

Locking Protocols for Materialized Aggregate Join Views

Gang Luo Jeffrey F. Naughton Curt J. Ellmann Michael W. Watzke
 University of Wisconsin-Madison NCR Advance Development Lab

{gangluo, naughton}@cs.wisc.edu {curt.ellmann, michael.watzke}@ncr.com

Abstract
The maintenance of materialized aggregate join
views is a well-studied problem. However, to
date the published literature has largely ignored
the issue of concurrency control. Clearly
immediate materialized view maintenance with
transactional consistency, if enforced by generic
concurrency control mechanisms, can result in
low levels of concurrency and high rates of
deadlock. While this problem is superficially
amenable to well-known techniques such as fine-
granularity locking and special lock modes for
updates that are associative and commutative, we
show that these previous techniques do not fully
solve the problem. We extend previous high
concurrency locking techniques to apply to
materialized view maintenance, and show how
this extension can be implemented even in the
presence of indices on the materialized view.

1. Introduction

Although materialized view maintenance has been well-
studied in the research literature [GM99], with rare
exceptions, to date that published literature has ignored
concurrency control. In fact, if we use generic
concurrency control mechanisms, immediate materialized
aggregate join view maintenance becomes extremely
problematic  the addition of a materialized aggregate
join view can introduce many lock conflicts and/or
deadlocks that did not arise in the absence of this
materialized view.

As an example of this effect, consider a scenario in
which there are two base relations: the lineitem relation,
and the partsupp relation, with the schemas lineitem
(orderkey, partkey) (and possibly some other attributes),
and partsupp (partkey, suppkey). Suppose that in
transaction T1 some customer buys items p11 and p12 in
order o1, which will cause the tuples (o1, p11) and (o1, p12)
to be inserted into the lineitem relation. Also suppose that

concurrently in transaction T2 another customer buys items
p21 and p22 in order o2. This will cause the tuples (o2, p21)
and (o2, p22) to be inserted into the lineitem relation.
Suppose that parts p11 and p21 come from supplier s1,
while parts p12 and p22 come from supplier s2. Then there
are no lock conflicts nor is there any potential for
deadlock between T1 and T2, since the tuples inserted by
them are distinct.

Suppose now that we create a materialized aggregate
join view suppcount to provide quick access to the number
of parts ordered from each supplier, defined as follows:
 create aggregate join view suppcount as
 select p.suppkey, count(*)
 from lineitem l, partsupp p
 where l.partkey=p.partkey
 group by p.suppkey;
 Now both transactions T1 and T2 must update the

materialized view suppcount. Since both T1 and T2 update
the same pair of tuples in suppcount (the tuples for
suppliers s1 and s2), there are now potential lock conflicts.
To make things worse, suppose that T1 and T2 request their
exclusive locks on suppcount in the following order:
(1) T1 requests a lock for the tuple whose suppkey=s1.
(2) T2 requests a lock for the tuple whose suppkey=s2.
(3) T1 requests a lock for the tuple whose suppkey=s2.
(4) T2 requests a lock for the tuple whose suppkey=s1.
Then a deadlock will occur.

The danger of this sort of deadlock is not necessarily
remote. Suppose there are R suppliers, m concurrent
transactions, and that each transaction represents a
customer buying items randomly from r different
suppliers. Then according to [GR93, page 428-429], if
mr<<R, the probability that any particular transaction
deadlocks is approximately (m-1)(r-1)4/(4R2). (If we do
not have mr<<R, then the probability of deadlock is
essentially one. Thus, no matter whether mr<<R or not,
we can use a unified formula min(1, (m-1)(r-1)4/(4R2)) to
roughly estimate the probability that any particular
transaction deadlocks.) For reasonable values of R, m, and
r, this probability of deadlock is unacceptably high. For
example, if R=3,000, m=8, and r=32, the deadlock
probability is approximately 18%. Merely doubling m to
16 raises this probability to 38%. In such a scenario large
numbers of concurrent transactions will result in very high
deadlock rates.

In view of this, one alternative is to simply avoid
updating the materialized view within the transactions.
Instead, we batch these updates to the materialized view

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 29th VLDB Conference,
Ber lin, Germany, 2003

and apply them later in separate transactions. This
“works” ; unfortunately, it requires that the system gives
up on serializability and/or recency (it is possible to
provide a theory of serializability in the presence of
deferred updates if readers of the materialized view are
allowed to read old versions of the view [KLM+97].)
Giving up on serializability and/or recency for
materialized views may ultimately turn out to be the best
approach for any number of reasons; but before giving up
altogether, it is worth investigating techniques that
guarantee immediate update propagation with
serializability semantics yet still give reasonable
performance. Providing such guarantees is desirable in
certain cases. (Such guarantees are required in the TPC-R
benchmark [PF00], presumably as a reflection of some
real world application demands.) In this paper we explore
techniques that can guarantee serializability without
incurring high rates of deadlock and lock contention.

Our focus is materialized aggregate join views. In an
extended relational algebra, a general instance of such a

view can be expressed as AJV=γ(π(σ(R1
�

R2
� … �

Rn))),
where γ is the aggregate operator. SQL allows the
aggregate operators COUNT, SUM, AVG, MIN, and MAX.
However, because MIN and MAX cannot be maintained
incrementally (the problem is deletes [GKS01]), we
restrict our attention to the three aggregate operators that
make sense for materialized aggregates: COUNT, SUM,
and AVG. Note that by letting n=1 in the definition of
AJV, we also include aggregate views over single
relations.

A useful observation is that for COUNT, SUM, and
AVG, the updates to the materialized aggregate join views
are associative and commutative, so it really does not
matter in which order they are processed. In our running
example, the state of suppcount after applying the updates
of T1 and T2 is independent of the order in which they are
applied. (Some care must be exercised to ensure that
transactions that, unlike T1 and T2, are reading suppcount
also see a consistent view of suppcount.) This line of
reasoning leads one to consider locking mechanisms that
increase concurrency for commutative and associative
operations.

Many special locking modes that support increased
concurrency through the special treatment of “hot spot”
aggregates in base relations [GK85, O86, Reu82] or by
exploiting update semantics [BR92, RAA94] have been
proposed. An early and particularly relevant example of
locks that exploit update semantics was proposed by Korth
[Kor83]. The basic idea is to identify classes of update
transactions so that within each class, the updates are
associative and commutative. For example, if a set of
transactions update a record by adding various amounts to
the same field in the record, they can be run in any order
and the final state of the record will be the same, so they
can be run concurrently. To ensure serializability, other
transactions that read or write the record must conflict

with these addition transactions. This insight is captured in
Korth’s P locking protocol, in which addition transactions
get P locks on the records they update through addition,
while all other data accesses (including those by
transactions not doing additive updates) are protected by
standard S and X locks. P locks do not conflict with each
other while they do conflict with S and X locks.

Borrowing this insight, we propose a V locking protocol
(“V” for “View.”) In it, transactions that cause updates to
materialized aggregate join views with associative and
commutative aggregates (including COUNT, SUM, and
AVG) get standard S and X locks on base relations but get
V locks on the materialized view. V locks conflict with S
and X locks but not with each other. At this level of
discussion, V locks appear virtually identical to the (20+
year old!) P locks.

Unfortunately, there is a subtle difference between the
problem solved by P locks and the materialized aggregate
join view update problem. For P locks, the assumption is
that updates are of two types: updates that modify existing
tuples, which are handled by P locks; and updates that
create new tuples or delete existing tuples, which are
handled by X locks. At this level the same solution applies
to updates of materialized aggregate join views. However,
a transaction cannot know at the outset whether it will
cause an update of an existing materialized view tuple, the
insertion of a new tuple, or the deletion of an existing
tuple. (Recall that the transaction inserts a tuple into a base
relation and generates a new join result tuple, which only
indirectly updates a materialized view tuple  the
transaction does not know from the outset whether or not
this new join result tuple will be aggregated into an
existing materialized view tuple.) If we use X locks for the
materialized view updates, we are back to our original
problem of high lock conflict and deadlock rates. If we
naively use our V locks for these updates, as we will show
in Section 2, the semantics of the aggregate join view may
be violated. In particular, it is possible that we could end
up with what we call “split group duplicates”  multiple
tuples in the aggregate join view for the same group. (Due
to a similar reason, previous approaches for handling “hot
spot” aggregates [GK85, O86, Reu82, BR92, RAA94]
cannot be applied to materialized aggregate join views.)

To solve the split group duplicate problem, we augment
V locks with a construct we call W locks. W locks are
short-term locks. (The W lock sounds a lot like a latch, but
it is not a latch; the split group duplicate problem arises
even in the presence of latches. Furthermore, unlike
latches, W locks must be considered in deadlock
detection.) With W locks the semantics of materialized
aggregate join views can be guaranteed  at any time, for
any aggregate group, either zero or one tuple
corresponding to this group exists in a materialized
aggregate join view. Also, the probability of lock conflicts
and deadlocks is greatly reduced, because W locks are
short-term locks, and V locks do not conflict with each
other or with W locks.

It is straightforward to implement V locks and W locks
if the materialized view is stored without any indices or
with hash indices. However, things become much more
complex in the common case that there are B-tree indices
over the materialized view. In this case, since the V lock is
a form of a predicate lock, our first thought was to borrow
from techniques that have been proposed for predicate
locks. In particular, key-range locking (a limited form of
predicate locking) on B-tree indices has been well-studied
[Moh90a, Lom93]. However, we cannot simply use the
techniques in [Moh90a, Lom93] to implement V and W
key-range locks on B-tree indices. The reason is that V
locks allow more concurrency than the exclusive locks
considered in [Moh90a, Lom93], so during the period that
a transaction T holds a V lock on an object, another
transaction T′ may delete this object by acquiring another
V lock. To deal with this problem, we introduce a
modified key-range locking strategy to implement V and
W key-range locks on B-tree indices.

Other interesting properties of the V locking protocol
exist because transactions getting V locks on materialized
aggregate join views must get S and X locks on the base
relations mentioned in their definition. The most
interesting such property is that V locks can be used to
support “direct propagate” updates to materialized views.
Also, by considering the implications of the granularity of
V locks and the interaction between base relation locks
and accesses to the materialized view, we show that one
can define a variant of the V locking protocol, the “no-
lock” locking protocol, in which transactions do not set
any long-term locks on the materialized view.

The rest of the paper is organized as follows. In Section
2, we explore the split group duplicate problem that arises
with a naive use of V locks, and show how this problem
can be avoided through the addition of W locks. In Section
3, we explore some thorny issues that arise when B-tree
indices over the materialized views are considered. In
Section 4, we explore the way V locks can be used to
support direct propagate updates and extended to define a
“no-lock” locking protocol. In Section 5, we investigate
the performance of the V locking protocol through an
evaluation in a commercial RDBMS. We conclude in
Section 6.

2. The Split Group Duplicate Problem
As mentioned in the introduction, we cannot simply use

V locks on aggregate join views, even though the addition
operation for the COUNT, SUM, and AVG aggregate
operators in the view definitions is both commutative and
associative. Recall that the problem is that for the V lock
to work correctly, updates must be classified a priori into
those that update a field in an existing tuple and those that
create a new tuple or delete an existing tuple, which
cannot be done in the view update scenario. In this
section, we illustrate the split group duplicate problem that
arises if we ignore this subtle difference between
materialized view maintenance and the “ traditional”

associative/commutative update problems studied by
Korth [Kor83] and others. First we illustrate the problem
and its solution in the presence of hash indices or in the
absence of indices on the materialized view. In Section 3,
we consider the problem in the presence of B-tree indices
(where its solution is considerably more complex.)

2.1 An Example of Split Groups
In this subsection, we explore an example of the split

group duplicate problem in the case that the aggregate join
view AJV is stored in a hash file implemented as described
by Gray and Reuter [GR93]. (The case that the view is
stored in a heap file is almost identical; just view the heap
file as a hash file with one bucket.) Furthermore, suppose
that we are using key-value locking. Suppose the schema
of the aggregate join view AJV is (a, sum(b)), where
attribute a is both the value locking attribute for the view
and the hash key for the hash file. Suppose originally the
aggregate join view AJV contains the tuple (20, 2) and
several other tuples, but that there is no tuple whose
attribute a=1.

Consider the following three transactions T, T′, and T″.
Transaction T inserts a new tuple into a base relation R
and this generates the join result tuple (1, 1), which needs
to be integrated into AJV. Transaction T′ inserts another
new tuple into the same base relation R and generates the
join result tuple (1, 2). Transaction T″ deletes a third tuple
from base relation R, which requires the tuple (20, 2) to be
deleted from AJV. After executing these three transactions,
the tuple (20, 2) should be deleted from AJV while the
tuple (1, 3) should appear in AJV.

Now suppose that 20 and 1 have the same hash value so
that the tuples (20, 2) and (1, 3) are stored in the same
bucket B of the hash file. Also, suppose that initially there
are four pages in bucket B: one bucket page P1 and three
overflow pages P2, P3, and P4, as illustrated in Figure 1.
Furthermore, let pages P1, P2, and P3 be full while there
are several open slots in page P4.

Figure 1. Hash file of the aggregate join view AJV.
To integrate a join result tuple t1 into the aggregate join

view AJV, a transaction T performs the following steps
[GR93]:
1. Get an X value lock for t1.a on AJV. This value lock is

held until transaction T commits/aborts.
2. Apply the hash function to t1.a to find the

corresponding hash table bucket B.
3. Crab all the pages in bucket B to see whether a tuple

t2 whose attribute a=t1.a already exists. (“Crabbing”
[GR93] means first getting an X semaphore on the

P1 P2
(20, 2)

P3 P4

hash file of AJV

bucket B

next page, then releasing the X semaphore on the
current page.)

4. If tuple t2 exists in some page P in bucket B, stop the
crabbing and integrate the join result tuple t1 into
tuple t2. The X semaphore on page P is released only
after the integration is finished.

5. If tuple t2 does not exist, crab the pages in bucket B
again to find a page P that has enough free space.
Insert a new tuple into page P for the join result tuple
t1. The X semaphore on page P is released only after
the insertion is finished.

Suppose now that we use V value locks instead of X
value locks in this example and that the three transactions
T, T′, and T″ are executed in the following sequence:
1. First transaction T gets a V value lock for attribute

a=1, applies the hash function to attribute a=1 to find
the corresponding hash table bucket B, then crabs all
the pages in bucket B to see whether a tuple t2 whose
attribute a=1 already exists in the hash file. After
crabbing, it finds that no such tuple t2 exists.

2. Next transaction T′ gets a V value lock for attribute
a=1, applies the hash function to attribute a=1 to find
the corresponding hash table bucket B, and crabs all
the pages in bucket B to see whether a tuple t2 whose
attribute a=1 already exists in the hash file. After
crabbing, it finds that no such tuple t2 exists.

3. Next, transaction T crabs the pages in bucket B again,
finding that only page P4 has enough free space. It
then inserts a new tuple (1, 1) into page P4 for the join
result tuple (1, 1), commits, and releases the V value
lock for attribute a=1.

Figure 2. Hash file of the aggregate join view AJV –
after inser ting tuple (1, 1).

4. Then transaction T″ gets a V value lock for attribute
a=20, finds that tuple (20, 2) is contained in page P2,
and deletes it (creating an open slot in page P2). Then
T″ commits, and releases the V value lock for
attribute a=20.

Figure 3. Hash file of the aggregate join view AJV –

after deleting tuple (20, 2).
5. Finally, transaction T′ crabs the pages in bucket B

again, and finds that page P2 has an open slot. It
inserts a new tuple (1, 2) into page P2 for the join

result tuple (1, 2), commits, and releases the V value
lock for attribute a=1.

Figure 4. Hash file of the aggregate join view AJV –

after inser ting tuple (1, 2).
Now the aggregate join view AJV contains two tuples

(1, 1) and (1, 2), whereas it should have only the single
tuple (1, 3). This is why we call it the “split group
duplicate” problem  the group for “1” has been split into
two tuples.

One might think that during crabbing, holding an X
semaphore on the entire bucket B could solve the split
group duplicate problem. However, there may be multiple
pages in the bucket B and some of them may not be in the
buffer pool. Normally under all circumstances one tries to
avoid performing I/O while holding a semaphore [GR93
page 849]. Thus, holding an X semaphore on the entire
bucket for the duration of the operation could cause a
substantial performance hit.

2.2 Preventing Split Groups with W Locks
To enable the use of high concurrency V locks while

avoiding split group duplicates, we introduce a short-term
lock mode, which we call the W lock mode, for aggregate
join views. The W lock mode guarantees that for each
aggregate group, at any time, at most one tuple
corresponding to this group exists in the aggregate join
view. With the addition of W locks we now have four
kinds of elementary locks: S, X, V, and W.

The compatibilities among these locks are listed in
Table 1, while the lock conversion lattice is shown in
Figure 5. The W lock mode is only compatible with the V
lock mode. A W lock can be either upgraded to an X lock
or downgraded to a V lock. (In this respect the W lock is
similar to the update mode lock [GR93], which can be
either downgraded to an S lock or upgraded to an X lock.)

Table 1. Compatibilities among different locks.
 V S X W

V yes no no yes
S no yes no no
X no no no no
W yes no no no

Figure 5. The lock conversion lattice.
In the V+W locking protocol for materialized aggregate

join views, S locks are used for reads, V and W locks are
used for associative and commutative aggregate update
writes, while X locks are used for transactions that do both

P1 P2
(20, 2)

P3 P4

hash file of AJV

bucket B
(1, 1)

P1 P2

P3 P4

hash file of AJV

bucket B (1, 1)

P1 P2
(1, 2)

P3 P4

hash file of AJV

bucket B (1, 1)

W S

V

X

reads and writes. These locks can be of any granularity,
and, like traditional S and X locks, can be physical locks
(e.g., tuple, page, or table locks) or value locks. For fine-
granularity locks, it is straightforward to define the
corresponding coarser granularity intention locks as
introduced in Gray et al. [GLP+76] (see [LNE+03] for
details). For example, we can define a coarse granularity
IV lock corresponding to a fine-granularity V lock.

Transactions use W locks in the following way:
(1) To integrate a new join result tuple into an aggregate

join view AJV (e.g., due to insertion into some base
relation of AJV), we first put a short-term W lock on
AJV. There are two special cases:
(a) If the same transaction has already put a V lock

on AJV, this V lock is upgraded to the W lock.
(b) If the same transaction has already put an X lock

on AJV, this W lock is unnecessary.
After integrating the new join result tuple into the
aggregate join view AJV, we downgrade the short-
term W lock to a long-term V lock that will be held
until the transaction commits/aborts.

(2) To remove a join result tuple from the aggregate join
view AJV (e.g., due to deletion from some base
relation of AJV), we only need to put a V lock on
AJV.

In this way, during aggregate join view maintenance, high
concurrency is guaranteed by the fact that V locks are
compatible with themselves. Note that when using V locks
and W locks, multiple transactions may concurrently
update the same tuple in the aggregate join view. Thus,
logical undo is required on the aggregate join view AJV if
the transaction updating AJV aborts.

The split group duplicate problem cannot occur if the
system uses W locks. For a full proof, see [LNE+03]; the
intuition behind the proof is that by enumerating all
possible cases, we see that the split group duplicate
problem will only occur under the following conditions:
(1) two transactions integrate two new join result tuples
into the aggregate join view AJV simultaneously, (2) these
two join result tuples belong to the same aggregate group,
and (3) no tuple corresponding to that aggregate group
currently exists in the aggregate join view AJV.

Using the short-term W lock, one transaction, say T,
must do the update to the aggregate join view AJV first (by
inserting a new tuple t with the corresponding group by
attribute value into AJV). During the period that
transaction T holds the short-term W lock, no other
transaction can integrate another join result tuple that has
the same group by attribute value as tuple t into the
aggregate join view AJV. Then when a subsequent
transaction T′ updates the view, it will see the existing
tuple t. Thus, transaction T′ will aggregate its join result
tuple that has the same group by attribute value as tuple t
into tuple t (rather than inserting a new tuple into AJV).

As mentioned in the introduction, the W lock is similar
in some respect to the latches that are used by DBMS to
enforce serial updates to concurrently accessed data

structures. However, there are some important differences.
Unlike latches, W locks must be considered in deadlock
detection, because although deadlocks are much less likely
with W locks than with long-term X locks, they are still
possible. Also, latches are orthogonal to the locking
protocol in that they cannot be upgraded or downgraded to
any locks (latches are either held or released.) Finally, and
perhaps most importantly, the standard use of latches
(short-term exclusion on updated data structures) will not
prevent the split group duplicate problem efficiently.

2.3 Correctness of the V+W Locking Protocol
Due to space constraints, in this section we sketch the

main ideas behind the correctness of this protocol, and
refer the reader to [LNE+03] for the full proof. We begin
by reviewing our assumptions.

We are considering materialized aggregate join views

that can be expressed as AJV=γ(π(σ(R1
�

R2
� … �

Rn))),
where γ is one of COUNT, SUM, or AVG. Unless
otherwise specified, we assume that an aggregate join
view AJV is maintained in the following way: first
compute the join result tuple(s) resulting from the
update(s) to the base relation(s) of AJV, then integrate
these join result tuple(s) into AJV. We use strict two-phase
locking (except for W locks). We assume that the locking
mechanism used by the database system on the base
relations ensures serializability in the absence of
materialized aggregate join views. Unless otherwise
specified, all the locks are long-term locks that are held
until transaction commits. Transactions updating the
materialized aggregate join view obtain V and W locks as
described earlier in this section.

The main ideas used in the proof are:
(1) In the absence of updates that cause the insertion or

deletion of tuples in the aggregate join view, the proof
of serializability is the same as that in the original P
locking paper [Kor83] (since in this case, the
combination of V and W locks are indistinguishable
from P locks.)

(2) In the presence of updates that cause the insertion or
deletion of tuples in the aggregate join view, the
short-term W locks guarantee that the “race”
conditions that can cause the split group duplicate
problem cannot occur; these updates interact correctly
with transactions that read but do not update the join
view (because to these read transactions, both V and
W locks are indistinguishable from X locks.)

Hence the V+W locking protocol ensures that the
semantics of the aggregate join view are preserved and
that only conflict serializable schedules can occur.

3. V and W Locks and B-Trees
In this section, we consider the particularly thorny

problem of implementing V locks (with the required W
locks) in the presence of B-tree indices. This section is
included for completeness; typically, implementing high
concurrency locking modes poses special challenges when

B-trees are considered, and the V+W locks are no
exception. However, we wish to warn the reader that this
section is rather intricate and perhaps even tedious; for the
reader not interested in these details, the rest of the paper
can be safely read and understood while omitting this
section.

On B-tree indices, we use value locks to refer to key-
range locks. To be consistent with the approach advocated
by Mohan [Moh90a], we use next-key locking to
implement key-range locking. We use “key” to refer to the
indexed attribute of the B-tree index. We assume that the
entry of the B-tree index is of the following format: (key
value, row id list).

3.1 Split Groups and B-Trees

We begin by considering how split group duplicates can
arise when a B-tree index is declared over the aggregate
join view AJV. Suppose the schema of AJV is (a, b,
sum(c)), and we build a B-tree index IB on attribute a.
Also, assume there is no tuple (1, 2, X) in AJV, for any X.
Consider the following two transactions T and T′.
Transaction T integrates a new join result tuple (1, 2, 3)
into the aggregate join view AJV (by insertion into some
base relation R). Transaction T′ integrates another new
join result tuple (1, 2, 4) into the aggregate join view AJV
(by insertion into the same base relation R). Using
standard concurrency control without V locks, to integrate
a join result tuple t1 into the aggregate join view AJV, a
transaction will execute something like the following
operations:
(1) Get an X value lock for t1.a on the B-tree index IB of

AJV. This value lock is held until the transaction
commits/aborts.

(2) Make a copy of the row id list in the entry for t1.a of
the B-tree index IB.

(3) For each row id in the row id list, fetch the
corresponding tuple t2. Check whether or not t2.a=t1.a
and t2.b=t1.b.

(4) If some tuple t2 satisfies the condition t2.a=t1.a and
t2.b=t1.b, integrate tuple t1 into tuple t2 and stop.

(5) If no tuple t2 satisfies the condition t2.a=t1.a and
t2.b=t1.b, insert a new tuple into AJV for tuple t1.
Also, insert the row id of this new tuple into the B-
tree index IB.

Suppose now we use V value locks instead of X value
locks and the two transactions T and T′ above are executed
in the following sequence:
(1) Transaction T gets a V value lock for a=1 on the B-

tree index IB, searches the row id list in the entry for
a=1, and finds that no tuple t2 whose attributes t2.a=1
and t2.b=2 exists in AJV.

(2) Transaction T′ gets a V value lock for a=1 on the B-
tree index IB, searches the row id list in the entry for
a=1, and finds that no tuple t2 whose attributes t2.a=1
and t2.b=2 exists in AJV.

(3) Transaction T inserts a new tuple t1=(1, 2, 3) into
AJV, and inserts the row id of tuple t1 into the row id
list in the entry for a=1 of the B-tree index IB.

(4) Transaction T′ inserts a new tuple t3=(1, 2, 4) into
AJV, and inserts the row id of tuple t3 into the row id
list in the entry for a=1 of the B-tree index IB.

Now the aggregate join view AJV contains two tuples (1,
2, 3) and (1, 2, 4) instead of a single tuple (1, 2, 7); hence,
we have the split group duplicate problem.

3.2 Implementing V Locking with B-trees

Implementing a high concurrency locking scheme in the
presence of indices is difficult, especially if we consider
issues of recoverability. Key-value locking as proposed by
Mohan [Moh90a] was perhaps the first published
description of the issues that arise and their solution.
Unfortunately, we cannot directly use the techniques in
[Moh90a] to implement V and W as value (key-range)
locks.

To illustrate why, we use the following example.
Suppose the schema of the aggregate join view AJV is (a,
sum(b)), and a B-tree index is built on attribute a of the
aggregate join view AJV. Suppose originally the aggregate
join view AJV contains four tuples that correspond to a=2,
a=3, a=4, and a=5. Consider the following three
transactions T, T′, and T″ that result in updates to the
aggregate join view AJV. Transaction T deletes the tuple
whose attribute a=3 (by deletion from some base relation
R of AJV). Transaction T′ deletes the tuple whose attribute
a=4 (by deletion from the same base relation R of AJV).
Transaction T′′ reads those tuples whose attribute a is
between 2 and 5. Suppose we ignore the special properties
of V locks and use the techniques in [Moh90a] to
implement V and W value locks on the B-tree index. Then
the three transactions T, T′, and T″ could be executed in
the following sequence:

 2 3 4 5
T V V

(1) Transaction T puts a V lock for
a=3 and another V lock for
a=4 on the aggregate join view
AJV.

 2 3 4 5
T V V
T′ V V

(2) Transaction T′ puts a V lock for
a=4 and another V lock for
a=5 on the aggregate join view
AJV.

 2 3 5
T V V

(3) Transaction T′ deletes the entry
for a=4 from the B-tree index.
Transaction T′ commits and
releases the two V locks for
a=4 and a=5.

 2 5
T V V

(4) Transaction T deletes the entry
for a=3 from the B-tree index.

 2 5
T V V

T′′ S S

(5) Before transaction T finishes
execution, transaction T′′ finds
the entries for a=2 and a=5 in
the B-tree index. Transaction
T′′ puts an S lock for a=2 and another S lock for a=5 on
the aggregate join view AJV.

In this way, transaction T′′ can start execution even before
transaction T finishes execution. This is not correct,
because there is a write-read conflict between transaction
T and transaction T′′ (on the tuple whose attribute a=3).
The main reason that this undesirable situation
(transactions with write-read conflict can execute
concurrently) occurs is due to the fact that V locks are
compatible with themselves. Thus, during the period that a
transaction holds a V lock on an object, another
transaction may delete this object by acquiring another V
lock.

To implement V and W value locks on B-tree indices
correctly, we need to combine those techniques in
[Moh90a, GR93] with the technique of logical deletion of
keys [Moh90b, KMH97]. In Section 3.2.1, we describe the
protocol for each of the basic B-tree operations in the
presence of V locks. In Section 3.2.2, we explore the need
for the techniques used in Section 3.2.1. We briefly justify
the correctness of the implementation method in Section
3.2.3.
3.2.1 Basic Operations for B-tree Indices

In our protocol, there are five operations of interest:
(1) Fetch: Fetch the row ids for a given key value v1.
(2) Fetch next: Given the current key value v1, find the

next key value v2>v1 existing in the B-tree index, and
fetch the row id(s) associated with key value v2.

(3) Put an X value lock on key value v1.
(4) Put a V value lock on key value v1.
(5) Put a W value lock on key value v1.

Unlike [Moh90a, GR93], we do not consider the
operations of insert and delete. We show why this is by an
example. Suppose a B-tree index is built on attribute a of
an aggregate join view AJV. Assume we insert a tuple into
some base relation of AJV and generate a new join result
tuple t. The steps to integrate the join result tuple t into the
aggregate join view AJV are as follows:

If the aggregate group of tuple t exists in AJV
Update the aggregate group in AJV;

Else
Insert a new aggregate group into AJV for tuple t;

Once again, we do not know whether we need to update
an existing aggregate group in AJV or insert a new
aggregate group into AJV until we read AJV. However, we
do know that we need to acquire a W value lock on t.a
before we can integrate tuple t into the aggregate join view
AJV. Similarly, suppose we delete a tuple from some base
relation of the aggregate join view AJV. We compute the
corresponding join result tuples. For each such join result
tuple t, we execute the following steps to remove tuple t
from the aggregate join view AJV:

Find the aggregate group of tuple t in AJV;
Update the aggregate group in AJV;
If all join result tuples have been removed from the
aggregate group

Delete the aggregate group from AJV;
In this case, we do not know whether we need to update an
aggregate group in AJV or delete an aggregate group from

AJV in advance. However, we do know that we need to
acquire a V value lock on t.a before we can remove tuple t
from the aggregate join view AJV.

The ARIES/KVL method described in [Moh90a] for
implementing value locks on a B-tree index requires the
insertion/deletion operation to be done immediately after a
transaction gets appropriate locks. Also, in ARIES/KVL,
the value lock implementation method is closely tied to
the B-tree implementation method. This is because
ARIES/KVL strives to take advantage of both IX locks
and instant locks to increase concurrency. In the V+W
locking mechanism, high concurrency has already been
guaranteed by the fact that V locks are compatible with
themselves.

We can exploit this advantage so that our method for
implementing value locks for aggregate join views on B-
tree indices is more general and flexible than the
ARIES/KVL method. Specifically, in our method, after a
transaction gets appropriate locks, we allow it to execute
other operations before it executes the
insertion/deletion/update/read operation. Also, our value
lock implementation method is only loosely tied to the B-
tree implementation method.

Our method for implementing value locks for aggregate
join views on B-tree indices is as follows. Consider a
transaction T.
Op1. Fetch: We first check whether some entry for value

v1 exists in the B-tree index. If such an entry exists,
we put an S lock for value v1 on the B-tree index. If
no such entry exists, we find the smallest value v2 in
the B-tree index such that v2>v1. Then we put an S
lock for value v2 on the B-tree index.

Op2. Fetch next: We find the smallest value v2 in the B-
tree index such that v2>v1. Then we put an S lock for
value v2 on the B-tree index.

Op3. Put an X value lock on key value v1: We first put
an X lock for value v1 on the B-tree index. Then we
check whether some entry for value v1 exists in the B-
tree index. If no such entry exists, we find the
smallest value v2 in the B-tree index such that v2>v1.
Then we put an X lock for value v2 on the B-tree
index.

Op4. Put a V value lock on key value v1: We first check
whether some entry for value v1 exists in the B-tree
index. If such an entry exists, we put a V lock for
value v1 on the B-tree index. If no entry for value v1
exists, we find the smallest value v2 in the B-tree
index such that v2>v1. Then we put an X (not V) lock
for value v2 on the B-tree index.

Op5. Put a W value lock on key value v1: We first put a
W lock for value v1 on the B-tree index. Then we
check whether some entry for value v1 exists in the B-
tree index. If no entry for value v1 exists, we do the
following:
(a) Find the smallest value v2 in the B-tree index

such that v2>v1. Then we put a short-term W lock
for value v2 on the B-tree index. If the W lock for

value v2 on the B-tree index is acquired as an X
lock, we upgrade the W lock for value v1 on the
B-tree index to an X lock. This situation may
occur when transaction T already holds an S or X
lock for value v2 on the B-tree index.

(b) We insert into the B-tree index an entry for value
v1 with an empty row id list. Note: that at a later
point transaction T will insert a row id into this
row id list after transaction T inserts the
corresponding tuple into the aggregate join view.

(c) We release the short-term W lock for value v2 on
the B-tree index.

Table 2 summarizes the locks acquired during different
operations.

Table 2. Summary of locking.
 current key v1 next key v2

v1 exists S fetch
v1 does not exist S

fetch next S
v1 exists X X value

lock v1 does not exist X X
v1 exists V V value

lock v1 does not exist X
v1 exists W
v1 does not exist
and the W lock
on v2 is acquired
as a W lock

W

W

W
value
lock v1 does not exist

and the W lock
on v2 is acquired
as an X lock

X

X

During the period that a transaction T holds a V (or W,
or X) value lock for value v1 on the B-tree index, if
transaction T wants to delete the entry for value v1,
transaction T needs to do a logical deletion of keys
[Moh90b, KMH97] instead of a physical deletion. That is,
instead of removing the entry for value v1 from the B-tree
index, it is left there with a delete_flag set to 1. If the
delete were to be rolled back, then the delete_flag is reset
to 0. If another transaction inserts an entry for value v1
into the B-tree index before the entry for value v1 is
garbage collected, the delete_flag of the entry for value v1
is reset to 0.

The physical deletion operations are performed as
garbage collection by other operations (of other
transactions) that happen to pass through the affected
nodes in the B-tree index [KMH97]. A node
reorganization removes all such entries from a leaf of the
B-tree index that have been marked deleted and currently
have no locks on them. This can be implemented in the
following way. We introduce a special short-term Z lock
mode that is not compatible with any lock mode
(including itself). A transaction T can get a Z lock on an
object if no transaction (including transaction T itself) is
currently holding any lock on this object. Also, during the
period that transaction T holds a Z lock on an object, no

transaction (including transaction T itself) can be granted
another lock (including Z lock) on this object.

Note the Z lock mode is different from the X lock mode.
For example, if transaction T itself is currently holding an
S lock on an object, transaction T can still get an X lock
on this object. That is, transaction T can get an X lock on
an object if no other transaction is currently holding any
lock on this object. For each entry with value v whose
delete_flag=1, we request a conditional Z lock
(conditional locks are discussed in [Moh90a]) for value v.
If the conditional Z lock request is granted, we delete this
entry from the leaf of the B-tree index, then we release the
Z lock. If the conditional Z lock request is denied, we do
not do anything with this entry. Then the physical deletion
of this entry is left to other future operations.

We use the Z lock (instead of X lock) to prevent the
following undesirable situation: a transaction that is
currently using an entry (e.g, holding an S lock on the
entry), where the entry is marked logically deleted, tries to
physically delete this entry. Z locks can be implemented
easily using the techniques in [GR93, Chapter 8] (by
making small changes to the lock manager). Note the
above method is different from the method described in
[Moh90b] while both methods work. We choose the Z
lock method to simplify our key-range locking protocol
for aggregate join views on B-tree indices. As mentioned
in [Moh90b], the log record for garbage collection is a
redo-only log record.

In Op4 (put a V value lock on key value v1), the
situation that no entry for value v1 exists in the B-tree
index does not often occur. To illustrate this, consider an
aggregate join view AJV that is defined on base relation R
and several other base relations. Suppose a B-tree index IB
is built on attribute d of the aggregate join view AJV. If we
insert a new tuple t into base relation R and generate
several new join result tuples, we need to acquire
appropriate W value locks on the B-tree index IB before
we can integrate these new join result tuples into the
aggregate join view AJV. If we delete a tuple t from base
relation R, to maintain the aggregate join view AJV,
normally we need to first compute the corresponding join
result tuples that are to be removed from the aggregate
join view AJV. These join result tuples must have been
integrated into the aggregate join view AJV before. Thus,
when we acquire V value locks for their d attribute values,
these d attribute values must exist in the B-tree index IB.

However, there is an exception. Suppose attribute d of
the aggregate join view AJV comes from base relation R.
Consider the following scenario (see Section 4 below for
details). There is only one tuple t in base relation R whose
attribute d=v. However, there is no matching tuple in the
other base relations of the aggregate join view AJV that
can be joined with tuple t. Thus, there is no tuple in the
aggregate join view AJV whose attribute d=v. Suppose
transaction T executes the following SQL statement:

delete from R where R.d=v;

In this case, to maintain the aggregate join view AJV, there
is no need for transaction T to compute the corresponding
join result tuples that are to be removed from the
aggregate join view AJV. Transaction T can execute the
following “direct propagate” update operation:

delete from AJV where AJV.d=v;
Then when transaction T requests a V value lock for d=v
on the B-tree index IB, transaction T will find that no entry
for value v exists in the B-tree index IB. We will return to
direct propagate updates in Section 4.
3.2.2 Are These Techniques Necessary?

The preceding section is admittedly dense and intricate,
so it is reasonable to ask if all this effort is really
necessary. Unfortunately the answer appears to be yes 
if any of the techniques from the previous section are
omitted (and not replaced by other equivalent techniques),
then we cannot guarantee serializability. (The reason why
serializability is guaranteed by our techniques is shown in
the correctness proof in Section 3.2.3.) Due to space
constraints, we refer the reader to [LNE+03] for detailed
examples illustrating the necessity of these techniques.
3.2.3 Sketch of Correctness

Due to space constraints, we only briefly justify the
correctness (serializability) of our key-range locking
strategy for aggregate join views on B-tree indices. A
formal complete correctness proof is available in
[LNE+03]. Suppose a B-tree index IB is built on attribute d
of an aggregate join view AJV. To prove serializability, for
any value v (no matter whether or not an entry for value v
exists in the B-tree index, i.e., the phantom problem
[GR93] is also considered), we only need to show that
there is no read-write, write-read, or write-write conflict
between two different transactions on those tuples of the
aggregate join view AJV whose attribute d has value v
[BHG87, GR93]. As shown in [Kor83], write-write
conflicts are avoided by the commutative and associative
properties of the addition operation. Furthermore, the use
of W locks guarantees that for each aggregate group, at
any time at most one tuple corresponding to this group
exists in the aggregate join view AJV. To show that write-
read and read-write conflicts do not exist, we enumerate
all the possible cases: whether an entry for value v exists
on the B-tree index or not, which transaction gets the
value lock on value v first, and so on. Since we use next-
key locking, in the enumeration, we only need to focus on
value v and the smallest existing value v′ in the B-tree
index IB such that v′> v.

4. Other Uses and Extensions of V Locks

In this section we briefly discuss two other interesting
aspects of using V locks for materialized view
maintenance: the possibility of supporting direct propagate
updates, and how observations about the appropriate
granularity of V locks illustrate the possibility of a locking
protocol for materialized views that supports

serializability without requiring any long-term locks
whatsoever on the views.

4.1 Direct Propagate Updates

In the preceding sections of this paper, with one
exception at the end of Section 3.2.1, we have assumed
that materialized aggregate join views are maintained by
first computing the join of the newly updated (inserted,
deleted) tuples with the other base relations, then
aggregating these join result tuples into the aggregate join
view. In this section we will refer to this approach as the
“ indirect approach” to updating the materialized view.
However, in certain situations, it is possible to propagate
updates on base relations directly to the materialized view,
without computing any join. As we know of at least one
commercial system that supports such direct propagate
updates, in this section we investigate how they can be
handled in our framework.

Direct propagate updates are perhaps most useful in the
case of (non-aggregate) join views, so we consider join
views in the following discussion. (Technically, we do not
need to mention the distinction between join views and
aggregate join views, since non-aggregate join views are
really included in our general class of views – recall that

we are considering views AJV=γ(π(σ(R1
�

R2
� … �

Rn))).
If the aggregate operator γ in this formula has the effect
of putting every tuple of the enclosed project-select-join in
its own group, then what we have is really a non-aggregate
join view.) However, the same discussion holds for direct
propagate updates to aggregate join views.

Our focus in this paper is not to explore the merits of
direct propagate updates or when they apply; rather, it is to
see how they can be accommodated by the V locking
protocol. We begin with an example. Suppose we have
two base relations, A(a, b, c) and B(d, e, f). Consider the
following join view:

create join view JV as
select A.a, A.b, B.e, B.f from A, B where A.c=B.d;

Next consider a transaction T that executes the following
SQL statement:

update A set A.b=2 where A.a=1;
To maintain the join view, transaction T only needs to
execute the following operation (without performing a join
with base relation B):

update JV set JV.b=2 where JV.a=1;
This is a “direct propagate” update, since transaction T
does not compute a join to maintain the view. Similarly,
suppose that a transaction T′ executes the following SQL
statement:

update B set B.e=4 where B.f=3;
To maintain JV, transaction T′ can also do a direct
propagate update with the following operation:

update JV set JV.e=4 where JV.f=3;
If these transactions naively use V locks on the
materialized view, there is apparently a problem: since
two V locks do not conflict, T and T′ can execute

concurrently. This is not correct, since there is a write-
write conflict between T and T′ on any tuple in JV with
a=1 and f=3. This could lead to a non-serializable
schedule.

One way to prevent this would be to require all direct
propagate updates to get X locks on the materialized view
tuples that they update while indirect updates still use V
locks. While this is correct, it is also possible to use V
locks for the direct updates if we require that transactions
that update base relations in materialized view definitions
get X locks on the tuples in the base relations they update
and S locks on the other base relations mentioned in the
view definition. Note that these are exactly the locks the
transactions would acquire if they were using indirect
materialized view updates instead of direct propagate
updates.

Informally, this approach with V locks works because
updates to materialized views (even direct propagate
updates) are not arbitrary; rather, they must be preceded
by updates to base relations. So if two transactions using
V locks would conflict in the join view on some tuple t,
they must conflict on one or more of the base relations
updated by the transactions, and locks at that level will
resolve the conflict.

In our running example, T and T′ would conflict on base
relation A (since T must get an X lock and T′ must get an S
lock on the same tuples in A) and/or on base relation B
(since T must get an S lock and T′ must get an X lock on
the same tuples in B.) Note that these locks could be tuple-
level, or table-level, or anything in between, depending on
the specifics of the implementation. We refer the reader to
[LNE+03] for a formal complete correctness proof of this
approach.

Unlike the situation for indirect updates to materialized
aggregate join views, for direct propagate updates the V
lock will not result in increased concurrency over X locks.
Our point here is to show that we do not need special
locking techniques to handle direct propagate updates: the
transactions obtain locks as if they were doing updates
indirectly (X locks on the base relations they update, S
locks on the base relations with which they join, and V
locks on the materialized view.) Then the transactions can
use either update approach (direct or indirect) and still be
guaranteed of serializability.

4.2 Granular ity and the No-Lock Locking Protocol

Throughout the discussion in this paper we have been
purposely vague about the granularity of locking. This is
because the V lock can be implemented at any granularity;
the appropriate granularity is a question of efficiency, not
of correctness. V locks have some interesting properties
with respect to granularity and concurrency, which we
explore in this section.

In general, finer granularity locking results in higher
concurrency. This is not true of V locks if we consider
only transactions that update the materialized views. The

reason is that V locks do not conflict with one another, so
that a single table-level V lock on a materialized view is
the same, with respect to concurrency of update
transactions, as many tuple-level V locks on the
materialized view.

This is not to say that a single table-level V lock per
materialized view is a good idea; indeed, a single table-
level V lock will block all readers of the materialized view
(since it looks like an X lock to any transaction other than
an updater also getting a V lock.) Finer granularity V
locks will let readers of the materialized view proceed
concurrently with updaters (if, for example, they read
tuples that are not being updated.) In a sense, a single V
lock on the view merely signals “ this materialized view is
being updated;” read transactions “notice” this signal
when they try to place S locks on the view.

This intuition can be generalized to produce a protocol
for materialized views that requires no long-term locks at
all on the materialized views. In this protocol, the function
provided by the V lock on the materialized view (letting
readers know that the view is being updated) is
implemented by X locks on the base relations. The
observation that limited locking is possible when data
access patterns are constrained was exploited in a very
different context (locking protocols for hierarchical
database systems) in [SK80].

In the no-lock locking protocol, like the V locking
protocol, updaters of the materialized view must get X
locks on the base relations they update and S locks on
other base relations mentioned in the view. To interact
appropriately with updaters, readers of the materialized
view are required to get S locks on all the base relations
mentioned in the view. If the materialized view is being
updated, there must be an X lock on one of the base
relations involved, so the reader will block on this lock.
Updaters of the materialized view need not get V locks on
the materialized view (since only they would be obtaining
locks on the view, and they do not conflict with each
other), although they do require short-term W locks to
avoid the split group duplicate problem.

It seems unlikely that in a practical situation this no-
lock locking protocol would yield higher performance
than the V locking protocol. The no-lock locking protocol
benefits updaters (who do not have to get V locks) at the
expense of readers (who have to get multiple S locks.)
However, we present it here as an interesting application
of how the semantics of materialized view updates can be
exploited to reduce locking while still guaranteeing
serializability.

5. Per formance of the V Locking Protocol

In this section, we describe experiments that were
performed on a commercial parallel RDBMS. We focus
on the throughput of a targeted class of transactions (i.e.,
transactions that update a base relation of an aggregate
join view). This is because in a mixed workload

environment, our V locking protocol would greatly
improve the throughput of the targeted class of
transactions while the throughput of other classes of
transactions would remain much the same. Our
measurements were performed with the database client
application and server running on an Intel x86 Family 6
Model 5 Stepping 3 workstation with four 400MHz
processors, 1GB main memory, six 8GB disks, and
running the Microsoft Windows 2000 operating system.
We allocated a processor and a disk for each data server,
so there were at most four data servers on each
workstation.

5.1 Benchmark Descr iption
We used the two relations lineitem and partsupp and the

aggregate join view suppcount that are mentioned in the
introduction for the tests. The schemas of the lineitem and
partsupp relations are listed as follows:

lineitem (orderkey, partkey, price, discount, tax,
orderdate, comment)
partsupp (partkey, suppkey, supplycost, comment)

The underscore indicates the partitioning attributes. The
aggregate join view suppcount is partitioned on the
suppkey attribute. For each relation, we built an index on
the partitioning attribute. In our tests, different partsupp
tuples have different partkey values. There are R different
suppkeys, each corresponding to the same number of
tuples in the partsupp relation.

Table 3. Test data set.
 number of tuples total size

lineitem 8M 586MB
partsupp 0.25M 29MB

We used the following kind of transaction for the
testing:
T: Insert r tuples that have a specific orderkey value into
the lineitem relation. Each of these r tuples has a different
and random partkey value and matches a partsupp tuple
on the partkey attribute. Each of these r matched partsupp
tuples has a different (and thus random) suppkey value.

We evaluated the performance of our V lock method
and the traditional X lock method in the following way:
(1) We tested our largest available hardware

configuration with four data server nodes. This is to
prevent certain system resources (e.g., disk I/Os) from
becoming a bottleneck too easily in the presence of
high concurrency.

(2) We ran x T’s. Each of these x T’s has a different
orderkey value. x is an arbitrarily large number. Its
specific value does not matter, as we only focus on
the throughput of the RDBMS.

(3) In the X lock method, if a transaction deadlocked and
aborted, we automatically re-executed it until it
committed.

(4) We used the tuple throughput (number of tuples
inserted successfully per second) as the performance
metric. It is easy to see that the transaction throughput

= the tuple throughput / r. In the rest of Section 5, we
use throughput to refer to the tuple throughput.

(5) We performed the following test. We fixed R=3,000.
In both the V lock method and the X lock method, we
tested four cases: m=2, m=4, m=8, and m=16, where
m is the number of concurrent transactions. In each
case, we let r vary from 1 to 64.

(6) We could not implement our V locking protocol in
the database software, as we did not have access to
the source code. Since the essence of the V locking
protocol is that V locks do not conflict with each
other, we used the following method to evaluate the
performance of the V lock method. We created m
copies of the aggregate join view suppcount. At any
time, each of the m concurrent transactions dealt with
a different copy of suppcount. Using this method, our
testing results of the V lock method would show
slightly different performance from that of an actual
implementation of the V locking protocol. This is
because in an actual implementation of the V locking
protocol, we would encounter the following issues:
(a) Short-term X page latch conflicts and W lock

conflicts during concurrent updates to the
aggregate join view suppcount.

(b) Hardware cache invalidation in an SMP
environment during concurrent updates to the
aggregate join view suppcount.

However, we believe that these issues are minor
compared to the substantial performance
improvements gained by the V lock method over the
X lock method (see Section 5.2 below for details).
The general trend shown in our testing results should
be close to that of an actual implementation of the V
locking protocol.

5.2 Test Results
As mentioned in the introduction, for the X lock

method, we can use the unified formula min(1, (m-1)(r-
1)4/(4R2)) to roughly estimate the probability that any
particular transaction deadlocks. We validated this
formula in our tests. Due to space constraints, we refer the
reader to [LNE+03] for detailed testing results.

For the X lock method, to see how deadlocks influence
performance, we investigated the relationship between the
throughput and the deadlock probability as follows. It is
easy to see that for the X lock method, when the deadlock
probability becomes close to 1, almost every transaction
will deadlock. Deadlock has the following negative
influences on throughout:
(1) Deadlock detection/resolution is a time-consuming

process. During this period, the deadlocked
transactions cannot make any progress.

(2) The deadlocked transactions will be aborted and re-
executed. During re-execution, these transactions may
deadlock again. This wastes system resources.

Thus, once the system starts to deadlock, the deadlock
problem tends to become worse and worse. Eventually,

the X lock method runs into a severe deadlock problem
and its throughput becomes significantly deteriorated.

Due to space constraints, we only show the ratio of the
throughput of the V lock method over that of the X lock
method in Figure 6. (Note: Figure 6 uses logarithmic scale
for both the x-axis and the y-axis.) More detailed testing
results (including testing results for other test settings) are
available in [LNE+03]. Before the X lock method runs into
the deadlock problem, the throughput of the V lock
method is the same as that of the X lock method.
However, when the X lock method runs into the deadlock
problem, the throughput of the V lock method does not
drop while the throughput of the X lock method is
significantly worse. In this case, the ratio of the
throughput of the V lock method to that of the X lock
method is greater than 1. For example, when r=32, for any
m, this ratio is at least 1.3. When r=64, for any m, this
ratio is at least 3. In general, when the X lock method runs
into the deadlock problem, this ratio increases with both m
and r.

6. Conclusion

The V locking protocol is designed to support
concurrent, immediate updates of materialized aggregate
join views without engendering the high lock conflict rates
and high deadlock rates that could result if two-phase
locking with S and X lock modes were used. This protocol
borrows from the theory of concurrency control for
associative and commutative updates, with the addition of
a short-term W lock to deal with insertion anomalies that
result from some special properties of materialized view
updates. Perhaps surprisingly, due to the interaction
between locks on base relations and locks on the
materialized view, this locking protocol, designed for
concurrent update of aggregates, also supports direct
propagate updates to (non-aggregate) join views.

It is an open question whether or not immediate updates
with serializable semantics are a good idea in the context
of materialized views. Certainly there are advantages to
deferred updates, including potential efficiencies from the
batching of updates and shorter path lengths for
transactions that update base relations mentioned in
materialized views. However, these efficiencies must be
balanced against the semantic uncertainty and the “stale
data” problems that may result when materialized views
are not “ in synch” with base data. The best answer to this
question will only be found through a thorough

exploration of how well both approaches (deferred and
immediate) can be supported; it is our hope that the
techniques in this paper can contribute to the discussion in
this regard.

Acknowledgements
We would like to thank C. Mohan and Henry F. Korth

for useful discussions. This work was supported by the
NCR Corporation and also by NSF grants CDA-9623632
and ITR 0086002.

References
[BHG87] P.A. Bernstein, V. Hadzilacos, N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley publishers,
1987.
[BR92] B.R. Badrinath, K. Ramamritham. Semantics-Based
Concurrency Control: Beyond Commutativity. TODS 17(1): 163-199,
1992.
[GK85] D. Gawlick, D. Kinkade. Varieties of Concurrency Control in
IMS/VS Fast Path. Database Engineering Bulletin 8(2): 3-10, 1985.
[GKS01] J. Gehrke, F. Korn, and D. Srivastava. On Computing
Correlated Aggregates over Continual Data Streams. SIGMOD Conf.
2001: 13-24.
[GLP+76] J. Gray, R.A. Lorie, and G.R. Putzolu et al. Granularity of
Locks and Degrees of Consistency in a Shared Data Base. IFIP Working
Conference on Modeling in Data Base Management Systems 1976: 365-
394.
[GM99] A. Gupta, I.S. Mumick. Materialized Views: Techniques,
Implementations, and Applications. MIT Press, 1999.
[GR93] J. Gray, A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, 1993.
[KLM+97] A. Kawaguchi, D.F. Lieuwen, and I.S. Mumick et al.
Concurrency Control Theory for Deferred Materialized Views. ICDT
1997: 306-320.
[KMH97] M. Kornacker, C. Mohan, and J.M. Hellerstein. Concurrency
and Recovery in Generalized Search Trees. SIGMOD Conf. 1997: 62-72.
[Kor83] H.F. Korth. Locking Primitives in a Database System. JACM
30(1): 55-79, 1983.
[LNE+03] G. Luo, J.F. Naughton, and C.J. Ellmann et al. Locking
Protocols for Materialized Aggregate Join Views. Full version, in
preparation, will be available at
http://www.cs.wisc.edu/~gangluo/locks_full.pdf.
[Lom93] D.B. Lomet. Key Range Locking Strategies for Improved
Concurrency. VLDB 1993: 655-664.
[ML92] C. Mohan, F. Levine. ARIES/IM: An Efficient and High
Concurrency Index Management Method Using Write-Ahead Logging.
SIGMOD Conf. 1992: 371-380.
[Moh90a] C. Mohan. ARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions Operating on B-Tree
Indexes. VLDB 1990: 392-405.
[Moh90b] C. Mohan. Commit_LSN: A Novel and Simple Method for
Reducing Locking and Latching in Transaction Processing Systems.
VLDB 1990: 406-418.
[O86] P.E. O'Neil. The Escrow Transactional Method. TODS 11(4): 405-
430, 1986.
[PF00] M. Poess, C. Floyd. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Record 29(4): 64-71, 2000.
[RAA94] R.F. Resende, D. Agrawal, and A.E. Abbadi. Semantic
Locking in Object-Oriented Database Systems. OOPSLA 1994: 388-402.
[Reu82] A. Reuter. Concurrency on High-trafic Data Elements. PODS
1982: 83-92.
[SK80] A. Silberschatz, Z.M. Kedem. Consistency in Hierarchical
Database Systems. JACM 27(1): 72-80, 1980.

Figure 6. Throughput improvement gai ned by the V
l ock method.

1

10

100

1000

1 10 100
r

th
ro

ug
hp

ut
 r

at
io m=2

m=4
m=8
m=16

