
1

A Roadmap for Automating Lineage Tracing to Aid Automatically Explaining Machine Learning
Predictions for Clinical Decision Support

Gang Luo, PhD
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union,
850 Republican Street, Building C, Box 358047, Seattle, WA 98195, USA
luogang@uw.edu

Corresponding author:
Gang Luo, PhD
Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union,
850 Republican Street, Building C, Box 358047, Seattle, WA 98195, USA
Phone: 1-206-221-4596
Fax: 1-206-221-2671
Email: luogang@uw.edu

2

Abstract
Using machine learning predictive models for clinical decision support has great potential to improve patient outcomes and

reduce healthcare costs. However, most machine learning models are black boxes that do not explain their predictions, forming
a barrier to clinical adoption. To overcome this barrier, we recently developed an automated method to provide rule-style
explanations of any machine learning model’s predictions on tabular data and to suggest customized interventions. Each
explanation delineates the association between a feature value pattern and an outcome value. Although the association and
intervention information is useful, the user of the automated explaining function often requires more detailed information to
better understand the patient’s situation and to aid decision making. More specifically, consider a feature value in the
explanation that is computed by an aggregation function on the raw data, such as the number of emergency department visits
related to asthma that the patient had in the prior 12 months. The user often wants to rapidly drill through to see certain parts
of the related raw data that produce the feature value. This task is frequently difficult and time-consuming because the few
pieces of related raw data are submerged by many pieces of raw data of the patient unrelated to the feature value. To address
this issue, this paper outlines an automated lineage tracing approach that adds automated drill-through capability to the
automated explaining function, providing a roadmap for future research.

Keywords: clinical decision support; database management systems; forecasting; machine learning

Introduction

Machine learning has won almost all data science competitions [1] and is a hot topic these days. It is about computer algorithms
that automatically learn from data, such as extreme gradient boosting, support vector machine, and random forest [2]. Using
machine learning predictive models for clinical decision support has great potential to improve patient outcomes and reduce
healthcare costs [3-10]. However, most machine learning models are black boxes that do not explain their predictions. This creates
a barrier to clinical adoption. To overcome this barrier, we recently developed an automated method to offer rule-style explanations
of any machine learning model’s predictions on tabular data and to suggest customized interventions without reducing the model’s
performance measures [11-14]. Each rule-style explanation delineates the association between a feature value pattern and an
outcome value. A feature is also called an independent variable. For the prediction of future emergency department (ED) visit or
inpatient stay for asthma on an asthma patient, 1 example explanation is:
 The patient had 2 ED visits related to asthma in the prior 12 months

AND the patient’s average respiratory rate recorded in the prior 12 months is >25 and ≤28 breaths per minute
 the patient will likely have at least 1 ED visit or inpatient stay for asthma in the next 12 months [13,14].

An ED visit is related to asthma if the ED visit has an asthma diagnosis code. For the item in the explanation showing that the
patient had 2 ED visits related to asthma in the prior 12 months, 1 intervention suggested by our method is to apply control
procedures that decrease the likelihood the patient will need emergency care.

The association and intervention information provided by our automatic explanation method for machine learning predictions
is useful. However, the user of the automated explaining function often requires more detailed information to better understand
the patient’s situation and to aid decision making. More specifically, consider a feature value on the left hand side of a rule-
style explanation that is computed by an aggregation function on the raw data. The user often wants to rapidly drill through to
see certain parts of the related raw data producing the feature value. In the context of a relational database, these parts refer to
the most relevant attributes of the most essential source tuples producing the feature value. Which attributes are most relevant
and which source tuples are most essential depend on both the concrete feature type and the clinical decision support
application’s need, and are illustrated by several examples throughout the paper. The patterns embedded in these parts could
provide additional information on the patient that was lost during the aggregation process to compute the feature value. This
drill-through task is frequently difficult and time-consuming because the few pieces of related raw data are submerged by many
pieces of raw data of the patient unrelated to the feature value. For example, as Table 1 shows, the list of encounters of an
asthma patient displayed on the standard interface of an electronic medical record system includes much information that is
irrelevant to the feature value “2 of the number of ED visits related to asthma that the patient had in the prior 12 months.”

Table 1. An example list of encounters of an asthma patient displayed on the standard interface of an electronic medical record
system. The grayed “Primary diagnosis” column does not show up on the standard interface. We include this column to help
the reader understand the discussion on it in the paper. The example list is made up based on a similar list we saw in real
electronic medical record data at the University of Washington Medicine. For the feature value “2 of the number of ED visits
related to asthma that the patient had in the prior 12 months,” the related rows in the list producing the feature value are marked
in italics. HMC stands for Harborview Medical Center. UWMC stands for University of Washington Medical Center.

Visit date Primary diagnosis Visit type Department Provider Facility
Dec-20-2020 Cough (R05) Outpatient HMC family medicine clinic John Smith HMC

3

Dec-18-2020 Dysphagia, unspecified (R13.10) Outpatient HMC family medicine clinic David Wong HMC
… … … … … …
Oct-15-2020 Cystitis, unspecified without

hematuria (N30.90)
Inpatient UWMC 8SE Leslie Hurdle UWMC

Oct-12-2020 Viral infection, unspecified (B34.9) Emergency HMC HEDUCC Patricia Sward HMC
Oct-09-2020 Dizziness and giddiness (R42) Outpatient HMC family medicine clinic Eve Johnson HMC
… … … … … …
Feb-11-2020 Post-traumatic stress disorder,

unspecified (F43.10)
Outpatient HMC psychotherapy clinic Amy Jiang HMC

Feb-08-2020 Syncope and collapse (R55) Emergency HMC HEDUCC Peter Shavlik HMC
Feb-03-2020 Headache, unspecified (R51.9) Outpatient HMC family medicine clinic Jude Lake HMC
… … … … … …

Table 2. For the example list shown in Table 1 and the feature value “2 of the number of ED visits related to asthma that the
patient had in the prior 12 months,” the parts that the user of the automated explaining function wants to see in the related raw
data producing the feature value. HMC stands for Harborview Medical Center.

Visit date Primary diagnosis Department Provider Facility
Oct-12-2020 Viral infection, unspecified (B34.9) HMC HEDUCC Patricia Sward HMC
Feb-08-2020 Syncope and collapse (R55) HMC HEDUCC Peter Shavlik HMC

For instance, in the rule-style explanation shown above, the first item on its left hand side is the feature value “2 of the

number of ED visits related to asthma that the patient had in the prior 12 months.” Asthma may or may not be the primary
diagnosis of either of these 2 visits. For this feature value, the user of the automated explaining function wants to see the
relevant parts of these 2 visits (visit date, primary diagnosis, department handling the visit, admitting provider, facility where
the visit occurred) in reverse chronological order (see Table 2), like the way encounters are displayed on the standard interface
of an electronic medical record system. The patterns embedded in these parts give additional information on the patient not
shown by the feature value, such as the time between these 2 visits, how long ago these 2 visits occurred, the primary diagnoses
of these 2 visits, and whether these 2 visits occurred at the same facility. However, finding these parts is non-trivial. As we
have seen in real electronic medical record data at the University of Washington Medicine, Intermountain Healthcare, and
Kaiser Permanente Southern California, the patient could have over 100 encounters in the prior 12 months. Only a few of these
encounters are ED visits, and even fewer of them are ED visits related to asthma. To find the ED visits of the patient in the
prior 12 months, the user would need some manual effort even if aided by the search function for the electronic medical record
system. To figure out which of these visits are related to asthma, a task with which the search function often cannot provide
much help, the user would need much more manual effort.

In practice, numerous possible features computed by various aggregation functions on all kinds of longitudinal attributes in
the electronic medical records could be used for predictive modeling and automatic explanation. Examples of such features
include whether the most recent asthma diagnosis of the patient is a primary diagnosis, the patient’s average respiratory rate
recorded in the prior 12 months, the total number of distinct asthma medications ordered for the patient in the prior 12 months,
the total number of units of asthma relievers that were ordered for the patient in the prior 12 months and were neither systemic
corticosteroids nor short-acting beta-2 agonists, the number of distinct asthma medication prescribers of the patient in the prior
12 months, and the number of no shows by the patient in the prior 12 months [13,14]. Most of the possible features are
unanticipated by the developers of the search function for the electronic medical record system beforehand. The search function
supports only a few fixed types of search. For only a small portion of possible features, the search function can aid drilling
through the raw data that produce a given feature value.

This creates a problem for the widespread adoption of our automatic explanation method for machine learning predictions.
Frequently, our method gives multiple rule-style explanations for a patient predicted to be at high risk of incurring a poor
outcome [11,12]. The user of the automated explaining function is typically a busy clinician having no time to do laborious
manual drill-through regularly. However, to better understand the patient’s situation and to make better clinical decisions, the
user often wants to drill through multiple feature values of the patient appearing in the explanations. If done manually, this is
a challenging task. A patient often has extensive records with numerous variables and hundreds of pages of content accumulated
over a long period of time [15]. Also, the relevant raw data producing the feature values are frequently scattered in several
places in the electronic medical record system.

This paper makes 2 contributions towards solving this problem:
1) We articulate this problem for the first time in the literature. This is done in the “Introduction” section.

4

2) To address this problem, we outline an automated lineage tracing approach that adds automated drill-through capability to
the automated explaining function, providing a roadmap for future research. This is done in the “An outline of our proposed
automated lineage tracing approach for explaining machine learning predictions for clinical decision support” and the
“Directions for future research” sections.

By offering the automated drill-through capability, we intend to help the user of the automated explaining function save time,
better understand the patient’s situation, and make better clinical decisions. To let the reader have a concrete feeling, our
discussion in this paper focuses on structured electronic medical record data, a specific method commonly used to build clinical
machine learning predictive models, and our automatic explanation method for machine learning predictions [11,12].
Nevertheless, our automated lineage tracing approach is not limited to them. Instead, when automatically explaining machine
learning predictions and after appropriate extension, the principle of our approach can be applied to facilitate drilling through
any feature value computed by an aggregation function on longitudinal structured data, regardless of whether the data come
from electronic medical records, whether the feature is specified by a human expert or semi-automatically extracted from
longitudinal data using the method outlined in our paper [16], which method is used to build the machine learning predictive
model, and which automatic explanation method is used.

Running Example

To illustrate our approach, we use a running example throughout this paper: automatically explaining the predictions of
future ED visits or inpatient stays for asthma on individual asthma patients. Our prior papers [12-14,17-19] detail this use case
and the features used to make predictions in it.

Base tables

Below are the schemas of 5 tables in a relational database used in the running example:
encounter (encounter_id, patient_id, encounter_type, admit_time, department, admitting_provider, facility, …),
diagnosis (encounter_id, dx_sequence_number, ICD_version, diagnosis_code, …),
diagnosis_code_master (ICD_version, diagnosis_code, dx_code_description, …),
ordered_medication (order_id, medication_id, patient_id, encounter_id, ordering_time, start_time, end_time, quantity,

dose_unit, refills, ordering_provider, …),
medication_master (medication_id, name, …).

The underlined fields mark the key of each table. The encounter table includes 1 row per encounter listing its information. The
diagnosis table includes 1 row per diagnosis code of an encounter. Primary diagnoses are signified by dx_sequence_number=1.
The diagnosis_code_master table includes 1 row per unique diagnosis code giving its description. The ordered_medication
table includes 1 row per medication appearing in a medication order. The medication_master table includes 1 row per unique
medication listing its information.

Intermediate result tables

Besides the above 5 base tables, we also use 4 intermediate result tables computed on the new data in the running example:
enc_features_1, enc_features_2, enc_features_3, and med_features_1. The trained machine learning predictive model is
applied to the new data to make predictions on individual patients.

The intermediate result table enc_features_1 contains 3 temporal features on encounters: the number of ED visits, the number
of inpatient stays, and the number of outpatient visits that the patient had in the prior 12 months. Let today_date denote today’s
date. enc_features_1 is computed from the encounter base table using the following Structured Query Language (SQL) query:

Q1: create table enc_features_1 as

select patient_id,
sum(case when encounter_type = 'emergency' then 1 else 0 end) as count_ED_visits,
sum(case when encounter_type = 'outpatient' then 1 else 0 end) as count_outpatient_visits,
sum(case when encounter_type = 'inpatient' then 1 else 0 end) as count_inpatient_stays

from encounter
where admit_time between today_date - 365 and today_date
group by patient_id;

The intermediate result table enc_features_2 contains 1 temporal feature on encounters: the number of outpatient visits with

a primary diagnosis of asthma that the patient had in the prior 12 months. Recall that the International Classification of Diseases,
Tenth Revision (ICD-10) diagnosis codes of asthma are J45.x. enc_features_2 is computed by joining the encounter and
diagnosis base tables using the following SQL query:

5

Q2: create table enc_features_2 as

select e.patient_id,
count(*) as count_outpatient_visits_for_asthma

from encounter e, diagnosis d
where e.encounter_id = d.encounter_id

and e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'outpatient'
and d.ICD_version = 'ICD10'
and d.diagnosis_code like 'J45.%'
and d.dx_sequence_number = 1
 -- primary diagnosis

group by e.patient_id;

The intermediate result table enc_features_3 contains 2 temporal features on encounters: the number of ED visits related to

asthma and the number of inpatient stays related to asthma that the patient had in the prior 12 months. enc_features_3 is
computed by joining the encounter and diagnosis base tables using the following SQL query:

Q3: create table enc_features_3 as

select e.patient_id,
sum(case when e.encounter_type = 'emergency' then 1 else 0 end) as count_ED_visits_related_to_asthma,
sum(case when e.encounter_type = 'inpatient' then 1 else 0 end) as count_inpatient_stays_related_to_asthma

from encounter e,
(select distinct encounter_id
from diagnosis
where ICD_version = 'ICD10'

and diagnosis_code like 'J45.%'
) e_id

where e.encounter_id = e_id.encounter_id
and e.admit_time between today_date - 365 and today_date

group by e.patient_id;

The intermediate result table med_features_1 contains 2 temporal features on medications: the total number of medications

and the total number of distinct medications ordered for the patient in the prior 12 months. med_features_1 is computed from
the ordered_medication base table using the following SQL query:

Q4: create table med_features_1 as

select patient_id,
count(*) as count_medications_ordered,
count(distinct medication_id) as count_distinct_medications_ordered

from ordered_medication
where ordering_time between today_date - 365 and today_date
group by patient_id;

Relational algebra operators

This paper uses the following relational algebra operators with the bag semantics unless otherwise specified: join ⋈, left
semijoin ⋉, selection σ, projection π, duplicate elimination δ, and grouping γ [20]. Commercial database management systems
implement relations using the bag semantics.

Review of a Typical Method to Build a Clinical Machine Learning Predictive Model and Our
Automated Method to Explain the Model’s Predictions

In this section, we review a typical method to build a machine learning predictive model on structured electronic medical
record data, as well as our automated method to explain the model’s predictions. In the next section, we outline our automated
lineage tracing approach based on these 2 methods.

6

A healthcare system usually has an enterprise data warehouse. It stores in a relational database a copy of the structured
electronic medical record data of the healthcare system, often after some transformations such as pivoting [21,22] and
denormalization to facilitate data analysis. For predictive modeling with automated explanation, the overall workflow is to
execute database SQL queries to extract features from the electronic medical record data, to build a machine learning predictive
model on the training data, to apply the model on new data to make predictions on individual patients, and then to use our
automated method to explain the predictions. In the following sections, we describe each of these steps sequentially.

Extracting features from the electronic medical record data and building the clinical machine learning
predictive model

The structured electronic medical record data contain both static attributes (e.g., gender) and longitudinal attributes (e.g.,
encounters and diagnoses). Most attributes are longitudinal. As Figure 1 shows, we perform the following operations on the
training data:
1) We compute static features from the static attribute values and store the results in 1 or more intermediate result tables.

Typically, each of these intermediate result tables is computed by running a select-project-join SQL query on 1 or more
base tables.

2) By aggregating longitudinal attribute values and sometimes also using some static attribute values, we compute the patient
cohort of interest in the training data and store the result in 1 intermediate result table. This is typically done by running a
complex SQL query on several base tables. An example patient cohort is the set of all asthma patients who visited any of
the facilities of the healthcare system during a specific time period.

3) By aggregating longitudinal attribute values, we compute temporal features and the outcome variable and store them in 1
or more intermediate result tables. Typically, each of these intermediate result tables is computed by running a select-
project-join-aggregate SQL query on 1 or more base tables. For example, 1 intermediate result table is similar to
enc_features_1 and contains multiple temporal features on encounters computed from the encounter base table. A second
intermediate result table is similar to enc_features_2 and contains multiple temporal features on encounters computed by
joining the encounter and diagnosis base tables. A third intermediate result table contains multiple temporal features on
medications computed by joining the ordered_medication and medication_master base tables, such as the total number of
distinct asthma medications and the total number of units of asthma medications ordered for the patient in the prior 12
months. As Figure 2 shows, the logical query plan for a select-project-join-aggregate query includes 1 or more select-
project-join-aggregate segments [23]. Each segment has a grouping or duplicate elimination operator at its end following
a bunch of join, selection, and projection operators.

Figure 1. The flow chart of building a clinical machine learning predictive model on the training data, making predictions on

the new data, and using our automated method to explain the model’s predictions.

Mine association rules

For the patient cohort of interest in the training data, merge all features
and the outcome variable and obtain the unified training data frame

Compile interventions for
feature-value pairs

Longitudinal attribute values

Construct the machine
learning predictive model

Make predictions on individual patientsLink interventions to rules

Explanations for the predictions Suggested customized interventions

Automated explaining function

Static attribute valuesStatic attribute values

Compute temporal
features and the outcome
variable via aggregation

Compute the patient
cohort of interest

Longitudinal attribute values

For the patient cohort of interest in the new data,
merge all features and obtain a unified data frame

Compute temporal
features via
aggregation

Compute
static features

Training data New data

Compute
static features

Compute the patient
cohort of interest

7

Figure 2. A logical query plan for the select-project-join-aggregate query Q3 given in the “Intermediate result tables” section.

By joining the intermediate result tables containing the patient cohort of interest, the static and temporal features, and the

outcome variable in the training data, we obtain a table containing the unified training data frame. For the patient cohort of
interest, this table includes 1 column for the outcome variable and a separate column for each feature. Then a machine learning
predictive model is trained on this table.

Applying the machine learning predictive model to the new data to make predictions on individual patients

As Figure 3 shows, using a procedure similar to the above, we compute the patient cohort of interest and the static and
temporal features in the new data and store the results in several intermediate result tables. By joining these tables, we obtain
a table containing the unified data frame for the new data. For the patient cohort of interest, this table includes a separate column
for each feature. We then apply the machine learning predictive model to this table to make predictions on individual patients.

Figure 3. The high-level logical query plan for computing the unified data frame that contains all features of the new data.

Automatically explaining the machine learning model’s predictions

At the same time of building the clinical machine learning predictive model, we use the training data to create the knowledge
base of the automated explaining function. We do automated discretization [24,25] to convert continuous features to categorical
features. Then we mine class-based association rules [24,26] from the unified training data frame. Each rule delineates the
association between a feature value pattern and a poor outcome value c, and is of the form

i1 AND i2 AND … AND it c.

σe.admit_time between today_date - 365 and today_date

diagnosis table

δ

πe.patient_id, e.encounter_type

γe.patient_id, sum(case when e.encounter_type = 'emergency' then 1 else 0 end), sum(case when e.encounter_type = 'inpatient' then 1 else 0 end)

σICD_version = 'ICD10' ˄ diagnosis_code like 'J45.%'

⋈e.encounter_id = e_id.encounter_id

πencounter_id

encounter table e

Intermediate
select-project-
join-aggregate
segment e_id

The last select-
project-join-

aggregate
segment

Intermediate
result table

enc_features_1
containing

several temporal
features on
encounters

⋈

Unified data frame containing all features of the new data

Intermediate
result table
showing the

patient
cohort of
interest in

the new data

Usually a
complex SQL
query on some

base tables

Intermediate
result table

enc_features_2
containing

several temporal
features on
encounters

Intermediate
result table

med_features_1
containing

several temporal
features on
medications

Intermediate
result table

med_features_2
containing

several temporal
features on
medications

Select-project-
join-aggregate
SQL query on

some base tables

… …

Intermediate
result table

containing the
static features

Select-project-
join SQL query
on some base

tables Select-project-
join-aggregate
SQL query on

some base tables

Select-project-
join-aggregate
SQL query on

some base tables

Select-project-
join-aggregate
SQL query on

some base tables

8

The rule shows that a patient satisfying i1, i2, …, and it tends to have outcome value c. The values of t and c can change across
rules. Each item ik (1≤k≤t) is a feature-value pair showing that a feature has a specific value or a value within a specific range.
One example item of the former is that the patient had 2 ED visits related to asthma in the prior 12 months. One example item
of the latter is that the patient’s average respiratory rate recorded in the prior 12 months is >25 and ≤28 breaths per minute. An
example rule containing both items is given in the Introduction.

For each feature-value pair item used to create association rules, we pre-compile 0 or more interventions. The interventions
pre-compiled for any item on a rule’s left hand side are automatically linked to the rule.

At prediction time, to avoid reducing the machine learning predictive model’s performance measures, we use the model’s
predictions with no change. The mined association rules are used to explain these predictions rather than to make predictions.
More specifically, for each patient the model predicts to have a poor outcome value, we find and display the rules with this
value on their right hand sides and whose left hand sides are fulfilled by the patient. Each rule offers 1 explanation for the
prediction. The interventions linked to the rule are displayed next to it as the suggested candidate interventions.

Our automatic explanation method for machine learning predictions has been successfully applied to multiple clinical
predictive modeling problems [11,12,27,28]. It has several advantages. Among all of the automatic explanation methods for
machine learning predictions in the literature [29,30], our method is the only one that can automatically suggest customized
interventions. The rule-style explanations given by our method are easier to comprehend than the non-rule-style explanations
given by many other methods. Unlike many other automatic explanation methods that either lower the machine learning
predictive model’s performance measures or work for only a specific machine learning algorithm, our method works for any
machine learning algorithm on tabular data without lowering the model’s performance measures. Unlike several other methods
that use rules computed at prediction time to offer explanations [31,32], our method uses rules mined before prediction time to
offer explanations. This is essential for our method to automatically suggest customized interventions at prediction time.

Review of the existing automated lineage tracing techniques

In this section, we review the existing automated lineage tracing techniques. We first give an overview of such techniques
developed in various fields. Then we review a specific set of automated lineage tracing techniques most closely related to this
work.

An overview of the existing automated lineage tracing techniques

The lineage, or provenance, of a given data item i refers to the source data items producing i and how i was derived [33].
The former is called where-lineage. The latter is called how-lineage. Each type of lineage can be at either the schema level or
the instance level. An example of where-lineage at the schema level is the set of base tables producing a specific materialized
view. An example of where-lineage at the instance level is the set of tuples in the base tables producing a given temporal feature
value in a materialized view. Lineage information can be computed in either an eager way or a lazy way. In the former case,
lineage information is computed and stored at the same time of producing the output data. In the latter case, lineage information
is computed when needed. This paper focuses on where-lineage that is at the instance level and computed in a lazy way.

Ikeda et al. surveyed existing lineage tracing techniques in databases [33,34], e-science [35], and scientific data processing
[36]. Among all of the lineage tracing techniques in the literature, the techniques Cui et al. [23,37] developed are the most
closely related to this work. These techniques are used to trace the lineage of a tuple in a materialized view [38] defined by a
select-project-join-aggregate query in a relational database. Cui et al. [39,40] described lineage tracing techniques for
warehouse data computed via a directed acyclic graph of transformations, some of which could involve complex procedural
code. Zhang et al. [41] described lineage tracing techniques for data computed by arbitrary functions. In general, the more
flexibility is allowed on the transformations or functions, the less efficiently lineage can be traced [39].

In big data systems, Ikeda et al. [42,43] described lineage tracing techniques for data computed via a directed acyclic graph
of map and reduce functions [44]. Amsterdamer et al. [45] described lineage tracing techniques for data computed using Pig
Latin [46].

In scientific data processing, lineage tracing is often done on curated databases, which contain scientific data copied from
other databases [36,47].

Schelter et al. [48] described a method to trace the schema-level lineage of the data sets, features, models, and predictions
produced in machine learning experiments.

Review of Cui et al.’s automated lineage tracing techniques [23,37] for relational databases

To automatically trace the lineage of a tuple t in a materialized view [38] defined by a select-project-join-aggregate query,
Cui et al. [23,37] proceed as follows. First, we transform the materialized view’s definition query into a canonical form of the
logical query plan. As Figure 2 shows, the canonical form includes 1 or more select-project-join-aggregate segments. Each
segment has 0 or 1 join operator, 0 or 1 selection operator, 0 or 1 projection operator, and a grouping or duplicate elimination

9

operator in this particular order. Second, we create an intermediate materialized view for each intermediate select-project-join-
aggregate segment of the canonical form. The root node of such a segment is not the root node of the canonical form. Third,
we recursively trace through the hierarchy of intermediate materialized views in a top-down way. At each level of the hierarchy,
we use the lineage tracing query for a 1-level select-project-join-aggregate materialized view to compute the current traced
tuples’ lineage with respect to each base table and each materialized view at the next lower level. For a 1-level select-project-
join-aggregate materialized view MV = γ(πA(σC(R1⋈R2⋈…⋈Rn))), the lineage of a tuple set T⊆MV with respect to the base
table or the materialized view Ri (1≤i≤n) is πRi(σC(R1⋈R2⋈…⋈Rn)⋉T). Here, the projection operator π on Ri has the set
semantics, making each selected tuple in Ri appear only once. Also, all attributes of Ri appear in the projection operator and
subsequently in the lineage traced on Ri. The final traced lineage of tuple t includes the lineage traced on every base table
appearing in the canonical form.

We use an example to illustrate Cui et al.’s [23,37] automated lineage tracing techniques. If we replace “create table
enc_features_3” by “create materialized view enc_features_3_view” in query Q3 given in the “Intermediate result tables”
section, we obtain a query Q3_v defining a materialized view enc_features_3_view. To trace the lineage of a tuple t in
enc_features_3_view whose patient_id is asthma_patient_id, we proceed as follows.

First, we obtain the canonical form of the logical query plan for query Q3_v. The canonical form is the same as the logical
query plan for query Q3 shown in Figure 2.

Second, we create an intermediate materialized view asthma_encounter_id for the intermediate select-project-join-aggregate
segment e_id shown in Figure 2:

Q5: create materialized view asthma_encounter_id as

select distinct encounter_id
from diagnosis
where ICD_version = 'ICD10'

and diagnosis_code like 'J45.%';

Figure 4 shows the resulting hierarchy of intermediate materialized views, with the materialized view enc_features_3_view at
the top and the encounter and diagnosis base tables at the bottom.

Figure 4. The hierarchy of intermediate materialized views matching the canonical form of the logical query plan for the

definition query of the materialized view enc_features_3_view.

Third, at the top level of the hierarchy of intermediate materialized views, we compute the lineage of tuple t with respect to
the encounter base table using the following SQL query:

Q6: select e.*

from encounter e
inner join asthma_encounter_id e_id

on e.encounter_id = e_id.encounter_id
where e.admit_time between today_date - 365 and today_date

and e.patient_id = asthma_patient_id;

Using the following SQL query, we compute the lineage of tuple t with respect to the intermediate materialized view

asthma_encounter_id and store the results in a temporary table temp:

Q7: create temporary table temp as
select e_id.*
from encounter e

inner join asthma_encounter_id e_id
on e.encounter_id = e_id.encounter_id

where e.admit_time between today_date - 365 and today_date

diagnosis table

encounter table Intermediate materialized view asthma_encounter_id

Materialized view enc_features_3_viewTop level

The second level

10

and e.patient_id = asthma_patient_id;

Fourth, at the second level of the hierarchy of intermediate materialized views, we compute the lineage of the tuples in the

temporary table temp with respect to the diagnosis base table using the following SQL query:

Q8: select d.*
from diagnosis d

inner join temp t
on d.encounter_id = t.encounter_id

where d.ICD_version = 'ICD10'
and d.diagnosis_code like 'J45.%';

The final traced lineage of tuple t includes both the results of query Q6 and the results of query Q8.

An Outline of Our Proposed Automated Lineage Tracing Approach for Explaining Machine
Learning Predictions for Clinical Decision Support

In this section, we outline an automated lineage tracing approach that adds automated drill-through capability to the
automated explaining function. Our presentation includes 4 subsections. In the first subsection, we give an overview of the
lineage tracing component of the automated explaining function. In the second subsection, we point out the unique requirements
on automated lineage tracing for automatically explaining machine learning predictions for clinical decision support. In the
third subsection, we outline our proposed automated lineage tracing techniques fulfilling these requirements. In the fourth
subsection, we present some considerations for future computer coding implementation of our proposed lineage tracing
approach.

An overview of the lineage tracing component of the automated explaining function

At association rule mining time, we already know all feature-value pair items used to create association rules, as well as
which items involve temporal features computed by aggregation functions on the raw data. For each item that is related to a
temporal feature of a patient and on the left hand side of a rule, we add a hyperlink to the item in the rule. In addition, we write
a parameterized stored procedure for the item in the database to retrieve lineage information. The stored procedure typically
has 2 parameters: the patient_id of the patient being examined and the endpoint of the temporal aggregation period, such as
today. When the stored procedure is run for the first time, an execution plan is generated. All subsequent runs will use the same
execution plan to avoid runtime query optimization overhead.

At automatic explanation time, we allow the user of the automated explaining function to do lineage tracing for any item that
is on the left hand side of a rule-style explanation and related to a temporal feature value. When the user clicks the item’s
hyperlink, the stored procedure pre-written for the item is invoked to retrieve some pre-specified parts of the related raw data
producing the feature value. Except for the cases with 2 specific aggregation functions described later in the paper, the retrieved
data instances are always displayed on a page in reverse chronological order like that in the electronic medical records.

The unique requirements on automated lineage tracing for automatically explaining machine learning
predictions for clinical decision support

Typically, the user of the automated explaining function is a clinician. To fit the user’s busy schedule and to aid timely
decision making, the user wants the lineage tracing process for a temporal feature value to be finished quickly, preferably
within 1 second. This goal is partially fulfilled by the existing lineage tracing techniques [23,37], whereas the realized lineage
tracing speed can be further improved. In addition, the retrieved lineage information should be easy to scan and include the
most essential content needed to facilitate decision making. This enables the user to quickly gain useful insights from the
information, ideally within 1 or a few seconds. As summarized in Table 3, that goal translates to 5 unique requirements on
automated lineage tracing that are unmet by the existing lineage tracing techniques.

Table 3. The 5 unique requirements on automated lineage tracing for automatically explaining machine learning predictions
for clinical decision support.

Requirement Reason for posing the requirement
#1: Retrieving only a small set of attributes To prevent the user from being overwhelmed by many

non-essential or irrelevant attributes
#2: Adding some essential attributes that do not directly produce the
feature value

To make the retrieved lineage information include the
most essential content

11

#3: Sorting the retrieved lineage information in an appropriate order To make the retrieved lineage information easy to scan
#4: Computing the lineage information based on the semantic
meaning of the feature

To avoid including irrelevant or non-essential source
tuples in the retrieved lineage information

#5: Performing no lineage tracing for any healthcare system feature
value computed by an aggregation function

To avoid including irrelevant data in the retrieved
lineage information

Requirement 1: When tracing the lineage of a temporal feature value, we should retrieve
from the base tables only a small set of attributes specific to the temporal feature
rather than the many attributes involved in deriving all of the features used for
automated explanation.

We pose this requirement to prevent the user of the automated explaining function from being overwhelmed by many non-
essential or irrelevant attributes. To aid automatic explanation, we want to allow tracing the lineage of a temporal feature value
in the form of a small set of attributes specific to the temporal feature (see Table 2 for an example). This cannot be well done
using Cui et al.’s lineage tracing techniques [23,37]. These techniques were developed to trace the lineage of a tuple including
all of its attribute values in a select-project-join-aggregate materialized view in a relational database. If the retrieved lineage
information ever touches a tuple in a base table, all attribute values of the tuple are included in this information. For automatic
explanation, both factors would cause the retrieved lineage information to have an excessive volume, overwhelming the user
of the automated explaining function.

To see this, we review the process of making predictions with automatic explanations. Usually, many features are used to
make predictions and to automatically explain them. All of the items on the left hand side of a rule-style explanation come from
the same tuple in the unified data frame, which contains all features of the new data. As Figure 3 shows, this unified data frame
is obtained by joining many intermediate result tables. Each of them falls into 1 of 3 categories: 1) a table containing the patient
cohort of interest in the new data, 2) a table containing 1 or more static features, and 3) a table containing 1 or more temporal
features. Each hyperlinked item on the left hand side of a rule-style explanation comes from exactly 1 intermediate result table
in the third category.

When the user of the automated explaining function clicks the hyperlink for an item on the left hand side of a rule-style
explanation, one could use Cui et al.’s techniques [23,37] to trace the lineage of the tuple in the unified data frame, from which
the item comes. For each intermediate result table mentioned above and each base table used to create it, the retrieved lineage
information contains some tuples from the base table including all of their attribute values. Most of the retrieved lineage
information is unnecessary for automatic explanation for 3 reasons.

Reason 1

The retrieved lineage information often includes thousands of tuples from several dozen base tables. Most of these base
tables are used to compute the other feature values in the tuple in the unified data frame that are unrelated to the item, and
include no information that can help the user of the automated explaining function gain useful insights related to the item. In
fact, to obtain the lineage information of the item essential for automatic explanation, we need to only trace through the
intermediate result table related to the item solely for the item and to examine the base tables used to create this table. The
features in this table that are unrelated to the item can be ignored. There is also no need to trace through the intermediate result
tables containing the features unrelated to the item. Moreover, at automatic explanation time, we know the patient_id of the
patient linked to the item. The user usually does not need to know why this patient is in the patient cohort of interest in the new
data. Thus, there is no need to trace through the intermediate result table showing the patient cohort.

Reason 2

A base table often has many attributes, only a few of which are essential for the user of the automated explaining function to
gain useful insights related to the item. For instance, the encounter table often has >100 attributes. The lineage information
shown in Table 2 covers only 4 of them: admit_time transformed to the date format, department, admitting_provider, and
facility.

Reason 3

Certain items are each computed using several base tables and intermediate query results. For the user of the automated
explaining function to gain useful insights related to the item, only the attributes and tuples of some of these base tables are
essential. Alternatively, none or only some of these intermediate query results need to be traced through.

For example, in query Q2 given in the “Intermediate result tables” section, both the encounter and diagnosis base tables are
used to compute the feature “the number of outpatient visits with a primary diagnosis of asthma that the patient had in the prior
12 months.” For a value of this feature, we need to use the information in the diagnosis table to find the related tuples in the
encounter table. Nevertheless, the user would expect each encounter shown in the retrieved lineage information to be an

12

outpatient visit with a primary diagnosis of asthma. Thus, there is no need to include any attribute or tuple from the diagnosis
table in the retrieved lineage information, e.g., to give the primary diagnosis of each encounter included in that information.

As a second example, in query Q3 given in the “Intermediate result tables” section, both the encounter base table and the
intermediate query result e_id are used to compute the feature “the number of ED visits related to asthma that the patient had
in the prior 12 months.” For a value of this feature, the user of the automated explaining function would expect each encounter
shown in the retrieved lineage information to be an ED visit related to asthma, like that shown in Table 2. Thus, there is no
need to trace through e_id and to obtain the corresponding tuples in the diagnosis table showing that each encounter included
in the retrieved lineage information has an asthma diagnosis code.

Requirement 2: For certain temporal features, when acquiring the lineage of a feature
value, we should not use just the related raw data that directly produce the feature
value. Instead, we need to add to them some related attributes in the base tables,
which are specific to the temporal feature and do not directly produce the feature
value.

We pose this requirement to make the retrieved lineage information include the most essential content needed to facilitate
decision making. For example, as query Q1 given in the “Intermediate result tables” section shows, the feature “the number of
ED visits that the patient had in the prior 12 months” is computed solely from the encounter base table. For a value of this
feature, we want the retrieved lineage information to be similar to that shown in Table 2 and include a primary diagnosis
column. This column is computed using the diagnosis and diagnosis_code_master base tables unused in Q1, and is formed by
concatenating the diagnosis_code and dx_code_description columns of the diagnosis_code_master base table. The cases for
many other temporal features on encounters are similar.

Requirement 3: When presenting the lineage information, the related raw data retrieved
for a temporal feature value should be sorted in an order specific to the temporal
feature.

We pose this requirement to make the retrieved lineage information easy to scan. Usually, we want the data instances in the
retrieved lineage information to be displayed in reverse chronological order like that in the electronic medical records. However,
there are 2 exceptions. First, when the temporal feature is the maximum value of an attribute of a given patient, we want the
related raw data retrieved for a feature value to be displayed in descending order of the attribute value. For example, for the
feature “the highest systolic blood pressure of the patient in the prior 12 months,” we want the lineage information retrieved
for a feature value to contain the systolic blood pressures of the patient in the prior 12 months sorted in descending order.
Second, when the temporal feature is the minimum value of an attribute of a given patient, we want the related raw data retrieved
for a feature value to be displayed in ascending order of the attribute value. In either of the 2 cases, we could add a re-sort
button to the retrieved lineage information on display. If the user of the automated explaining function clicks this button, the
data instances in the retrieved lineage information are re-arranged in reverse chronological order for display.

Requirement 4: The lineage information of a temporal feature value should be computed
based on the semantic meaning of the feature rather than solely on the literal writing
of the SQL query used to compute the feature.

We pose this requirement to avoid including irrelevant or non-essential source tuples in the retrieved lineage information.
For a select-project-join-aggregate materialized view containing 1 or more temporal features, Cui et al. [23,37] compute the
lineage of a tuple in it based solely on the literal SQL query used to define it. In certain cases, this literal approach is suboptimal
for automatic explanation. Instead, we should consider the semantic meanings of the temporal features during lineage tracing.
In the following, we describe 2 such cases, each presented as a sub-requirement.

Sub-requirement 4.1: When the temporal feature is the sum of a variable computed by a case statement in SQL including
multiple conditions and some of them return 0, we should retrieve only the lineage information related to the other conditions.

In SQL, such a temporal feature is written in the form of
sum(case when condition1 then result1

when condition2 then result2
…
when conditionn then resultn
else resultn+1

end).

13

As an example of this sub-requirement, for the feature “the number of ED visits that the patient had in the prior 12 months,”
the lineage information retrieved for a value of the feature should be the ED visits that the patient had in the prior 12 months,
regardless of whether the feature is computed using SQL query Q9 or Q10 below:

Q9: select patient_id,

sum(case when encounter_type = 'emergency' then 1 else 0 end) as count_ED_visits
from encounter
where admit_time between today_date - 365 and today_date
group by patient_id;

Q10: select patient_id,

sum(1) as count_ED_visits
 -- sum(1) can be replaced by count(*)

from encounter
where admit_time between today_date - 365 and today_date

and encounter_type = 'emergency'
group by patient_id;

The differences between Q9 and Q10 are highlighted in italics in Q10. If the feature is computed using Q9, Cui et al.’s techniques
[23,37] would retrieve all encounters of the patient in the prior 12 months as the lineage information. This could easily
overwhelm the user of the automated explaining function, as usually most of these encounters are not ED visits.

Sub-requirement 4.2: When the temporal feature is the total number of distinct items, the retrieved lineage information should
include only 1 representative data instance for each distinct item.

For example, query Q4 given in the “Intermediate result tables” section computes the feature “the total number of distinct
medications ordered for the patient in the prior 12 months.” For a value of this feature, Cui et al.’s techniques [23,37] would
retrieve all medications ordered for the patient in the prior 12 months as the lineage information. This information is often
overwhelming and not succinct enough for the user of the automated explaining function to quickly find the distinct medications
ordered for the patient in the prior 12 months, as the same medication could be ordered for the patient multiple times in a year.
To avoid this problem, we could retrieve only the most recent order of each distinct medication ordered for the patient in the
prior 12 months as the lineage information. For the user, these distinct medications typically provide enough insight into the
patient’s status related to the feature value.

Requirement 5: We do not trace the lineage of any healthcare system feature value
computed by an aggregation function.

We pose this requirement to avoid including irrelevant data in the retrieved lineage information. Like temporal features of a
patient, certain healthcare system features [17-19], such as the number of asthma patients of the primary care provider of a
patient, are computed by aggregation functions. These healthcare system features are each computed using multiple patients’
information rather than solely the information of the patient being examined. Since other patients’ detailed information does
not help the user of the automated explaining function understand this patient’s situation, we do not trace the lineage of any
value of this feature, even if it appears on the left hand side of a rule-style explanation.

An outline of our proposed techniques to form the lineage tracing query that computes the lineage
information

To perform automated lineage tracing for explaining machine learning predictions for clinical decision support, we modify
Cui et al.’s lineage tracing techniques [23,37] to fulfill the requirements mentioned above. Even without giving any detail on
the computer coding implementation and the performance evaluation results, Cui et al. [37] already took 49 pages to describe
the details of their automated lineage tracing algorithm. Our case is more complex than Cui et al.’s case [37]. In our case, which
attributes are most relevant and which source tuples are most essential for inclusion in the retrieved lineage information depend
on both the concrete feature type and the clinical decision support application’s need. In comparison, no such dependency exists
in Cui et al.’s case [37]. Thus, we expect that, once fully worked out, our automated lineage tracing algorithm would be more
sophisticated than Cui et al.’s algorithm [37]. In this viewpoint paper, we do not intend to enumerate all possible feature types
and provide a detailed design or any computer coding implementation of our proposed automated lineage tracing approach.
Rather, our goal is to describe the design approach for our proposed automated lineage tracing module and provide a roadmap
for future research. We achieve this goal by outlining the main steps of forming the lineage tracing query, giving 4 example
temporal features, and illustrating at a high level how to form the lineage tracing query for each of these 4 features.

14

An overview of the lineage tracing query formation process

Usually, each intermediate result table shown in Figure 3 has a patient_id column. It is used as the join column in the join
operation to produce the unified data frame containing all features of the new data. As explained in “Reason 1” of the
“Requirement 1” section, to obtain the lineage information of a temporal feature value, we need to only trace through the
intermediate result table containing this value solely for this value. This intermediate result table is usually computed from
some base tables by using a select-project-join-aggregate SQL query S0. To form the lineage tracing query for a temporal
feature value of a patient in the intermediate result table, we proceed in 4 steps. First, we remove the other temporal features,
if any, from S0 and obtain a simplified query S1. Second, if applicable, we transform S1 to query S2 to fulfill Sub-requirement
4.1. Third, we modify Cui et al.’s techniques [23,37] to address Reasons 2 and 3 given in the “Requirement 1” section. Using
the modified techniques, we form a preliminary lineage tracing query S3 based on S2 and the patient’s patient_id. Fourth, we
transform S3 to fulfill Requirements 2 and 3 and Sub-requirement 4.2 and obtain the final lineage tracing query.

In the following, we use 4 examples to illustrate at a high level how to form the lineage tracing query. In each example, the
user of the automated explaining function is examining an asthma patient whose identifier is asthma_patient_id, and wants to
drill through a temporal feature value of this patient. We outline the main steps of forming the lineage tracing query for the
feature value without giving the detailed algorithm.

Example 1: The number of ED visits that the patient had in the prior 12 months

As defined by query Q1 in the “Intermediate result tables” section, the intermediate result table enc_features_1 contains 3
temporal features. One of them is the number of ED visits that the patient had in the prior 12 months. To form the lineage
tracing query for a value of this feature, we proceed as follows.

First, we remove the other 2 features from query Q1 and obtain query Q9 given in the “Sub-requirement 4.1” section.
Second, to fulfill Sub-requirement 4.1 on handling the sum of a variable computed by a case statement, we transform query

Q9 to query Q10 given in the “Sub-requirement 4.1” section.
Third, using Cui et al.’s lineage tracing techniques [23,37], we form a draft lineage tracing query Q11 based on Q10 and

asthma_patient_id:

Q11: select *
from encounter
where admit_time between today_date - 365 and today_date

and encounter_type = 'emergency'
and patient_id = asthma_patient_id;

The differences between Q10 and Q11 are highlighted in italics in Q11. To address Reason 2 given in the “Requirement 1” section
and retrieve from the encounter table only its attributes essential for automatic explanation, we transform Q11 to the following
preliminary lineage tracing query:

Q12: select cast(admit_time as date) as visit_date, department, admitting_provider, facility

from encounter
where admit_time between today_date - 365 and today_date

and encounter_type = 'emergency'
and patient_id = asthma_patient_id;

The differences between Q11 and Q12 are highlighted in italics in Q12.

Fourth, to fulfill Requirement 2, we need to add a primary diagnosis column to the raw data that are retrieved by query Q12
and directly produce the feature value being examined. To fulfill Requirement 3, we need to sort the retrieved raw data in
reverse chronological order. To meet both demands, we transform Q12 to the following final lineage tracing query:

Q13: select cast(e.admit_time as date) as visit_date,

case when m.diagnosis_code is null then null
else m.dx_code_description || '(' || m.diagnosis_code || ')'
end as primary_diagnosis,

e.department, e.admitting_provider, e.facility
from encounter e

left outer join diagnosis d
 on e.encounter_id = d.encounter_id

15

left outer join diagnosis_code_master m
on d.diagnosis_code = m.diagnosis_code

and d.ICD_version = m.ICD_version
where e.admit_time between today_date - 365 and today_date

and e.encounter_type = 'emergency'
and e.patient_id = asthma_patient_id
and d.dx_sequence_number = 1

-- primary diagnosis
order by e.admit_time desc;

The differences between Q12 and Q13 are highlighted in italics in Q13. || is the string concatenation operator in SQL.

Example 2: The number of outpatient visits with a primary diagnosis of asthma that
the patient had in the prior 12 months

As defined by query Q2 in the “Intermediate result tables” section, the intermediate result table enc_features_2 contains the
temporal feature “the number of outpatient visits with a primary diagnosis of asthma that the patient had in the prior 12 months.”
To form the lineage tracing query for a value of this feature, we proceed as follows.

First, to address Reason 2 given in the “Requirement 1” section, we should include from the encounter table only its attributes
essential for automatic explanation. To address Reason 3 given in the “Requirement 1” section, we should include no attribute
or tuple from the diagnosis table in the retrieved lineage information. Using a modified version of Cui et al.’s lineage tracing
techniques [23,37] that meets both demands, we form a preliminary lineage tracing query Q14 based on query Q2 and
asthma_patient_id:

Q14: select cast(e.admit_time as date) as visit_date,

e.department, e.admitting_provider, e.facility
from encounter e, diagnosis d
where e.encounter_id = d.encounter_id

and e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'outpatient'
and d.ICD_version = 'ICD10'
and d.diagnosis_code like 'J45.%'
and d.dx_sequence_number = 1
 -- primary diagnosis
and e.patient_id = asthma_patient_id;

The differences between Q2 and Q14 are highlighted in italics in Q14.

Second, to fulfill Requirement 3 of sorting the related raw data retrieved for the feature value in reverse chronological order,
we transform query Q14 to the following final lineage tracing query:

Q15: select cast(e.admit_time as date) as visit_date,

e.department, e.admitting_provider, e.facility
from encounter e, diagnosis d
where e.encounter_id = d.encounter_id

and e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'outpatient'
and d.ICD_version = 'ICD10'
and d.diagnosis_code like 'J45.%'
and d.dx_sequence_number = 1
 -- primary diagnosis
and e.patient_id = asthma_patient_id

order by e.admit_time desc;

The differences between Q14 and Q15 are highlighted in italics in Q15.

16

Example 3: The number of ED visits related to asthma that the patient had in the prior
12 months

As defined by query Q3 in the “Intermediate result tables” section, the intermediate result table enc_features_3 contains 2
temporal features. One of them is the number of ED visits related to asthma that the patient had in the prior 12 months. To form
the lineage tracing query for a value of this feature, we proceed as follows.

First, we remove the other feature from query Q3 and obtain the following simplified query:

Q16: select e.patient_id,
sum(case when e.encounter_type = 'emergency' then 1 else 0 end) as count_ED_visits_related_to_asthma

from encounter e,
(select distinct encounter_id
from diagnosis
where ICD_version = 'ICD10'

and diagnosis_code like 'J45.%'
) e_id

where e.encounter_id = e_id.encounter_id
and e.admit_time between today_date - 365 and today_date

group by e.patient_id;

Second, to fulfill Sub-requirement 4.1 on handling the sum of a variable computed by a case statement, we transform query

Q16 to the following query:

Q17: select e.patient_id,
sum(1) as count_ED_visits_related_to_asthma

from encounter e,
(select distinct encounter_id
from diagnosis
where ICD_version = 'ICD10'

and diagnosis_code like 'J45.%'
) e_id

where e.encounter_id = e_id.encounter_id
and e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'emergency'

group by e.patient_id;

The differences between Q16 and Q17 are highlighted in italics in Q17.
Third, to address Reason 2 given in the “Requirement 1” section, we should include from the encounter table only its

attributes essential for automatic explanation. To address Reason 3 given in the “Requirement 1” section, we should not trace
through the intermediate query result e_id and include any corresponding tuple in the diagnosis table in the retrieved lineage
information. Using a modified version of Cui et al.’s lineage tracing techniques [23,37] that meets both demands, we form a
preliminary lineage tracing query Q18 based on query Q17 and asthma_patient_id:

Q18: select cast(e.admit_time as date) as visit_date,

e.department, e.admitting_provider, e.facility
from encounter e

inner join (select distinct encounter_id
from diagnosis
where ICD_version = 'ICD10'

and diagnosis_code like 'J45.%'
) e_id

on e.encounter_id = e_id.encounter_id
where e.admit_time between today_date - 365 and today_date

and e.encounter_type = 'emergency'
and e.patient_id = asthma_patient_id;

The differences between Q17 and Q18 are highlighted in italics in Q18.

17

Applying Cui et al.’s lineage tracing techniques [23,37,49] to query Q3, we create a materialized view asthma_encounter_id
defined by query Q5 in the “Review of Cui et al.’s automated lineage tracing techniques [23,37] for relational databases”
section. Using asthma_encounter_id, we rewrite the preliminary lineage tracing query Q18 as

Q19: select cast(e.admit_time as date) as visit_date,

e.department, e.admitting_provider, e.facility
from encounter e

inner join asthma_encounter_id e_id
on e.encounter_id = e_id.encounter_id

where e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'emergency'
and e.patient_id = asthma_patient_id;

The differences between Q18 and Q19 are highlighted in italics in Q19.

Fourth, to fulfill Requirement 2, we need to add a primary diagnosis column to the raw data that are retrieved by query Q19
and directly produce the feature value being examined. To fulfill Requirement 3, we need to sort the retrieved raw data in
reverse chronological order. To meet both demands, we transform Q19 to the following final lineage tracing query:

Q20: select cast(e.admit_time as date) as visit_date,

case when m.diagnosis_code is null then null
else m.dx_code_description || '(' || m.diagnosis_code || ')'
end as primary_diagnosis,

e.department, e.admitting_provider, e.facility
from encounter e

inner join asthma_encounter_id e_id
on e.encounter_id = e_id.encounter_id

left outer join diagnosis d
 on e.encounter_id = d.encounter_id

left outer join diagnosis_code_master m
on d.diagnosis_code = m.diagnosis_code and d.ICD_version = m.ICD_version

where e.admit_time between today_date - 365 and today_date
and e.encounter_type = 'emergency'
and e.patient_id = asthma_patient_id
and d.dx_sequence_number = 1

-- primary diagnosis
order by e.admit_time desc;

The differences between Q19 and Q20 are highlighted in italics in Q20.

Example 4: The total number of distinct medications ordered for the patient in the
prior 12 months

As defined by query Q4 in the “Intermediate result tables” section, the intermediate result table med_features_1 contains 2
temporal features. One of them is the total number of distinct medications ordered for the patient in the prior 12 months. To
form the lineage tracing query for a value of this feature, we proceed as follows.

First, we remove the other feature from query Q4 and obtain the following simplified query:

Q21: select patient_id,
count(distinct medication_id) as count_distinct_medications_ordered

from ordered_medication
where ordering_time between today_date - 365 and today_date
group by patient_id;

Second, to address Reason 2 given in the “Requirement 1” section, we should include from the ordered_medication table

only its attributes essential for automatic explanation. Using a modified version of Cui et al.’s lineage tracing techniques [23,37]
that meets this demand, we form a preliminary lineage tracing query Q22 based on query Q21 and asthma_patient_id:

18

Q22: select medication_id, ordering_time, quantity, dose_unit, refills, ordering_provider, end_time
from ordered_medication
where ordering_time between today_date - 365 and today_date

and patient_id = asthma_patient_id;

The differences between Q21 and Q22 are highlighted in italics in Q22.

Third, to fulfill Sub-requirement 4.2, we could retrieve only the most recent order of each distinct medication ordered for the
patient in the prior 12 months as the lineage information. This is done by transforming query Q22 to the following query:

Q23: select medication_id, ordering_time, quantity, dose_unit, refills, ordering_provider, end_time

from (select medication_id, ordering_time, quantity, dose_unit, refills, ordering_provider, end_time,
row_number() over(partition by medication_id order by ordering_time desc) as row_sequence_number

from ordered_medication
where ordering_time between today_date - 365 and today_date

and patient_id = asthma_patient_id
) b

where row_sequence_number = 1;

The differences between Q22 and Q23 are highlighted in italics in Q23.

Fourth, to fulfill Requirement 2, we add a medication name column to the raw data that are retrieved by query Q23 and directly
produce the feature value being examined. To fulfill Requirement 3, we sort the retrieved raw data in reverse chronological
order. To meet both demands, we transform Q23 to the following final lineage tracing query:

Q24: select o.ordering_time, m.name as medication_name, o.quantity, o.dose_unit, o.refills, o.ordering_provider, o.end_time

from (select medication_id, ordering_time, quantity, dose_unit, refills, ordering_provider, end_time
from (select medication_id, ordering_time, quantity, dose_unit, refills, ordering_provider, end_time,

row_number() over(partition by medication_id order by ordering_time desc) as
row_sequence_number

from ordered_medication
where ordering_time between today_date - 365 and today_date

and patient_id = asthma_patient_id
) b

where row_sequence_number = 1
) o,
medication_master m

where o.medication_id = m.medication_id
order by o.ordering_time desc;

The differences between Q23 and Q24 are highlighted in italics in Q24.

Some considerations for future computer coding implementation of our proposed automated lineage
tracing approach
Maximizing the automation degree of the lineage tracing query formation process

For a select-project-join-aggregate materialized view, Cui et al. [23,37] used a fully automated approach to analyze its
definition query to derive a lineage tracing query for a tuple in it. In our case of automatically explaining machine learning
predictions, all temporal features used for making predictions and automatic explanation are known at machine learning model
building time. In general, for each temporal feature, we can form a lineage tracing query either manually or semi-automatically,
but often not fully automatically, beforehand. Nevertheless, once the query is formed and put into the knowledge base of the
automated explaining function, we can use the query to automatically retrieve the lineage information of a value of the feature
at prediction time.

As mentioned before, automatic explanation poses several unique requirements on automated lineage tracing. Two of them
make it difficult to fully automate the lineage tracing query formation process. First, Requirement 1 says that the lineage
information retrieved for a temporal feature value should include only a small set of relevant attributes specific to the temporal
feature. Almost infinite attributes and temporal features could possibly be used for clinical machine learning. Thus, it is
infeasible to pre-compile the set of relevant attributes for every possible temporal feature. Second, Requirement 2 says that
when acquiring the lineage of a value for certain temporal features, we need to include some attributes that are specific to the

19

temporal feature and do not directly produce the feature value. For a reason similar to the above, it is infeasible to pre-compile
the set of such attributes for every possible such temporal feature.

Although we cannot fully automate the lineage tracing query formation process in the most general case, we can still use 2
methods to maximize the process’ automation degree and reduce the workload of the developers of the automated explaining
function. First, for a temporal feature, we can use an approach similar to that in Cui et al. [23,37] to automatically form a draft
lineage tracing query. The developers of the automated explaining function revise this query as needed to obtain the final
lineage tracing query. Second, the same temporal feature is often used for multiple predictive modeling tasks. We can create a
library of lineage tracing queries for temporal features to facilitate query reuse across various predictive modeling tasks. This
library is formed for a data set in the Observational Medical Outcomes Partnership (OMOP) common data model format [50]
using its linked standardized terminologies [51]. This format standardizes administrative and clinical variables from ≥10 large
U.S. healthcare systems [52,53]. For any data set that is put into this format, we can use this library to obtain lineage tracing
queries.

Improving the lineage tracing speed

As mentioned before, the user of the automated explaining function wants the lineage tracing process for a temporal feature
value to be finished quickly, preferably within 1 second. To expedite tracing the lineage of a tuple in a materialized view
defined by a select-project-join-aggregate query S, Cui et al. [23,37,49] advocated creating a materialized view for each
intermediate select-project-join-aggregate segment of the canonical form of the logical query plan for S. While this boosts the
lineage tracing speed, the resulting speed is still not fast enough to reach a sub-second response time [23,39]. To further improve
the lineage tracing speed, we can build indices [39,42] on the selection and join attributes of both the base tables and the
materialized views created for the intermediate select-project-join-aggregate segments. For instance, in Example 3, we can
build 1 index on the encounter_id column of the materialized view asthma_encounter_id, and another index on the patient_id
column of the encounter base table. We can create indices either manually or by using an automated index design tool provided
by a commercial relational database system [54-56]. Typically, each intermediate result table containing 1 or more temporal
features is computed on 1 or a few base tables using no more than a small number of join operations. The lineage tracing query
for a temporal feature value falls into a similar case. Thus, with appropriate indices, we would expect the lineage tracing query
to finish execution quickly. For base tables of moderate sizes and simple materialized views, Cui and Widom [39] showed that
lineage tracing can be done within 1 second when indices exist on the keys of the base tables. For large base tables and temporal
features computed through more complex procedures, we would expect that more indices are needed to reach a sub-second
response time.

The above discussion focuses on the case that the electronic medical record data are stored in a relational database and
features are extracted using SQL queries. When the electronic medical record data are stored in a big data system and features
are extracted using map and reduce functions [44] or Pig Latin [46], we can modify the corresponding existing lineage tracing
techniques [42,43,45] in a similar way to enable lineage tracing to aid automatically explaining machine learning predictions
for clinical decision support.

Directions for future research

The above discussion describes the high-level design approach for our proposed automated lineage tracing module. To
complete the detailed design of the proposed automated lineage tracing approach, implement the module in computer code,
and test the module’s performance, much research is needed along the following directions:
1) We need to compile a list of attributes and temporal feature types most commonly used in building clinical machine

learning predictive models. For these attributes and temporal feature types, we need to complete the detailed design and
the computer coding implementation of the proposed automated lineage tracing approach.

2) We need to come up with an automated approach to design indices needed for improving the lineage tracing speed. The
database research community has developed several automated index design approaches [54-56]. We can modify these
approaches to fit the database querying workload posed by automated lineage tracing.

3) We plan to assess the execution speed of the proposed automated lineage tracing approach after implementing it in
computer code.

4) As shown by the lots of prior work on automated lineage tracing shown in the “An overview of the existing automated
lineage tracing techniques” section, the database research community takes it for granted that automated lineage tracing
could help users better understand the data and save time in doing data analysis. To the best of our knowledge, no formal
study has been published on measuring the impact of automated lineage tracing on users’ data analysis and decision making
process. After implementing our proposed automated lineage tracing module, we plan to choose several clinical predictive
modeling tasks and assess for each task, the impact of offering the module on the data analysis and decision making process
of the users of the automated explaining function. In particular, we plan to evaluate whether the addition of the module

20

benefits the user and improves outcomes, e.g., by saving the user’s time, making it easier for the user to understand the
predictions given by the machine learning predictive model, and helping the user better understand the patient’s situation
and make better clinical decisions.

Limitations of our proposed automated lineage tracing approach

Our proposed automated lineage tracing approach has several limitations:
1) To build clinical machine learning predictive models, we usually use temporal features that are computed by SQL queries

of low or moderate complexities. It is possible that some temporal features used to build certain predictive models are
computed by rather complex SQL queries. We may not be able to finish the lineage tracing process for a value of such a
temporal feature quickly, regardless of how many indices are built to expedite this process. For example, this could happen
if the SQL query uses complex procedural code, which has no property that can be used to simplify the lineage tracing
process [39]. Having a long lineage tracing time could make the user of the automated explaining function become
impatient. Nevertheless, it is still faster and more convenient to do lineage tracing using our automated approach than to
let the user do manual drill-through.

2) Our proposed automated lineage tracing approach works for any feature values computed by the standard aggregation
functions in SQL on longitudinal structured data. For certain deep learning predictive models built on longitudinal
structured data, we could use our previously proposed method [16] to semi-automatically extract comprehensible and
predictive temporal features from the models and the longitudinal structured data, and then apply our automated approach
to trace the lineage of the values of these features. For any other deep learning predictive model that is built directly on
longitudinal structured data and uses incomprehensible features hidden in the neurons of the deep neural network, we can
no longer use our automated approach to trace the lineage of the values of these features.

3) Almost infinite attributes and temporal features could possibly be used for clinical machine learning. Also, some attributes
are not covered by the OMOP common data model. For the reasons given in the “Maximizing the automation degree of
the lineage tracing query formation process” section, we could maximize the automation degree of the lineage tracing
query formation process for only certain types of temporal features formed on certain attributes. For any other temporal
feature, the developers of the automated explaining function could still need a non-trivial amount of time to create the
corresponding lineage tracing query.

Conclusions

Automatically explaining machine learning predictions is critical to overcome the model interpretability barrier to using
machine learning predictive models in clinical practice. Our previously developed automatic explanation method for machine
learning predictions can be used to address this barrier, but a gap remains to fulfill the need of rapidly drilling through a feature
value in an explanation that is computed by an aggregation function on the raw data. This paper articulates this gap and outlines
an automated lineage tracing approach to close the gap, providing a roadmap for future research. By offering the automated
drill-through capability, we intend to help the user of the automated explaining function save time, better understand the
patient’s situation, and make better clinical decisions. It would take several people multiple years to work out the detailed
design and the computer coding implementation of the proposed automated lineage tracing approach. We hope this paper will
make some researchers become interested in and join the research endeavor on this topic. Only after the detailed design and
the computer coding implementation of the proposed automated lineage tracing approach are fully worked out, we could deploy
the automated lineage tracing module in clinical practice and measure the module’s impact on clinicians’ decision making
process. The principle of our automated lineage tracing approach generalizes to non-medical data and other automated methods
to explain machine learning predictions.

Acknowledgments

We thank Xiaoyi Zhang and Brian Kelly for useful discussions. GL was partially supported by the National Heart, Lung, and
Blood Institute of the National Institutes of Health under Award Number R01HL142503. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

None declared.

Abbreviations

ED: emergency department
HMC: Harborview Medical Center
ICD-10: International Classification of Diseases, Tenth Revision

21

OMOP: Observational Medical Outcomes Partnership
SQL: Structured Query Language
UWMC: University of Washington Medical Center

References
1. Kaggle homepage. https://www.kaggle.com, 2021.
2. Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, 2nd ed.

New York, NY: Springer; 2019. ISBN:3030163989
3. Lee G, Wang S, Dipuro F, Hou J, Grover P, Low LL, Liu N, Loke CY. Leveraging on predictive analytics to manage clinic

no show and improve accessibility of care. In: Proceedings of 2017 IEEE International Conference on Data Science and
Advanced Analytics. 2017 Presented at: DSAA'17; October 19-21, 2017; Tokyo, Japan p. 429-438.
doi:10.1109/DSAA.2017.25

4. Dean NC, Jones BE, Jones JP, Ferraro JP, Post HB, Aronsky D, Vines CG, Allen TL, Haug PJ. Impact of an electronic
clinical decision support tool for emergency department patients with pneumonia. Ann Emerg Med 2015;66(5):511-520.
PMID:25725592

5. Hsu JC, Chen YF, Chung WS, Tan TH, Chen T, Chiang JY. Clinical verification of a clinical decision support system for
ventilator weaning. Biomed Eng Online 2013;12 Suppl 1:S4. PMID:24565021

6. Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, Mari F, Amato C, Leipold F, Wehmeyer W,
Stuard S, Stopper A, Canaud B. An international observational study suggests that artificial intelligence for clinical
decision support optimizes anemia management in hemodialysis patients. Kidney Int 2016;90(2):422-429.
PMID:27262365

7. Brier ME, Gaweda AE, Dailey A, Aronoff GR, Jacobs AA. Randomized trial of model predictive control for improved
anemia management. Clin J Am Soc Nephrol 2010;5(5):814-820. PMID:20185598

8. Gaweda AE, Aronoff GR, Jacobs AA, Rai SN, Brier ME. Individualized anemia management reduces hemoglobin
variability in hemodialysis patients. J Am Soc Nephrol 2014;25(1):159-166. PMID: 24029429

9. Gaweda AE, Jacobs AA, Aronoff GR, Brier ME. Model predictive control of erythropoietin administration in the anemia
of ESRD. Am J Kidney Dis 2008;51(1):71-79. PMID:18155535

10. Hamlet KS, Hobgood A, Hamar GB, Dobbs AC, Rula EY, Pope JE. Impact of predictive model-directed end-of-life
counseling for Medicare beneficiaries. Am J Manag Care 2010;16(5):379-384. PMID:20469958

11. Luo G. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction.
Health Inf Sci Syst 2016;4:2. PMID:26958341

12. Luo G, Johnson MD, Nkoy FL, He S, Stone BL. Automatically explaining machine learning prediction results on asthma
hospital visits in asthmatic patients: secondary analysis. JMIR Med Inform 2020;8(12):e21965. PMID:33382379

13. Tong Y, Messinger AI, Luo G. Testing the generalizability of an automated method for explaining machine learning
predictions on asthma patients’ asthma hospital visits to an academic healthcare system. IEEE Access 2020;8:195971-
195979. PMID:33240737

14. Luo G, Nau CL, Crawford WW, Schatz M, Zeiger RS, Koebnick C. Generalizability of an automatic explanation method
for machine learning prediction results on asthma-related hospital visits in patients with asthma: quantitative analysis. J
Med Internet Res 2021;23(4):e24153. PMID:33856359

15. Halamka JD. Early experiences with big data at an academic medical center. Health Aff (Millwood). 2014;33(7):1132-
1138. PMID:25006138

16. Luo G. A roadmap for semi-automatically extracting predictive and clinically meaningful temporal features from medical
data for predictive modeling. Glob Transit 2019;1:61-82. PMID:31032483

17. Luo G, Nau CL, Crawford WW, Schatz M, Zeiger RS, Rozema E, Koebnick C. Developing a predictive model for asthma-
related hospital encounters in patients with asthma in a large, integrated health care system: secondary analysis. JMIR Med
Inform, 2020;8(11):e22689. PMID:33164906

18. Tong Y, Messinger AI, Wilcox AB, Mooney SD, Davidson GH, Suri P, Luo G. Forecasting future asthma hospital
encounters of patients with asthma in an academic health care system: predictive model development and secondary
analysis study. J Med Internet Res 2021;23(4):e22796.

19. Luo G, He S, Stone BL, Nkoy FL, Johnson MD. Developing a model to predict hospital encounters for asthma in asthmatic
patients: secondary analysis. JMIR Med Inform 2020;8(1):e16080. PMID:31961332

20. Garcia-Molina H, Ullman JD, Widom J. Database Systems: the Complete Book, 2nd ed. Upper Saddle River, NJ: Pearson;
2008. ISBN:0131873253

21. Cunningham C, Graefe G, Galindo-Legaria CA. PIVOT and UNPIVOT: optimization and execution strategies in an
RDBMS. In: Proceedings of the 30th International Conference on Very Large Data Bases, 2004 Presented at: VLDB'04;
August 31 - September 3, 2004; Toronto, Canada p. 998-1009.

22

22. Lyman JA, Scully K, Harrison JH Jr. The development of health care data warehouses to support data mining. Clin Lab
Med 2008;28(1):55-71. PMID:18194718

23. Cui Y, Widom J. Practical lineage tracing in data warehouses. In: Proceedings of the 16th International Conference on
Data Engineering. 2000 Presented at: ICDE'00; February 28-March 3, 2000; San Diego, CA p. 367-378.
doi:10.1109/ICDE.2000.839437

24. Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. In: Proceedings of the 4th International
Conference on Knowledge Discovery and Data Mining. 1998 Presented at: KDD'98; August 27-31, 1998; New York City,
NY p. 80-86.

25. Fayyad UM, Irani KB. Multi-interval discretization of continuous-valued attributes for classification learning. In:
Proceedings of the 13th International Joint Conference on Artificial Intelligence. 1993 Presented at: IJCAI'93; August 28-
September 3, 1993; Chambéry, France p. 1022-1029.

26. Thabtah FA. A review of associative classification mining. Knowledge Eng Review 2007;22(1):37-65.
doi:10.1017/S0269888907001026

27. Alaa AM, van der Schaar M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci Rep
2018;8(1):11242. PMID:30050169

28. Alaa AM, van der Schaar M. AutoPrognosis: automated clinical prognostic modeling via Bayesian optimization with
structured kernel learning. In: Proceedings of 35th International Conference on Machine Learning. 2018 Presented at:
ICML'18; July 10-15, 2018; Stockholm, Sweden p. 139-148.

29. Molnar C. Interpretable Machine Learning. Morrisville, NC: lulu.com; 2020. ISBN:0244768528
30. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box

models. ACM Comput Surv 2019;51(5):93. doi:10.1145/3236009
31. Rudin C, Shaposhnik Y. Globally-consistent rule-based summary-explanations for machine learning models: application

to credit-risk evaluation. In: Proceedings of INFORMS 11th Conference on Information Systems and Technology. 2019
Presented at: CIST'19; October 19-20, 2019; Seattle, WA p. 1-19. doi:10.2139/ssrn.3395422

32. Ribeiro MT, Singh S, Guestrin C. Anchors: high-precision model-agnostic explanations. In: Proceedings of the 32nd AAAI
Conference on Artificial Intelligence. 2018 Presented at: AAAI'18; February 2-7, 2018; New Orleans, LA p. 1527-1535.

33. Ikeda R, Widom J. Data lineage: a survey. Stanford University technical report.
http://ilpubs.stanford.edu:8090/918/1/lin_final.pdf, 2009.

34. Cheney J, Chiticariu L, Tan WC. Provenance in databases: why, how, and where. Found Trends Databases 2009;1(4):379-
474. doi:10.1561/1900000006

35. Simmhan Y, Plale B, Gannon D. A survey of data provenance in e-science. SIGMOD Rec 2005;34(3):31-36.
doi:10.1145/1084805.1084812

36. Bose R, Frew J. Lineage retrieval for scientific data processing: a survey. ACM Comput Surv 2005;37(1):1-28.
doi:10.1145/1057977.1057978

37. Cui Y, Widom J, Wiener JL. Tracing the lineage of view data in a warehousing environment. ACM Trans Database Syst
2000;25(2):179-227. doi:10.1145/357775.357777

38. Gupta A, Mumick IS. Materialized Views: Techniques, Implementations, and Applications. Cambridge, MA: The MIT
Press; 1999. ISBN:0262571226

39. Cui Y, Widom J. Lineage tracing for general data warehouse transformations. VLDB J 2003;12(1):41-58.
doi:10.1007/s00778-002-0083-8

40. Ikeda R, Sarma AD, Widom J. Logical provenance in data-oriented workflows. In: Proceedings of the 29th IEEE
International Conference on Data Engineering. 2013 Presented at: ICDE'13; April 8-12, 2013; Brisbane, Australia p. 877-
888. doi:10.1109/ICDE.2013.6544882

41. Zhang M, Zhang X, Zhang X, Prabhakar S. Tracing lineage beyond relational operators. In: Proceedings of the 33rd
International Conference on Very Large Data Bases. 2007 Presented at: VLDB'07; September 23-27, 2007; Vienna,
Austria p. 1116-1127.

42. Ikeda R, Park H, Widom J. Provenance for generalized map and reduce workflows. In: Proceedings of the 5th Biennial
Conference on Innovative Data Systems Research. 2011 Presented at: CIDR'11; January 9-12, 2011; Asilomar, CA p. 273-
283.

43. Park H, Ikeda R, Widom J. RAMP: a system for capturing and tracing provenance in MapReduce workflows. Proc VLDB
Endow 2011;4(12):1351-1354. doi:10.14778/3402755.3402768

44. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th Symposium on
Operating System Design and Implementation. 2004 Presented at: OSDI'04; December 6-8, 2004; San Francisco, CA p.
137-150.

45. Amsterdamer Y, Davidson SB, Deutch D, Milo T, Stoyanovich J, Tannen V. Putting Lipstick on Pig: enabling database-
style workflow provenance. Proc VLDB Endow 2011;5(4):346-357. doi:10.14778/2095686.2095693

23

46. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: a not-so-foreign language for data processing. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data. 2008 Presented at: SIGMOD'08;
June 10-12, 2008; Vancouver, BC, Canada p. 1099-1110. doi:10.1145/1376616.1376726

47. Buneman P, Chapman A, Cheney J. Provenance management in curated databases. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2006 Presented at: SIGMOD'06; June 27-29, 2006; Chicago, IL p. 539-
550. doi:10.1145/1142473.1142534

48. Schelter S, Böse J, Kirschnick J, Klein T, Seufert S. Automatically tracking metadata and provenance of machine learning
experiments. In: Proceedings of the ML Systems Workshop at NIPS 2017. 2017 Presented at: ML Systems Workshop at
NIPS'17; December 8, 2017; Long Beach, CA p. 1-8.

49. Cui Y, Widom J. Storing auxiliary data for efficient maintenance and lineage tracing of complex views. In: Proceedings
of the Second Intl Workshop on Design and Management of Data Warehouses. 2000 Presented at: DMDW'00; June 5-6,
2000; Stockholm, Sweden Article 11.

50. Observational Health Data Sciences and Informatics data standardization homepage. https://www.ohdsi.org/data-
standardization, 2021.

51. Observational Health Data Sciences and Informatics standardized vocabularies homepage.
https://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:sidebar, 2021.

52. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, Suchard MA, Park RW, Wong ICK, Rijnbeek PR,
van der Lei J, Pratt N, Norén GN, Li Y, Stang PE, Madigan D, Ryan PB. Observational Health Data Sciences and
Informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform 2015;216:574-578.
PMID:26262116

53. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety
surveillance research. J Am Med Inform Assoc 2012;19(1):54-60. PMID:22037893

54. Das S, Grbic M, Ilic I, Jovandic I, Jovanovic A, Narasayya VR, Radulovic M, Stikic M, Xu G, Chaudhuri S. Automatically
indexing millions of databases in Microsoft Azure SQL database. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2019 Presented at: SIGMOD'19; June 30-July 5, 2019; Amsterdam, Netherlands p.
666-679. doi:10.1145/3299869.3314035

55. Dageville B, Das D, Dias K, Yagoub K, Zaït M, Ziauddin M. Automatic SQL tuning in Oracle 10g. In: Proceedings of the
30th International Conference on Very Large Data Bases. 2004 Presented at: VLDB'04; August 31-September 3, 2004;
Toronto, Canada p. 1098-1109. doi:10.1016/B978-012088469-8.50096-6

56. Zilio DC, Rao J, Lightstone S, Lohman GM, Storm AJ, Garcia-Arellano C, Fadden S. DB2 Design Advisor: integrated
automatic physical database design. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004
Presented at: VLDB'04; August 31-September 3, 2004; Toronto, Canada p. 1087-1097. doi:10.1016/B978-012088469-
8.50095-4

