
the corresponding search space includes the (n!)2
orthogonal Latin square pairs obtained through
simultaneous row or column permutation. A small
difference in two permutations (e.g., the positions of two
symbols are switched) can affect the neighboring
relationships of many symbols in the two matrices of the
orthogonal Latin square pair (e.g., two rows or columns are
simultaneously switched). For the n symbols 1, 2, …, and
n, we can enumerate all n! distinct permutations in a
regular way. For example, first enumerate all n possibilities
of the first element in the permutation, then enumerate all
n-1 possibilities of the second element in the permutation,
etc. Nevertheless, the resulting search in the search space is
essentially performed in a “random” way by quickly
jumping through dissimilar matrices whose contained
symbols have dramatically different neighboring
relationships. In a short amount of time, we can probe
many scattered places of the search space. If no qualified
orthogonal Latin square pair is found during this period,
then the likelihood that the search space contains any
qualified orthogonal Latin square pair would be low.
Further investigation of the inherent, distance-related

(i+1, j)

(i-1, j)

(i, j+1)

(i, j-1)

(i+1, j-1) (i+1, j+1)

(i-1, j+1) (i-1, j-1)

(i, j)

property of orthogonal Latin square pairs seems to be non-
trivial and is an interesting area for future work.

Our goal is to quickly construct enough distance-
constrained, orthogonal Latin square pairs for the purpose
of P300 BCI, rather than find all possible distance-
constrained, orthogonal Latin square pairs. The above
phenomenon suggests using a time-based heuristics to
improve the efficiency of constructing distance-
constrained, orthogonal Latin square pairs. The idea is to
quickly discard those seed orthogonal Latin square pairs
that are unlikely to produce any distance-constrained,
orthogonal Latin square pair. More specifically, we have a
predetermined time threshold of m (e.g., m=2) minutes. If
within this amount of time, we cannot use a seed

orthogonal Latin square pair to obtain any orthogonal Latin
square pair satisfying the minimal distance constraint, then
we switch to a new seed orthogonal Latin square pair rather
than keep trying with the old seed orthogonal Latin square
pair.

Fig. 7 shows the flow chart of constructing distance-
constrained, orthogonal Latin square pairs. The counter cS
keeps track of the number of distance-constrained,
orthogonal Latin square pairs that have been constructed
from the seed orthogonal Latin square pair S. The search
procedure stops when we have found enough (e.g., a few
hundred) distance-constrained, orthogonal Latin square
pairs for the purpose of P300 BCI.

Fig. 7 Flow chart of constructing distance-constrained, orthogonal Latin square pairs.

3. Experimental results

We performed some experiments to demonstrate that

many orthogonal Latin square pairs satisfying the minimal

distance constraint can be systematically and efficiently
constructed using the method described in Section 2. 26
characters, 10 digits, and a few symbols require more than
36 matrix cells but no more than 81 matrix cells. In this

Check whether both
Latin squares in P
satisfy the distance

constraint

Have enough distance-
constrained, orthogonal
Latin square pairs been

found?

Have m
minutes
passed

and cS=0?

yes

no

yes

Have all row
permutations
and column

permutations
been exhausted?

yes

no

no

yes

End

cS++

Set counter cS=0

Pick a new seed orthogonal Latin square pair S from a publicly-
available, pre-compiled pool of orthogonal Latin square pairs

Enumerate one row permutation and one
column permutation, and construct an
orthogonal Latin square pair P from S

 no

Start

section, we focus on Latin squares of order seven, eight,
and nine, which represent the matrix sizes commonly used
in P300 BCI. All used seed self-orthogonal Latin squares
come from Burger et al. [6]. Our experiments were
performed on a computer with two 3GHz processors, 2GB
memory, and one 111GB disk.

We first consider orthogonal Latin square pairs of order
seven. As mentioned in Section 2, using the self-orthogonal
Latin square in Fig. 3 and its transpose as the seed
orthogonal Latin square pair, we can obtain 588 orthogonal
Latin square pairs satisfying the minimal distance
constraint. Some of these distance-constrained, orthogonal
Latin square pairs are each composed of one self-
orthogonal Latin square and its transpose. One such
distance-constrained, self-orthogonal Latin square is shown
in Fig. 8. The enumeration of all possible, simultaneous
row or column permutations is finished within one minute.

Fig. 8 A self-orthogonal Latin square of order seven that
satisfies the minimal distance constraint.

Although we start from a self-orthogonal Latin square,
the seed orthogonal Latin square pair does not have to be
composed of a self-orthogonal Latin square and its
transpose. For example, using simultaneous row or column
permutation, any orthogonal Latin square pair obtained
through simultaneous row or column permutation of a self-
orthogonal Latin square L and L’s transpose will produce
the same set of orthogonal Latin square pairs as L and L’s
transpose, as the composition of two permutations is still a
permutation.

Fig. 9 A self-orthogonal Latin square of order eight.

Next, we consider orthogonal Latin square pairs of order
eight. Fig. 9 shows a self-orthogonal Latin square of order
eight. Using this self-orthogonal Latin square and its
transpose as the seed orthogonal Latin square pair, we can
obtain 55,296 orthogonal Latin square pairs satisfying the
minimal distance constraint. One such distance-
constrained, orthogonal Latin square pair is shown in Fig.

10. The enumeration of all possible, simultaneous row or
column permutations is finished within one hour.

Fig. 10 A pair of orthogonal Latin squares of order eight
that satisfy the minimal distance constraint.

Fig. 11 Another self-orthogonal Latin square of order eight.

Not every orthogonal Latin square pair can be used as a

seed to guarantee the construction of at least one
orthogonal Latin square pair satisfying the minimal
distance constraint. For example, the self-orthogonal Latin
square shown in Fig. 11 and its transpose form an
orthogonal Latin square pair, which cannot be used a seed
to construct any orthogonal Latin square pair satisfying the
minimal distance constraint.

Fig. 12 A self-orthogonal Latin square of order nine.

Finally, we consider orthogonal Latin square pairs of
order nine. Fig. 12 shows a self-orthogonal Latin square of
order nine. Using this self-orthogonal Latin square and its
transpose as the seed orthogonal Latin square pair, within

0 2 1 4 5 6 7 3

3 1 7 0 2 4 5 6

4 6 2 5 7 3 0 1

5 7 6 3 0 1 2 4

7 5 3 6 4 2 1 0

1 3 0 7 6 5 4 2

2 0 4 1 3 7 6 5

6 4 5 2 1 0 3 7

0 2 3 4 5 6 7 8 1

4 1 5 8 6 3 2 0 7

5 8 2 6 1 7 4 3 0

6 0 1 3 7 2 8 5 4

7 5 0 2 4 8 3 1 6

8 7 6 0 3 5 1 4 2

1 3 8 7 0 4 6 2 5

2 6 4 1 8 0 5 7 3

3 4 7 5 2 1 0 6 8

0 2 3 5 6 7 4 1

3 1 6 2 4 5 0 7

5 7 4 0 1 2 3 6

4 6 1 7 3 0 5 2

7 5 0 4 2 1 6 3

1 3 2 6 5 4 7 0

2 0 5 3 7 6 1 4

6 4 7 1 0 3 2 5

0 3 6 7 1 2 5 4

2 1 4 5 3 0 7 6

4 0 2 6 7 1 3 5

1 7 5 3 0 4 6 2

5 2 1 4 6 3 0 7

6 4 0 2 5 7 1 3

7 5 3 1 4 6 2 0

3 6 7 0 2 5 4 1

0 2 4 5 6 3 1

3 1 0 2 4 5 6

5 6 3 1 0 2 4

2 4 5 6 3 1 0

1 0 2 4 5 6 3

6 3 1 0 2 4 5

4 5 6 3 1 0 2

0 2 1 4 5 6 7 3

3 1 6 7 0 2 4 5

4 3 2 5 7 0 1 6

2 0 7 3 6 1 5 4

6 5 3 1 4 7 0 2

7 6 4 0 2 5 3 1

1 7 5 2 3 4 6 0

5 4 0 6 1 3 2 7

three hours we can obtain one million orthogonal Latin
square pairs satisfying the minimal distance constraint. One
such distance-constrained, orthogonal Latin square pair is
shown in Fig. 13. Some of these distance-constrained,
orthogonal Latin square pairs are each composed of one
self-orthogonal Latin square and its transpose. One such
distance-constrained, self-orthogonal Latin square is shown
in Fig. 14. It takes two days to enumerate all possible,
simultaneous row or column permutations to obtain the
complete set of 13,716,864 orthogonal Latin square pairs
satisfying the minimal distance constraint. This shows that
early stopping via partial enumeration can be valuable, as
hundreds of distance-constrained, orthogonal Latin square
pairs should be sufficient for the purpose of being used in
P300 BCI.

Fig. 13 A pair of orthogonal Latin squares of order nine
that satisfy the minimal distance constraint.

Fig. 14 A self-orthogonal Latin square of order nine that
satisfies the minimal distance constraint.

4. Conclusions

Orthogonal Latin square pairs satisfying certain distance

constraint can be used to increase both the classification
accuracy and communication speed of the P300 BCI
system. This paper shows that for every matrix size
commonly used in P300 BCI, thousands to millions of such
distance-constrained, orthogonal Latin square pairs can be
systematically and efficiently constructed. A direction for
future work is to investigate quantitatively the benefits that
these distance-constrained, orthogonal Latin square pairs
can bring to P300 BCI, particularly on ALS patients.

Acknowledgment We thank Dennis J. McFarland, Selena
B. Thomas, Theresa M. Vaughan, and Catherine Wolf for
helpful discussions.

References

1. Dornhege, G., Millan, J.R., and Hinterberger, T. et al.,

Toward Brain-Computer Interfacing (Neural

Information Processing). MIT Press, 2007.
2. Nijholt, A., Tan, D.S., and Pfurcheller, G. et al., Brain-

computer interfacing for intelligent systems. IEEE

Intelligent Systems 23(3): 72-79, 2008.
3. Sellers, E.W., Krusienski, D.J., and McFarland, D.J. et

al., A P300 event-related potential brain-computer
interface (BCI): the effects of matrix size and inter
stimulus interval on performance. Biological

Psychology 73(3): 242-252, 2006.
4. Okamoto, K., Hirai, S., and Amari, M. et al.,

Oculomotor nuclear pathology in amyotrophic lateral
sclerosis. Acta Neuropathologica 85(5): 458-462,
1993.

5. Min, W., and Luo, G., Medical applications of EEG
wave classification. Chance 22(4): 14-20, 2009.

6. Burger, A.P., Kidd, M.P., and van Vuuren, J.H.,
Enumeration of self-orthogonal Latin squares.
Available at
http://www.vuuren.co.za/papers/SOLS.pdf, 2009.

7. Laywine, C.F., and Mullen, G.L., Discrete

Mathematics Using Latin Squares. Wiley-Interscience,
1998.

8. Street, A.P., and Street, D.J., Combinatorics of

Experimental Design. Oxford University Press, 1987.
9. Muller, K., and Blankertz, B., Toward noninvasive

brain-computer interfaces. IEEE Signal Processing

Magazine 23(5): 125-128.

0 4 5 6 3 7 2 1 8

2 1 8 0 4 5 6 3 7

3 5 2 1 7 0 4 8 6

4 8 6 3 5 2 1 7 0

6 3 7 2 1 8 0 4 5

7 2 4 8 0 3 5 6 1

8 0 3 5 6 1 7 2 4

5 6 1 7 2 4 8 0 3

1 7 0 4 8 6 3 5 2

0 2 3 4 1 5 8 7 6

4 1 5 8 7 6 0 2 3

5 8 2 6 0 1 3 4 7

6 0 1 3 4 7 5 8 2

8 7 6 0 2 3 4 1 5

1 3 8 7 5 0 2 6 4

2 6 4 1 3 8 7 5 0

7 5 0 2 6 4 1 3 8

3 4 7 5 8 2 6 0 1

0 2 3 4 6 7 8 5 1

4 1 5 8 3 2 0 6 7

5 8 2 6 7 4 3 1 0

6 0 1 3 2 8 5 7 4

8 7 6 0 5 1 4 3 2

1 3 8 7 4 6 2 0 5

2 6 4 1 0 5 7 8 3

7 5 0 2 8 3 1 4 6

3 4 7 5 1 0 6 2 8

