
Distance-Constrained Orthogonal Latin Squares for Brain-
Computer Interface 

 

Gang Luo • Wanli Min 
IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA 
{luog, wanlimin}@us.ibm.com 

 
 
Abstract The P300 brain-computer interface (BCI) using 
electroencephalogram (EEG) signals can allow 
amyotrophic lateral sclerosis (ALS) patients to instruct 
computers to perform tasks. To strengthen the P300 
response and increase classification accuracy, we proposed 
an experimental design where characters are intensified 
according to orthogonal Latin square pairs. These 
orthogonal Latin square pairs satisfy certain distance 
constraint so that neighboring characters are not intensified 
simultaneously. However, it is unknown whether such 
distance-constrained, orthogonal Latin square pairs actually 
exist. In this paper, we show that for every matrix size 
commonly used in P300 BCI, thousands to millions of such 
distance-constrained, orthogonal Latin square pairs can be 
systematically and efficiently constructed and are sufficient 
for the purpose of being used in P300 BCI. 
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1. Introduction 

 
A few diseases, e.g., end-stage amyotrophic lateral 

sclerosis (ALS) and severe cerebral palsy, can make 
patients fully paralyzed. These paralyzed patients can 
neither speak nor move their body parts. Brain computer 
interface (BCI) [1, 2] can allow these patients to instruct 
computers to perform tasks and is often the only method for 
them to communicate with the outside world. As patients 
think about what they want, their thinking is classified 
based on their electroencephalogram (EEG) waves 
reflecting their brains’ electrical activities and the computer 
automatically executes the corresponding instructions. 
Accurate EEG wave classification is critical for the 
computer to issue the correct instructions. 
 
 
 
 
 
 
 
 
 

Fig. 1 Example of a matrix used in the P300 brain-
computer interface. 
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Fig. 2 Seven characters are intensified simultaneously. One 
row of characters is intensified in (a), and one column of 
characters is intensified in (b). 
 

In order to be widely adopted, a BCI system needs to be 
noninvasive, easy to use, easy to set up, and portable. The 
P300 BCI system using EEG signals satisfies these 
requirements and is one of the most promising among all 
types of BCIs. P300 refers to a neurally evoked potential 
component of EEG. The current P300 BCI communicates 
one symbol at a time and works as shown in Fig. 1 and Fig. 
2 [3]. A matrix of characters or pictures is displayed on the 
computer screen. A predetermined number of 
intensification rounds are performed for communicating 
one character. During these rounds, the user focuses on the 
matrix cell containing the desired character that she intends 
to communicate. The user is also instructed to count the 
number of times this desired character is intensified. In 
each round, all the rows and columns of the matrix are 
intensified once in a random order - one row or column at a 
time. The row and column containing the desired character 
form the rare set (the target), and the other rows and 
columns form the frequent set (the nontargets). The 
physiological rationale behind P300 BCI is that 
intensification of the target row or column should elicit a 
P300 response because it is an unexpected rare event in the 
sequence of row or column intensifications. Using properly 
calibrated signal processing algorithms, we can detect P300 
responses from the recorded EEG signals of the user. Then 
we can use these responses to classify the target row and 
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column whose intersection cell contains the character the 
user intends to communicate. 

Experimental design is the term describing how 
characters are arranged and how intensification is 
performed. To maximize both the classification accuracy 
and communication speed of the P300 BCI system, a good 
experimental design is needed to obtain strong P300 
responses. However, the above-mentioned, row-column 
experimental design is nonoptimal due to an undesirable 
effect caused by neighboring characters. This effect 
particularly affects ALS patients, who have eye movement 
problems and form one of the most important user groups 
of BCI. When neighboring characters in a row or a column 
are intensified simultaneously, an ALS patient’s attention 
can be distracted from the desired character [4]. This 
weakens the P300 response and hence reduces the 
classification accuracy. To reduce this interference, we 
need to maintain minimal pair-wise distance among 
simultaneously intensified characters. The larger the 
distances between simultaneously intensified characters, 
the less interference the ALS patient will receive. 

In Min and Luo [5], we proposed using the mathematical 
structure of the Latin square to intensify non-neighboring 
characters simultaneously. A Latin square of order n is an 
n×n matrix based on a set of n symbols, so that each row 
and column contains each symbol exactly once [6, 7, 8]. 
Without loss of generality, the symbols are assumed to be 
1, 2, …, and n. Fig. 3 shows an example of a Latin square 
of order seven. 
 
 
 
 
 
 
 
 
 

Fig. 3 A self-orthogonal Latin square of order seven. 
 
 
 
 
 
 
 
 
 

Fig. 4 Seven characters are intensified simultaneously 
according to the corresponding positions of the symbol “1” 
in the Latin square in Fig. 3. 
 

If we intensify characters according to a Latin square 
(Fig. 4), the simultaneously intensified characters will not 
be direct neighbors either horizontally or vertically. To 
ensure the desired character can be uniquely determined 
within each round of intensification, we proposed resorting 
to the concept of orthogonal Latin squares [5]. Intuitively, 

Latin squares L1 and L2 of the same order n are orthogonal 
if the cells in L1 containing the same symbol can be 
regarded as a conceptual row, the cells in L2 containing the 
same symbol can be regarded as a conceptual column, and 
each conceptual row and column has a unique intersection 
cell. The formal definition of orthogonal Latin squares is as 
follows [6, 7, 8]: 
Definition of orthogonal Latin squares. Given two Latin 
squares, L1 and L2, of order n, we can superimpose them on 

one another and construct an n×n superposition matrix N of 
ordered pairs. Here, (h, k) occupies position (i, j) of N if 
and only if h occupies position (i, j) of L1 and k occupies 
position (i, j) of L2. L1 and L2 are said to be orthogonal if 
each of the n2 possible ordered pairs occurs exactly once in 
N. L1 is said to be self-orthogonal if L1 and its transpose are 
orthogonal. 

The Latin square in Fig. 3 is self-orthogonal. Many more 
self-orthogonal Latin squares are provided in Burger et al. 
[6]. 

For an n×n character matrix M, the following new 
experimental design proposed in Min and Luo [5] can 
ensure unique character determination by mapping M to the 
superposition of L1 on L2. Whenever the experimental 
design intensifies the hth (1≤h≤n) row of M, the new 
experimental design intensifies the characters in M 

corresponding to the hth conceptual row in L1. Whenever 
the experimental design intensifies the kth (1≤k≤n) column 
of M, the new experimental design intensifies the 
characters in M corresponding to the kth conceptual column 
in L2. By detecting the P300 responses from the recorded 
EEG signals of the user, we can classify the target 
conceptual row and column whose unique intersection cell 
contains the character the user intends to communicate. If 
we expand nonsquare matrices into square matrices by 
adding dummy rows or columns, this method also works 
for nonsquare character matrices. 

When choosing Latin squares, we can impose various 
distance constraints [5]. One is that, in the Latin square, the 
distance between any pair of cells containing the same 
symbol is larger than a predetermined threshold t. Here, the 
distance between two cells is defined as the Euclidean 
distance between the centers of these two cells. Using this 
constraint, we can ensure that, at any time, the distance 
between any two simultaneously intensified characters is 
larger than t, which can reduce interference for ALS 
patients, lead to stronger P300 responses, and improve 
classification accuracy. 

Among all reasonable distance thresholds, the minimal 
one is that 2=t  units so that the simultaneously intensified 

characters will not be direct neighbors horizontally, 
vertically, or diagonally. However, it is unknown whether 
orthogonal Latin square pairs satisfying this minimal 
distance constraint actually exist. In this paper, we show 
that for every matrix size commonly used in P300 BCI, 
thousands to millions of orthogonal Latin square pairs 
satisfying this minimal distance constraint can be 
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systematically and efficiently constructed and are sufficient 
for the purpose of being used in P300 BCI. 

The rest of the paper is organized as follows. Section 2 
presents our method for constructing distance-constrained, 
orthogonal Latin square pairs. Section 3 provides some 
experimental results. Section 4 concludes. 

  

2. Distance-constrained orthogonal latin squares 

 
For any positive integer n that is neither 2 nor 6, many 

pairs of orthogonal Latin squares of order n exist [7, 8]. For 
the order of 2 or 6, it has been proven that orthogonal Latin 
squares do not exist. The pair of orthogonal Latin squares 
used to communicate a character can vary from one 
character to another through random selection. This 
provides much flexibility and makes the character inten-
sification pattern more unexpected by the user. As 
mentioned by Sellers et al. [3], such unexpectedness can 
lead to stronger P300 responses and improve classification 
accuracy. 

In general, for a given order, a small number of 
orthogonal Latin square pairs can be quickly constructed 
using the mathematical structure of the finite field [7, 8]. 
To obtain more orthogonal Latin square pairs, the state-of-
the-art method is to perform an exhaustive search by 
building a search tree and using various pruning rules to 
limit the size of the tree [6]. This search procedure often 
runs for multiple days without being finished and produces 
a subset of all possible orthogonal Latin square pairs that 
satisfy certain property. At present, many enumeration 
results of orthogonal Latin square pairs have been compiled 
and are publicly available [6]. In this section, we show how 
to use these orthogonal Latin square pairs as seeds to 
construct distance-constrained, orthogonal Latin square 
pairs. 

In the rest of the paper, we focus on the minimal distance 
constraint, where the predetermined distance threshold is 

2=t  units. Other distance constraints can be handled in a 

similar way, whereas fewer orthogonal Latin square pairs 
will satisfy them compared to the case of the minimal 
distance constraint. For the purpose of P300 BCI, there is 
no need to find all possible orthogonal Latin square pairs 
satisfying the minimal distance constraint. Rather, it is 
sufficient to find many orthogonal Latin square pairs 
satisfying the minimal distance constraint. This observation 
can be used to improve the efficiency of constructing 
distance-constrained, orthogonal Latin square pairs, as 
early stopping becomes feasible in the construction process. 

To systematically construct orthogonal Latin square pairs 
satisfying the minimal distance constraint, the following 
property of orthogonal Latin squares plays a key role [7, 8]: 
Property of orthogonal Latin squares. Given a pair of 
orthogonal Latin squares, we can simultaneously permute 
their rows or columns. The resulting two matrices still form 
a pair of orthogonal Latin squares. 

Starting from a single “seed” orthogonal Latin square 
pair, this property allows us to systematically construct a 
large number of orthogonal Latin square pairs through 
simultaneous row or column permutation. As mentioned 
above, for any order n that is neither 2 nor 6, multiple seed 
orthogonal Latin square pairs can be quickly constructed or 
obtained from a publicly-available, pre-compiled pool of 
orthogonal Latin square pairs [6, 7, 8]. There are n! distinct 
permutations for the n symbols 1, 2, …, and n. 
Consequently, there are n! distinct row permutations and 
another n! distinct column permutations. Starting from a 
single seed orthogonal Latin square pair, we can obtain 
(n!)2 orthogonal Latin square pairs through simultaneous 
row or column permutation. For each obtained orthogonal 
Latin square pair, we can check whether it satisfies the 
minimal distance constraint. For example, using the self-
orthogonal Latin square shown in Fig. 3 and its transpose 
as the seed orthogonal Latin square pair, we can obtain 588 
orthogonal Latin square pairs satisfying the minimal 
distance constraint. One such distance-constrained, 
orthogonal Latin square pair is shown in Fig. 5. If one seed 
orthogonal Latin square pair cannot produce enough 
distance-constrained, orthogonal Latin square pairs, we can 
resort to more seed orthogonal Latin square pairs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 A pair of orthogonal Latin squares of order seven 
that satisfy the minimal distance constraint. 
 

For each of the (n!)2 orthogonal Latin square pairs 
obtained through simultaneous row or column permutation, 
the minimal distance constraint is checked by processing 
the n

2 matrix cells one by one for either of the two Latin 
squares in the orthogonal Latin square pair. As shown in 
Fig. 6, when processing the cell (i, j) of a Latin square, 

where 1≤i≤n and 1≤j≤n, we need to consider its eight direct 
neighboring cells to see whether any of them contains the 
same symbol as that of itself. If so, this Latin square 
violates the minimal distance constraint. The cell (i, j) has 
four horizontal or vertical direct neighbors: the cells (i, j-1), 
(i, j+1), (i-1, j), and (i+1, j). According to the definition of 
Latin square, these four cells, which are on the same row or 
column as the cell (i, j), do not contain the same symbol as 
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that of the cell (i, j) and hence need not to be checked. 
Among the remaining four cells (i+1, j-1), (i+1, j+1), (i-1, 
j-1), and (i-1, j+1) that are the diagonal direct neighbors of 
the cell (i, j), only the two cells (i+1, j-1) and (i+1, j+1) 
need to be checked. The checking of whether the cell (i-1, 
j-1) and the cell (i, j) contain the same symbol is performed 
when the cell (i-1, j-1) is processed. The checking of 
whether the cell (i-1, j+1) and the cell (i, j) contain the 
same symbol is performed when the cell (i-1, j+1) is 
processed. In summary, two checks need to be performed 
for each matrix cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Neighboring cells of the cell (i, j) in the matrix. 
 

(n!)2 is a large number for a moderately large n. 
Consequently, even for a single seed orthogonal Latin 
square pair, it can be time-consuming to enumerate all (n!)2 
orthogonal Latin square pairs through simultaneous row or 
column permutation and check whether they satisfy the 
minimal distance constraint. Nevertheless, the time 
overhead of constructing distance-constrained, orthogonal 
Latin square pairs is not a major concern in practice for the 
following reasons. 

First, the distance-constrained, orthogonal Latin square 
pairs need to be constructed only once. Then they can be 
saved and repeatedly used in P300 BCI. 

Second, the order n used in P300 BCI is usually not 
large. If n is large, the computer screen will be cluttered 
with too many objects (characters or pictures). Due to 
insufficient space between neighboring objects, the 
performance of the P300 BCI system will degrade. 
Actually a multi-step selection procedure will be used when 
the user needs to select from a large number of objects [9]. 
For example, suppose 256 objects are available for 
selection. We divide these 256 objects into 16 disjoint 
groups, each containing 16 objects. To select a particular 
object, the user proceeds in two steps. In the first step, he is 
presented with 16 groups and selects the group that 
contains this object. In the second step, he is presented with 
16 objects in that group and selects this object. 

Third, similar to the method described in [6], our 
procedure of searching distance-constrained, orthogonal 

Latin square pairs can be easily parallelized to achieve 
near-linear speedup on multiple computers. 

Fourth, as will be shown in Section 3, exhaustive 
enumeration is often unnecessary. Usually through partial 
enumeration of simultaneous row or column permutations, 
we can quickly obtain a large number of orthogonal Latin 
square pairs satisfying the minimal distance constraint. 
These distance-constrained, orthogonal Latin square pairs 
are sufficient for the purpose of being used in P300 BCI. 
On the other hand, suppose we use a distance constraint 
that is much stricter than the minimal distance constraint 
and hence can be satisfied by very few orthogonal Latin 
square pairs. Then a lot of time may have to be spent on 
enumerating many orthogonal Latin square pairs through 
simultaneous row or column permutation, possibly using 
multiple seed orthogonal Latin square pairs. 

During our experiments, we notice that each orthogonal 
Latin square pair seems to have some inherent, distance-
related property. For example, if we cannot use a seed 
orthogonal Latin square pair to quickly (e.g., within two 
minutes) obtain any orthogonal Latin square pair satisfying 
the minimal distance constraint, then we are unlikely to 
find any orthogonal Latin square pair satisfying the 
minimal distance constraint even after all possible, 
simultaneous row or column permutations are exhausted. 
On the other hand, if we can use this seed orthogonal Latin 
square pair to quickly obtain a few orthogonal Latin square 
pairs satisfying the minimal distance constraint, then we are 
likely to find many orthogonal Latin square pairs satisfying 
the minimal distance constraint by exhausting all possible, 
simultaneous row or column permutations. 

One possible explanation of this phenomenon is as 
follows. For a seed orthogonal Latin square pair of order n, 
the corresponding search space includes the (n!)2 
orthogonal Latin square pairs obtained through 
simultaneous row or column permutation. A small 
difference in two permutations (e.g., the positions of two 
symbols are switched) can affect the neighboring 
relationships of many symbols in the two matrices of the 
orthogonal Latin square pair (e.g., two rows or columns are 
simultaneously switched). For the n symbols 1, 2, …, and 
n, we can enumerate all n! distinct permutations in a 
regular way. For example, first enumerate all n possibilities 
of the first element in the permutation, then enumerate all 
n-1 possibilities of the second element in the permutation, 
etc. Nevertheless, the resulting search in the search space is 
essentially performed in a “random” way by quickly 
jumping through dissimilar matrices whose contained 
symbols have dramatically different neighboring 
relationships. In a short amount of time, we can probe 
many scattered places of the search space. If no qualified 
orthogonal Latin square pair is found during this period, 
then the likelihood that the search space contains any 
qualified orthogonal Latin square pair would be low. 
Further investigation of the inherent, distance-related 
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property of orthogonal Latin square pairs seems to be non-
trivial and is an interesting area for future work. 

Our goal is to quickly construct enough distance-
constrained, orthogonal Latin square pairs for the purpose 
of P300 BCI, rather than find all possible distance-
constrained, orthogonal Latin square pairs. The above 
phenomenon suggests using a time-based heuristics to 
improve the efficiency of constructing distance-
constrained, orthogonal Latin square pairs. The idea is to 
quickly discard those seed orthogonal Latin square pairs 
that are unlikely to produce any distance-constrained, 
orthogonal Latin square pair. More specifically, we have a 
predetermined time threshold of m (e.g., m=2) minutes. If 
within this amount of time, we cannot use a seed 

orthogonal Latin square pair to obtain any orthogonal Latin 
square pair satisfying the minimal distance constraint, then 
we switch to a new seed orthogonal Latin square pair rather 
than keep trying with the old seed orthogonal Latin square 
pair. 

Fig. 7 shows the flow chart of constructing distance-
constrained, orthogonal Latin square pairs. The counter cS 
keeps track of the number of distance-constrained, 
orthogonal Latin square pairs that have been constructed 
from the seed orthogonal Latin square pair S. The search 
procedure stops when we have found enough (e.g., a few 
hundred) distance-constrained, orthogonal Latin square 
pairs for the purpose of P300 BCI. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Flow chart of constructing distance-constrained, orthogonal Latin square pairs. 

 
3. Experimental results 

 
We performed some experiments to demonstrate that 

many orthogonal Latin square pairs satisfying the minimal 

distance constraint can be systematically and efficiently 
constructed using the method described in Section 2. 26 
characters, 10 digits, and a few symbols require more than 
36 matrix cells but no more than 81 matrix cells. In this 
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section, we focus on Latin squares of order seven, eight, 
and nine, which represent the matrix sizes commonly used 
in P300 BCI. All used seed self-orthogonal Latin squares 
come from Burger et al. [6]. Our experiments were 
performed on a computer with two 3GHz processors, 2GB 
memory, and one 111GB disk.  

We first consider orthogonal Latin square pairs of order 
seven. As mentioned in Section 2, using the self-orthogonal 
Latin square in Fig. 3 and its transpose as the seed 
orthogonal Latin square pair, we can obtain 588 orthogonal 
Latin square pairs satisfying the minimal distance 
constraint. Some of these distance-constrained, orthogonal 
Latin square pairs are each composed of one self-
orthogonal Latin square and its transpose. One such 
distance-constrained, self-orthogonal Latin square is shown 
in Fig. 8. The enumeration of all possible, simultaneous 
row or column permutations is finished within one minute. 
 
 
 
 
 
 
 
 
 

Fig. 8 A self-orthogonal Latin square of order seven that 
satisfies the minimal distance constraint. 
 

Although we start from a self-orthogonal Latin square, 
the seed orthogonal Latin square pair does not have to be 
composed of a self-orthogonal Latin square and its 
transpose. For example, using simultaneous row or column 
permutation, any orthogonal Latin square pair obtained 
through simultaneous row or column permutation of a self-
orthogonal Latin square L and L’s transpose will produce 
the same set of orthogonal Latin square pairs as L and L’s 
transpose, as the composition of two permutations is still a 
permutation. 

 
 
 
 
 
 
 
 
 
 

Fig. 9 A self-orthogonal Latin square of order eight. 
 

Next, we consider orthogonal Latin square pairs of order 
eight. Fig. 9 shows a self-orthogonal Latin square of order 
eight. Using this self-orthogonal Latin square and its 
transpose as the seed orthogonal Latin square pair, we can 
obtain 55,296 orthogonal Latin square pairs satisfying the 
minimal distance constraint. One such distance-
constrained, orthogonal Latin square pair is shown in Fig. 

10. The enumeration of all possible, simultaneous row or 
column permutations is finished within one hour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 A pair of orthogonal Latin squares of order eight 
that satisfy the minimal distance constraint. 
 

 
 
 
 
 
 
 
 
 

Fig. 11 Another self-orthogonal Latin square of order eight. 
 
Not every orthogonal Latin square pair can be used as a 

seed to guarantee the construction of at least one 
orthogonal Latin square pair satisfying the minimal 
distance constraint. For example, the self-orthogonal Latin 
square shown in Fig. 11 and its transpose form an 
orthogonal Latin square pair, which cannot be used a seed 
to construct any orthogonal Latin square pair satisfying the 
minimal distance constraint. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 A self-orthogonal Latin square of order nine. 
 

Finally, we consider orthogonal Latin square pairs of 
order nine. Fig. 12 shows a self-orthogonal Latin square of 
order nine. Using this self-orthogonal Latin square and its 
transpose as the seed orthogonal Latin square pair, within 
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three hours we can obtain one million orthogonal Latin 
square pairs satisfying the minimal distance constraint. One 
such distance-constrained, orthogonal Latin square pair is 
shown in Fig. 13. Some of these distance-constrained, 
orthogonal Latin square pairs are each composed of one 
self-orthogonal Latin square and its transpose. One such 
distance-constrained, self-orthogonal Latin square is shown 
in Fig. 14. It takes two days to enumerate all possible, 
simultaneous row or column permutations to obtain the 
complete set of 13,716,864 orthogonal Latin square pairs 
satisfying the minimal distance constraint. This shows that 
early stopping via partial enumeration can be valuable, as 
hundreds of distance-constrained, orthogonal Latin square 
pairs should be sufficient for the purpose of being used in 
P300 BCI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 A pair of orthogonal Latin squares of order nine 
that satisfy the minimal distance constraint. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 A self-orthogonal Latin square of order nine that 
satisfies the minimal distance constraint. 
 

4. Conclusions 

 
Orthogonal Latin square pairs satisfying certain distance 

constraint can be used to increase both the classification 
accuracy and communication speed of the P300 BCI 
system. This paper shows that for every matrix size 
commonly used in P300 BCI, thousands to millions of such 
distance-constrained, orthogonal Latin square pairs can be 
systematically and efficiently constructed. A direction for 
future work is to investigate quantitatively the benefits that 
these distance-constrained, orthogonal Latin square pairs 
can bring to P300 BCI, particularly on ALS patients. 
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4 1 5 8 7 6 0 2 3 

5 8 2 6 0 1 3 4 7 

6 0 1 3 4 7 5 8 2 

8 7 6 0 2 3 4 1 5 

1 3 8 7 5 0 2 6 4 

2 6 4 1 3 8 7 5 0 

7 5 0 2 6 4 1 3 8 

3 4 7 5 8 2 6 0 1 

 

0 2 3 4 6 7 8 5 1 

4 1 5 8 3 2 0 6 7 

5 8 2 6 7 4 3 1 0 

6 0 1 3 2 8 5 7 4 

8 7 6 0 5 1 4 3 2 

1 3 8 7 4 6 2 0 5 

2 6 4 1 0 5 7 8 3 

7 5 0 2 8 3 1 4 6 

3 4 7 5 1 0 6 2 8 

 


