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ABSTRACT 

Progress indicators are desirable for machine learning model 
building that often takes a long time, by continuously estimating 
the remaining model building time and the portion of model 
building work that has been finished. Recently, we proposed a 
high-level framework using system approaches to support non-
trivial progress indicators for machine learning model building, 
but offered no detailed implementation technique. It remains to be 
seen whether it is feasible to provide such progress indicators. In 
this paper, we fill this gap and give the first demonstration that 
offering such progress indicators is viable. We describe detailed 
progress indicator implementation techniques for three major, 
supervised machine learning algorithms. We report an 
implementation of these techniques in Weka. 
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1. INTRODUCTION 
 
 
 
 
 
 
 
 
 

Figure 1. A progress indicator for machine learning model 
building. 

 
Machine learning model building is time-consuming. As 

mentioned in Khan et al. [11, page 121], it takes 2.5 days to use a 
modern graphics processing unit to train a deep convolutional 
neural network on 5,000 images. A team at Google reported 
taking six months using a large computer cluster to train a deep 
convolutional neural network on an internal Google data set with 
100 million images [8]. As a standard rule of thumb in human-
computer interaction, every task taking >10 seconds needs a 
progress indicator (see Figure 1) to continuously estimate the 
remaining task execution time and the portion of the task that has 
been finished [23, Chapter 5.5]. According to this rule of thumb 
and as evidenced by several user requests [1, 10], progress 
indicators are desirable for machine learning model building. This 
desideratum can also be shown by drawing an analogy to database 
query execution. Due to numerous user requests, Microsoft 

recently incorporated progress indicators into its SQL Server 
database management system [12]. Compared to database query 
execution, machine learning model building needs progress 
indicators even more, as it usually runs several orders of 
magnitude more slowly on the same amount of data. In addition to 
making the machine learning software more user friendly and 
helping users better use their time, sophisticated progress 
indicators can also facilitate load management and automatic 
administration, e.g., in order to finish building a model in a given 
amount of time [20]. As detailed in our paper [20], some machine 
learning software provides trivial progress indicators for model 
building with certain machine learning algorithms, like displaying 
the number of decision trees that have been formed in a random 
forest. Yet, to the best of our knowledge, no existing machine 
learning software offers a non-trivial progress indicator. 

Recently, we proposed a high-level framework using system 
approaches to support non-trivial progress indicators for machine 
learning model building, but offered no detailed implementation 
technique [20]. It is an open question whether such progress 
indicators can be provided and give useful information. In this 
paper, we fill this gap by demonstrating for the first time that 
offering such progress indicators is viable. We describe detailed 
progress indicator implementation techniques for three major, 
supervised machine learning algorithms: neural network, decision 
tree, and random forest. We report an implementation of these 
techniques in Weka [32]. While the resulting progress indicator 
could be enhanced, our experiments show that it is useful even 
with varying run-time system loads and estimation errors from the 
machine learning software. Furthermore, it incurs a negligible 
penalty on model building time. 

Sophisticated progress indicators originated from the database 
community [5, 16-18]. To support progress indicators for machine 
learning model building, we modify several system techniques 
originally developed for database query progress indicators. In 
addition, we design several new techniques tailored to machine 
learning model building, and use a different method to estimate 
the model building cost for each machine learning algorithm. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 reviews our previously 
proposed, high-level framework for supporting progress indicators 
for machine learning model building. Section 4 presents a set of 
progress indicator implementation techniques for three supervised 
machine learning algorithms. Section 5 reports an implementation 
of these techniques in Weka. Section 6 points out some interesting 
areas for future work. We conclude in Section 7. 
 

2. RELATED WORK 
In this section, we briefly discuss related work. A detailed 

discussion of related work is provided in our prior paper [20]. 



 

 

 
Sophisticated progress indicators 

Researchers have built sophisticated progress indicators for 
database queries [5, 12, 16-18], subgraph queries [33], static 
program analysis [13], program compilation [15], and MapReduce 
jobs [21, 22]. In addition, we have designed sophisticated progress 
indicators for automatic machine learning model selection [14, 
19]. Since each type of task has its own properties, we cannot use 
the techniques described in prior work [5, 13-18, 21, 22, 33] for 
machine learning model building directly without modification. 
 
Predicting machine learning model building time 

Multiple papers have been published on predicting machine 
learning model building time [6, 25-29]. The predicted model 
building time is usually inaccurate, is not continuously revised, 
and could differ significantly from the actual model building time 
on a loaded computer. Progress indicators need to keep revising 
the predicted model building time. 
 
Complexity analysis 

For constructing a machine learning model, researchers have 
conducted much work computing the time complexity and giving 
theoretical bounds on the number of rounds that will be required 
for passing through the training set [2, 30]. This information is 
insufficient to support progress indicators and offers no estimate 
of model building time on a loaded computer. Time complexity 
usually ignores coefficients and lower order terms needed for 
projecting model building cost. Data properties can affect the 
number of needed rounds. The theoretical bounds on that number 
are often loose and ignore data properties [24]. To support 
progress indicators properly, the projected number of rounds 
should be periodically revised as model building proceeds. 

 
Below is a list of symbols used in the paper. 

b number of training instances in each bootstrap sample 
cavg the average actual cost of building each previous tree in 

the random forest 
C child node of an internal node of the decision tree 
ce approximate cost of building the current tree in the 

random forest 
cj actual cost of building the j-th tree in the random forest 
𝑐̂௞ projected cost of building the k-th tree in the random 

forest 
𝑐̂௉ଵ Procedure 1’s cost estimate 
𝑐̂௉ଶ Procedure 2’s cost estimate 
𝑐̂௉ଷ Procedure 3’s cost estimate 
d  total number of features of the data set 
dcat number of categorical features of the data set 
dJ number of relevant features needing to be checked at 

internal node J of the decision tree 
dnum number of numerical features of the data set 
f(n) cost of sorting n training instances for a numerical 

feature 
g minimum number of data instances required at each leaf 

node of the decision tree 
𝐺෠௃ estimated growth cost of the subtree rooted at node J of 

the decision tree 
J internal node of the decision tree 
l number of non-leaf levels of the decision tree 
m number of trees included in the random forest 
n number of training instances 

nJ number of training instances reaching internal node J of 
the decision tree 

p estimated percentage of work that has been completed 
for building the current tree in the random forest 

R root node of the decision tree 
S, S1, S2 set of training instances 
|S| number of elements in the set of training instances S 
Tj the j-th tree in the random forest 
TJ the subtree rooted at internal node J of the decision tree 
U unit of work 
w amount of work in U that has been completed for 

building the current tree in the random forest 
g threshold for deciding whether to keep refining the 

estimated growth cost of a subtree during its growth 
s threshold for deciding whether to keep refining the 

estimated sorting cost of a set of training instances 
during the sorting process 

 

3. OUR PREVIOUSLY PROPOSED 
FRAMEWORK 

In this section, we briefly review our previously proposed, 
high-level framework for supporting progress indicators for 
machine learning model building. We start with the model 
building cost estimated by the machine learning software. Both 
the projected model building cost and the current model building 
speed are measured by U, the unit of work. When data are in the 
form of a collection of data instances, each U depicts one data 
instance. The model building cost is the total number of data 
instances to be processed counting repeated processing. 

During model building, we keep collecting multiple statistics 
such as the number of model building iterations and the number of 
data instances that have been processed. We keep monitoring the 
model building speed defined as the number of Us processed in 
the last K seconds. K’s default value is 10. While a model is being 
built, we obtain more precise information about the model 
building task and keep revising the estimated model building cost. 
This more precise information is used to periodically update the 
progress indicator. At any given time, the estimated remaining 
model building time = the estimated remaining model building 
cost / the current model building speed. 
 

4. IMPLEMENTATION TECHNIQUES 
In this section, we describe detailed progress indicator 

implementation techniques for three major, supervised machine 
learning algorithms: neural network, decision tree, and random 
forest. Often, an algorithm can be implemented in one of several 
ways [2, 32]. This paper’s goal is neither to cover many 
algorithms and all possible ways of implementing each algorithm, 
nor to have the progress indicator’s estimates attain the maximum 
possible accuracy. Instead, our goal is to demonstrate, via using 
three algorithms and some typical ways of implementing them as 
case studies, that it is feasible to offer non-trivial and useful 
progress indicators for machine learning model building. Users 
can often benefit even from a rough estimate of the remaining 
model building time [4]. 
 

4.1 Neural network 
In this section, we describe the method for estimating the cost 

of training a neural network. A neural network is trained in epochs. 
Each epoch requires passing through all training instances once, 
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with a cost in U equal to the number of training instances. The 
cost of training a neural network is estimated as the number of 
training instances × the number of epochs needed. Before a neural 
network can be trained, the user of the machine learning software 
needs to specify the number of desired epochs as a hyper-
parameter value. We use this value as the estimated number of 
epochs needed. If early stopping does not occur, the neural 
network will be trained for this number of epochs. 
 
4.2 Decision tree 

In this section, we describe the method for estimating the cost 
of building a decision tree. We consider a univariate decision tree 
implemented using the C4.5 algorithm described in Witten et al. 
[32]. The tree building process consists of two stages. In the first 
stage, the tree grows fully. In the second stage, the tree is pruned. 
The tree building cost is the sum of the tree growth and pruning 
costs. Whenever we refine the estimated tree growth or pruning 
cost, we revise the estimated tree building cost accordingly. Also, 
once the tree grows fully, we know the exact tree growth cost and 
update the estimated tree building cost correspondingly. 

Building a decision tree requires many basic operations. An 
example of a basic operation is comparing two training instances 
based on a numerical feature’s values. In our computation, each 
basic operation has a cost of 1U. In what follows, we first review 
a classical result that will be used in estimating the tree building 
cost (Section 4.2.1). Then we show how to estimate the tree 
growth cost (Sections 4.2.2 and 4.2.3). Finally, we present how to 
estimate the tree pruning cost (Sections 4.2.4 and 4.2.5). 
 
4.2.1 A classical result 

When estimating the tree building cost, we use the following 
result, which has previously been used to analyze the quicksort 
algorithm’s complexity. 
 
Theorem 1. Given n=2h and the recursive equation 𝑙ሺ𝑛ሻ ൌ
2𝑙ሺ𝑛/2ሻ ൅ 𝑐𝑛, we have 𝑙ሺ𝑛ሻ ൌ 𝑛/2 ൈ 𝑙ሺ2ሻ ൅ 𝑐𝑛 ሺlogଶ 𝑛 െ 1ሻ. 
Proof. 𝑙ሺ𝑛ሻ ൌ 2𝑙ሺ𝑛/2ሻ ൅ 𝑐𝑛 

ൌ 2ሺ2𝑙ሺ𝑛/4ሻ ൅ 𝑐𝑛/2ሻ ൅ 𝑐𝑛 
ൌ 2ଶ𝑙ሺ𝑛/4ሻ ൅ 2𝑐𝑛 
ൌ ⋯ 
ൌ 2௛ିଵ𝑙ሺ𝑛/2௛ିଵሻ ൅ ሺℎ െ 1ሻ𝑐𝑛 
ൌ 𝑛/2 ൈ 𝑙ሺ2ሻ ൅ 𝑐𝑛ሺlogଶ 𝑛 െ 1ሻ.   (as ℎ ൌ logଶ 𝑛)  ■ 

 

4.2.2 The initial tree growth cost estimate 
In this section, we show how to compute the initial cost 

estimate of fully growing a decision tree. 
 
4.2.2.1 Overview 

Let n denote the number of training instances, dcat denote the 
number of categorical features, dnum denote the number of 
numerical features, d=dcat+dnum denote the total number of 
features of the data set, and g denote the minimum number of data 
instances required at each leaf node of the tree. 

Initially, before tree building starts, we make two simplifying 
assumptions when estimating the tree growth cost, to make the 
computation more tractable: 
(1) Assumption 1: Each internal node J chooses one of the d 

features as its splitting attribute. If the splitting attribute is a 
numerical feature, J has two child nodes. This feature is 
checked at each internal node below J (i.e., each descendant, 
non-leaf node of J) to decide the test function to be used 

there. Otherwise, if the splitting attribute is a categorical 
feature, J can have >2 child nodes, one for each possible 
feature value. This feature is no longer checked at any node 
below J. We assume that each internal node chooses a 
numerical feature as its splitting attribute. Consequently, 
each internal node has two child nodes. All d features are 
checked at each internal node to decide the test function to be 
used there. 

(2) Assumption 2: How balanced a tree is affects its growth 
cost. A decision tree is usually reasonably, albeit not 
perfectly, balanced [9]. Using this as a heuristic, we assume 
the tree is perfectly balanced (Figure 2), with each leaf node 
containing exactly g training instances. Also, we assume no 
feature value is missing in any training instance. 
Accordingly, the tree has ~n/g leaf nodes. When each 
internal node has two child nodes, the tree has ~logଶሺ𝑛/𝑔ሻ 
non-leaf levels. Each of the n training instances reaches 
exactly one node on any given level. All training instances 
arriving at each internal node are divided into two partitions 
of equal size based on the test function used there. 

As the tree is being built, we collect various statistics like the 
number of training instances reaching each internal node and the 
number of features needing to be checked at each internal node. 
We keep correcting any inaccuracies caused by these two 
assumptions so that the impact of these inaccuracies on the cost 
estimate diminishes over time. This is essential for making the 
tree growth cost estimated by the progress indicator more precise 
over time. 

Figure 2. A perfectly balanced decision tree. 
 

The tree growth cost has three components, one for each of 
three procedures: 
1) Procedure 1: For each numerical feature, sort all training 

instances based on its values. This is done once at the root 
node. As shown in Witten et al. [32, pages 211-212], 
repeated sorting can be avoided at other internal nodes using 
additional storage. If this is not the case, training instances 
need to be sorted for each numerical feature at each internal 
node. 

2) Procedure 2: Check every relevant feature at each internal 
node to decide the test function to be used there. 

3) Procedure 3: Split all training instances arriving at each 
internal node into two or more partitions based on the test 
function used there. 

The tree growth cost is the sum of these three procedures’ costs. 
 

4.2.2.2 Procedure 1’s initial cost estimate 
In Procedure 1, the quicksort algorithm is often used to 

implement sorting. In this case, we proceed similarly to the 
standard best-case complexity analysis of the quicksort algorithm 
to estimate the cost f(n) in U of sorting n training instances for a 
numerical feature. Our cost estimation method computes both 
coefficients and lower order terms, which are usually ignored in 



 

 

complexity analysis. The cost of comparing two training instances 
based on a numerical feature’s values is taken to be 1U. In the 
best case, the pivot instance we pick from a set of training 
instances divides the set into two partitions of equal size. To form 
the two partitions, the pivot instance is compared with each other 
training instance in the set, each with a cost of 1U. Then the two 
partitions are sorted one after another. Thus, we have 

𝑓ሺ𝑛ሻ ൌ 2𝑓ሺሺ𝑛 െ 1ሻ/2ሻ ൅ 𝑛 െ 1  
2𝑓ሺ𝑛/2ሻ ൅ 𝑛. 

Using the result described in Section 4.2.1, we obtain 
 𝑓ሺ𝑛ሻ𝑛/2 ൈ 𝑓ሺ2ሻ ൅ 𝑛 ሺlogଶ 𝑛 െ 1ሻ 

  ൌ 𝑛/2 ൅ 𝑛 ሺlogଶ 𝑛 െ 1ሻ 
ൌ 𝑛 ሺlogଶ 𝑛 െ 1/2ሻ. 

In the second step of the above derivation, we take f(2), the cost of 
sorting two training instances, to be 1U. The rationale for this is 
that to sort two training instances, we need to compare them based 
on the numerical feature’s values. As the n training instances need 
to be sorted once for each of the dnum numerical features, 
Procedure 1’s cost in U is estimated to be 

𝑐̂௉ଵ ൌ 𝑑௡௨௠𝑓ሺ𝑛ሻ  
𝑑௡௨௠𝑛 ሺlogଶ 𝑛 െ 1/2ሻ. 

The above discussion applies to the case that sorting of training 
instances is done only at the root node and avoided at other 
internal nodes using additional storage [32, pages 211-212]. If this 
is not the case and training instances are sorted for each numerical 
feature at each internal node, we estimate Procedure 1’s cost 
instead as follows. Let l denote the number of non-leaf levels of 
the tree. Based on Assumptions 1 and 2, the i-th (0≤i≤l-1) non-leaf 
level has 2i internal nodes, each with n/2i training instances 
reaching it. For each of the dnum numerical features, the cost of 
sorting n/2i training instances at each such internal node is f(n/2i). 
Procedure 1’s cost in U is estimated to be 

𝑐̂௉ଵ ൌ ∑ 𝑑௡௨௠2௜𝑓ሺ
௡

ଶ೔
ሻ௟ିଵ

௜ୀ଴   

ൎ 𝑑௡௨௠ ∑ 2௜
௡

ଶ೔
ሺlogଶ

௡

ଶ೔
െ 1/2ሻ௟ିଵ

௜ୀ଴   

ൌ 𝑑௡௨௠ ∑ 𝑛 ሺlogଶ 𝑛 െ 𝑖 െ 1/2ሻ௟ିଵ
௜ୀ଴   

ൌ 𝑑௡௨௠𝑛ሾሺlogଶ 𝑛 െ 1/2ሻ𝑙 െ 𝑙ሺ𝑙 െ 1ሻ/2ሿ  
ൌ 𝑑௡௨௠𝑛𝑙ሾlogଶ 𝑛 െ 𝑙/2ሿ  
𝑑௡௨௠𝑛 logଶሺ𝑛/𝑔ሻ logଶሺ𝑛𝑔ሻ /2.     (as 𝑙 logଶሺ𝑛/𝑔ሻ) 

 
4.2.2.3 Procedure 2’s initial cost estimate 

In Procedure 2, we check every relevant feature at each internal 
node to decide the test function to be used there. At an internal 
node, each of the d features is relevant and checked based on 
Assumption 1. To check a categorical feature, we pass through all 
training instances arriving at the node once, with a cost in U = the 
number of these training instances. To check a numerical feature, 
we first sort all training instances arriving at the node based on the 
feature’s values, and then pass through them once. The former’s 
cost is already included in Procedure 1’s cost, and thus is 
excluded from Procedure 2’s cost. The latter’s cost in U = the 
number of these training instances. 

Based on Assumption 2, all n training instances reach each of 
the ~logଶሺ𝑛/𝑔ሻ non-leaf levels of the tree. For every non-leaf 
level and each of the d features, we pass through all n training 
instances once to check the feature at all internal nodes at that 
level, with a cost in U = n. Accordingly, Procedure 2’s cost in U is 
estimated to be 𝑐̂௉ଶ ൌ 𝑑𝑛 logଶሺ𝑛/𝑔ሻ. 
 
4.2.2.4 Procedure 3’s initial cost estimate 

In Procedure 3, we split all training instances arriving at each 
internal node into two or more partitions based on the test 

function used there. To split all training instances arriving at an 
internal node, we pass through them once, with a cost in U = the 
number of these training instances. 

Based on Assumption 2, all n training instances reach each of 
the ~logଶሺ𝑛/𝑔ሻ non-leaf levels of the tree. At each non-leaf level, 
we pass through all n training instances once to split them at all 
internal nodes at that level, with a cost in U = n. In addition, for 
each of the dnum numerical features, we pass through all n training 
instances a second time at all internal nodes at that level, with a 
cost in U = n. This is to produce the data structure in each 
partition recording the sort order of the training instances there 
based on the feature’s values [32, pages 211-212]. Putting it all 
together, Procedure 3’s cost in U is estimated to be 𝑐̂௉ଷ ൌ
ሺ𝑑௡௨௠ ൅ 1ሻ𝑛 logଶሺ𝑛/𝑔ሻ. 
 
4.2.3 Refining the estimated tree growth cost 

In this section, we show how to continuously refine the cost 
estimate of fully growing a decision tree. We first present how to 
keep refining Procedures 2 and 3’s cost estimates (Section 
4.2.3.2). Then we describe how to refine Procedure 1’s cost 
estimate regularly (Sections 4.2.3.3 and 4.2.3.4). At cost 
refinement time, the tree growth cost is projected as the sum of 
Procedures 1, 2, and 3’s cost estimates. Whenever we refine the 
cost estimate of Procedure 1, 2, or 3, we revise the estimated tree 
growth cost accordingly. Also, once Procedure 1 finishes at the 
root node, we know Procedure 1’s exact cost and revise the 
estimated tree growth cost accordingly. 
 
4.2.3.1 Collecting statistics 

During tree building, we track both the number of training 
instances nJ arriving and the number of relevant features dJ 
needing to be checked at each internal node J of the tree. All 
numerical features are relevant at each internal node. In 
comparison, once a categorical feature is used as the splitting 
attribute at an internal node J, the feature becomes irrelevant at 
each internal node below J. Thus, we compute dJ recursively. For 
the root node R, dR = the total number of features d of the data set. 
For each child internal node C of J, dC=dJ if a numerical feature is 
used as the splitting attribute at J. dC=dJ-1 if a categorical feature 
is used as the splitting attribute at J. 
 
4.2.3.2 Refining Procedures 2 and 3’s cost estimates 

When arriving at an internal node J, we compute the test 
function to be used at J, and then split all training instances 
reaching J into two or more partitions based on the test function. 
Before the split is done, we estimate the growth cost of each 
subtree rooted at a child internal node of J based on Assumptions 
1 and 2: a numerical feature will be used as the splitting attribute 
at J to divide the nJ training instances reaching J into two 
partitions of equal size. In Procedure 2, to check each of the dJ 
relevant features at J to decide the test function to be used there, 
we incur a cost of dJnJ. In Procedure 3, to split the nJ training 
instances reaching J into partitions and to create the data structure 
in each partition recording the sort order for each of the dnum 
numerical features [32, pages 211-212], we incur a cost of 
ሺ𝑑௡௨௠ ൅ 1ሻ𝑛௃. 

Once the split is complete, for each child internal node C of J, 
we know both the number of training instances nC reaching C and 
the number of features dC needing to be checked at C. Then, if 
needed, using an approach similar to that in Sections 4.2.2.3 and 



 

 

4.2.2.4 to estimate and add Procedures 2 and 3’s costs, we project 
the growth cost of the subtree rooted at C as 

𝐺෠஼ ൌ 𝑐̂௉ଶ ൅ 𝑐̂௉ଷ  
ൌ 𝑑஼𝑛஼ logଶሺ𝑛஼/𝑔ሻ ൅ ሺ𝑑௡௨௠ ൅ 1ሻ𝑛஼ logଶሺ𝑛஼/𝑔ሻ  
ൌ ሺ𝑑஼ ൅ 𝑑௡௨௠ ൅ 1ሻ 𝑛஼logଶሺ𝑛஼/𝑔ሻ. 

When no training instance reaching J has a missing splitting 
attribute value, we have ∑ 𝑛஼஼ ൌ 𝑛௃. Otherwise, if some training 
instances reaching J have missing splitting attribute values and are 
put into every partition at J, we have ∑ 𝑛஼஼ ൐ 𝑛௃. 

When arriving at an internal node J, we compare the projected 
growth cost 𝐺෠௃ ൌ ሺ𝑑௃ ൅ 𝑑௡௨௠ ൅ 1ሻ 𝑛௃logଶሺ𝑛௃/𝑔ሻ  of the subtree 

TJ rooted at J with a given threshold g. When J is the root node, 
we have a slight abuse of notation: 𝐺෠௃  excludes Procedure 1’s 
cost, which should be included in TJ’s growth cost. The 
comparison has two possible results: 
1) 𝐺෠௃ ൐ 𝜏௚: We keep refining the estimated growth cost of TJ 

during its growth. When we finish Procedures 2 and 3 for J, 
we refine the estimated tree growth cost as the sum of the 
amount of work that has been completed, and the projected 
growth cost of each top-level subtree remaining to be built. 

2) 𝐺෠௃ ൑ 𝜏௚: We do not refine the estimated growth cost of TJ 
during its growth. Instead, we can grow TJ fully and know its 
actual growth cost quickly, without incurring any additional 
estimation overhead. Once TJ grows fully, we refine the 
estimated tree growth cost in the same way as mentioned 
above. 

In our implementation, we set g’s default value to 10,000 to 
strike a balance between minimizing estimation overhead and 
keeping refining the estimated tree building cost at a reasonable 
frequency. 

Figure 3. A decision tree under construction. 
 

For example, Figure 3 shows a tree under construction. Nodes 
J1, J2, and J4 and the subtree 𝑇௃య  rooted at node J3 have been 
formed. We just finished Procedures 2 and 3 for J4 whose 𝐺෠௃ర is 

>g. The subtrees 𝑇௃ఱ , 𝑇௃ల , 𝑇௃ళ , and 𝑇௃ఴ  rooted at nodes J5, J6, J7, 
and J8, respectively, are yet to be built. By this time, we have 
already known both the number of training instances arriving and 
the number of relevant features needing to be checked at each of 
J5, J6, J7, and J8. Using these numbers, we have projected 𝑇௃ఱ, 𝑇௃ల, 
𝑇௃ళ , and 𝑇௃ఴ ’s growth costs. The estimated tree growth cost is 
refined as the sum of the amount of work that has been done in 
forming J1, J2, J4, and 𝑇௃య, and the projected growth costs of 𝑇௃ఱ, 
𝑇௃ల, 𝑇௃ళ, and 𝑇௃ఴ. 
 

4.2.3.3 Refining the cost estimate of sorting all 
training instances for a numerical feature 

We grow the tree starting from the root node. As mentioned in 
Procedure 1, for each numerical feature at the root node, we use 
the quicksort algorithm to sort all training instances based on the 
feature’s values. Below, we show how to refine the cost estimate 
of sorting all training instances for a numerical feature 
continuously. Our discussion focuses on the case that no training 
instance has a missing value for the feature. If this is not the case, 
those training instances with missing values for the feature do not 
need to be sorted. We modify our computation to estimate the 
other training instances’ sorting cost. Procedure 1’s cost is the 
sum of the sorting cost for each numerical feature. 

Quicksort works by recursively partitioning the set of training 
instances. As shown in Figure 4, this is similar to performing 
Procedures 2 and 3 to grow a binary decision tree. Accordingly, to 
keep refining the cost estimate of sorting all training instances for 
a numerical feature, we use a method similar to that in Section 
4.2.3.2 for refining Procedures 2 and 3’s cost estimates regularly. 

Figure 4. A tree-style representation of the quicksort process. 
 
Let |S| denote the number of elements in a set of training 

instances S. During sorting, we track the number of elements in 
each partition of training instances. To sort S, we pick from S one 
pivot instance and compare it with each other training instance in 
S, each with a cost of 1U. Accordingly, the other training 
instances in S are split into two partitions S1 and S2, with 
|S1|+|S2|=|S|-1. S1 and S2 are then sorted one after the other. Once 
the split of S is done, we know |S1| and |S2|. Then, if needed, we 
use the approach in Section 4.2.2.2 to project Sj’s (j=1, 2) sorting 
cost in U as 

𝑓൫|𝑆௝|൯ ൌ |𝑆௝| ሺlogଶห𝑆௝ห െ 1/2ሻ. 
Before starting to sort a set of training instances S, we compare 

|S| with a given threshold s. There are two possible cases: 
1) |S|>s: We keep refining the estimated cost of sorting S 

during the sorting process. Once the split of S is done, we 
refine the estimated cost of sorting all training instances for 
the numerical feature as the sum of the amount of work that 
has been completed for this sorting, and the projected cost of 
sorting each top-level partition of training instances 
remaining to be processed. 

2) |S|≤s: We do not refine the estimated cost of sorting S during 
the sorting process. Instead, we can sort S and know its 
actual sorting cost quickly, without incurring any additional 
estimation overhead. Once S is sorted, we refine the 
estimated cost of sorting all training instances for the 
numerical feature in the same way as mentioned above. 

pivot instance 1

partition 1 
of training 
instances

pivot instance 2 

pivot instance 3

partition 2 
of training 
instances

partition 3 
of training 
instances 

partition 4 
of training 
instances

J8J2 

J1 

J7 J4 

J5 

J3 

J6 

𝑇௃ఱ 𝑇௃ల 𝑇௃ళ 𝑇௃ఴ

𝑇௃య 



 

 

In our implementation, we set s’s default value to 5,000 to strike 
a balance between minimizing estimation overhead and keeping 
refining the estimated tree building cost at a reasonable frequency. 
 
4.2.3.4 Refining Procedure 1’s cost estimate 

Next, we describe how to continuously refine Procedure 1’s 
cost estimate. In Procedure 1, we sort all training instances for 
each numerical feature one by one at the root node. This is similar 
to building all trees in a random forest one after another. Section 
4.3.2 presents our method for regularly refining a random forest’s 
building cost estimate. We use a similar method to keep refining 
Procedure 1’s cost estimate, by treating sorting all training 
instances for a numerical feature at the root node like building a 
tree in the random forest. 

 
4.2.4 The initial tree pruning cost estimate 

In this section, we show how to compute the initial tree pruning 
cost estimate. Two procedures can be done to prune a tree: subtree 
replacement and subtree raising. Our discussion focuses on the 
most important procedure of subtree replacement. Subtree raising 
can be time-consuming and is often not worthwhile [32, pages 
214-215]. How to estimate its cost is left as an interesting area for 
future work. 

In subtree replacement, each subtree is checked. If deemed 
appropriate, it is replaced by a leaf node. This check coupled with 
potential replacement is done recursively, going from the leaf 
nodes up towards the root node. We regard checking a subtree 
coupled with potential replacement as a basic operation with a 
cost of 1U. Each subtree is rooted at a distinct internal node. The 
subtree replacement cost in U = the number of internal nodes. 
Based on Assumption 2, the tree is projected to have ~n/g leaf 
nodes. If it is full binary (Assumption 1), it has ~n/g-1 internal 
nodes. Thus, we project both the subtree replacement cost in U 
and the number of internal nodes in the tree to be n/g-1. 

 
4.2.5 Refining the estimated tree pruning cost 

In this section, we show how to continuously refine the 
estimated cost of subtree replacement. During tree growth, we 
track the number of internal nodes that have been created. To 
revise the subtree replacement cost estimate, we refine the 
projected number of internal nodes in the tree whenever 
Procedures 2 and 3’s cost estimates are revised (see Section 
4.2.3.2). 

More specifically, when arriving at an internal node J, we split 
all training instances reaching J into two or more partitions based 
on the test function used at J. Once the split is done, for each child 
internal node C of J, we know the number of training instances nC 
reaching C. Then, if needed, using an approach similar to that in 
Section 4.2.4, we project the number of internal nodes in the 
subtree rooted at C as nC/g-1. 

When arriving at an internal node J, we compare the projected 
growth cost 𝐺෠௃ of the subtree TJ rooted at J with the threshold g. 
There are two possible cases: 
1) 𝐺෠௃ ൐ 𝜏௚: We keep refining the estimated number of internal 

nodes in TJ during its growth. When we finish Procedures 2 
and 3 for J, we refine the projected number of internal nodes 
in the tree as the sum of the number of internal nodes that 
have been created, and the projected number of internal 
nodes in each top-level subtree remaining to be built. 

2) 𝐺෠௃ ൑ 𝜏௚: We do not refine the estimated number of internal 
nodes in TJ during its growth. Instead, we can grow TJ fully 

and know its actual number of internal nodes quickly, 
without incurring any additional estimation overhead. Once 
TJ grows fully, we refine the projected number of internal 
nodes in the tree in the same way as mentioned above. 

Once the tree grows fully, we know the exact number of its 
internal nodes. 
 
4.3 Random forest 

In this section, we describe the method for estimating the cost 
of building a random forest. 
 
4.3.1 The initial cost estimate 

A random forest is an ensemble of decision trees. A separate 
bootstrap sample of all training instances is created to build each 
tree. The random forest’s building cost is the sum of each tree’s 
building cost and each bootstrap sample’s creation cost. 

Let b denote the number of training instances in each bootstrap 
sample. We regard obtaining a training instance for a bootstrap 
sample as a basic operation with a cost of 1U. Each bootstrap 
sample’s creation cost in U = b. 

Consider a random forest including m trees Tj (1≤j≤m). Before 
building the random forest, we use the approach in Section 4.2.2 
to compute an initial cost estimate of building a tree, by 
considering the following three factors in deriving the cost 
estimation formulas: 1) the tree is built using a bootstrap sample 
with b training instances; 2) at each internal node of the tree, a 
fixed fraction of all features rather than all features are examined; 
and 3) no pruning is required. The initial cost estimate of building 
the random forest 

= (the initial cost estimate of building a tree + b) × m. 
 
4.3.2 Refining the cost estimate 

We build the m trees one by one, from T1 to Tm. We refine the 
random forest’s building cost estimate whenever we finish 
building a tree or revise its estimated building cost. When 
building Ti (1≤i≤m), we already know each previous tree Tj’s 
(1≤j≤i-1) actual building cost cj. These actual costs’ average value, 
𝑐௔௩௚ ൌ ∑ 𝑐௩

௜ିଵ
௩ୀଵ /ሺ𝑖 െ 1ሻ, gives useful information for estimating 

the building costs of Ti and each subsequent tree Tk (i+1≤k≤m). 
We project the random forest’s building cost as the sum of each 
previous tree Tj’s (1≤j≤i-1) actual building cost cj, Ti’s projected 
building cost 𝑐̂௜ , each subsequent tree Tk’s (i+1≤k≤m) projected 
building cost 𝑐̂௞, and each bootstrap sample’s creation cost b. We 
use the approach in Section 4.2.3 to keep refining Ti’s 
approximate building cost ce, by considering the three factors 
listed in Section 4.3.1. There are two possible cases of projecting 
the random forest’s building cost: 
1) i=1: We use ce as Ti’s projected building cost. The random 

forest’s projected building cost = m(ce + b). 
2) i>1: We use both cavg and ce to project Ti’s building cost. 

More specifically, let w denote the amount of work in U that 
has been completed for building Ti. p=w/ce is an estimate of 
the percentage of work that has been completed for building 
Ti. Via linear interpolation, we project Ti’s building cost to be 

𝑐̂௜ ൌ 𝑝 ൈ 𝑐௘ ൅ ሺ1 െ 𝑝ሻ ൈ 𝑐௔௩௚  
ൌ 𝑤 ൅ ሺ1 െ 𝑝ሻ ൈ 𝑐௔௩௚.  

At the beginning of building Ti, Ti’s building cost is projected 
to be cavg, which is computed using prior, actual tree building 
costs on the current data set and could be more accurate than 
the estimate of ce. As Ti is being built, the projected cost 𝑐̂௜ 



 

 

keeps shifting towards ce. After Ti finishes building, the 
projected cost 𝑐̂௜ = ce = Ti’s actual building cost. 

We project each subsequent tree Tk (i+1≤k≤m)’s building 
cost as the average cost of building each previous tree Tj 
(1≤j≤i-1) and Ti: 

𝑐̂௞ ൌ ሺ∑ 𝑐௩
௜ିଵ
௩ୀଵ ൅𝑐̂௜ሻ/𝑖.  

Accordingly, the random forest’s projected building cost 
  ൌ ∑ 𝑐௩

௜ିଵ
௩ୀଵ ൅𝑐̂௜ ൅ ∑ 𝑐̂௞ ൅ 𝑏𝑚௠

௞ୀ௜ାଵ  
ൌ 𝑚ሾሺ∑ 𝑐௩

௜ିଵ
௩ୀଵ ൅𝑐̂௜ሻ/𝑖 ൅ 𝑏ሿ. 

As individual trees are being built, our cost estimation method 
tries to keep refining the random forest’s projected building cost 
smoothly. When we switch from finishing building one tree to 
starting building the next tree, the random forest’s projected 
building cost experiences no sudden jump. 
 

5. PERFORMANCE 
In this section, we present the performance results of progress 

indicators for machine learning model building. We implemented 
our techniques described in Section 4 in Weka Version 3.8 [32]. 
Weka is a widely used, open-source machine learning and data 
mining package. In all of our tests, our progress indicators could 
be updated every ten seconds with negligible overhead and gave 
useful information. We consider this to have met the three goals 
we set in our prior paper [20] for progress indicators: continuously 
revised estimates, minimal overhead, and acceptable pacing. 

 

5.1 Experiment description 
Our measurements were performed with Weka running on a 

Dell Precision 7510 computer with one quad-core 2.70GHz 
processor, 64GB main memory, one 2TB SATA disk, and running 
the Microsoft Windows 10 Pro operating system. 

We used two well-known benchmark data sets (Table 1) from 
two standard machine learning data repositories [31, 34]. For each 
machine learning algorithm covered in Section 4, we chose a data 
set, on which model building took >100 seconds, to evaluate the 
progress indicator. The Arrhythmia data set [31] was used to 
evaluate the progress indicator for training neural networks. The 
“MNIST basic” data set [34] was used to evaluate the progress 
indicators for training the decision tree and random forest. In this 
study, the accuracy that a particular machine learning algorithm 
can achieve on a specific data set is irrelevant. Our purpose here is 
to show how well our progress indicators work, rather than to find 
the algorithm that can reach the highest accuracy on a given data 
set. As every task taking >10 seconds needs a progress indicator 
[23, Chapter 5.5], these two data sets are sufficient for 
demonstrating both the need for progress indicators for model 
building and our progress indicators’ performance. Using larger 
data sets will alter neither the trends shown by the performance 
curves nor our study’s main conclusions. 

 
Table 1. The data sets used. 

name # of data instances # of attributes # of classes 
Arrhythmia 452 279 16 
MNIST basic 62,000 784 10 

 
We used the default hyper-parameter value setting in Weka, 

except that for decision tree, we disabled subtree raising and did 
not unnecessarily force any split point of a numerical feature to be 
an actual data value. We performed two types of tests: 
1) Unloaded system test: We built the machine learning model 

on an unloaded system. 

2) Workload interference test: We started model building on 
an unloaded system. In the middle of model building, we 
started a new program creating 20 threads. Each thread kept 
running a CPU-intensive function until model building 
finished. These 20 threads competed with model building for 
CPU cycles. 

For neural network, we report the progress indication results for 
both the unloaded system and the workload interference tests. For 
decision tree and random forest, we report the progress indication 
results for the unloaded system test only. For the workload 
interference test, the progress indication results for decision tree 
and random forest are similar to those for neural network, and 
provide no extra information. In all tests, we stored the progress 
indicators’ outputs in a file. 
 

5.2 Test results for neural network 
5.2.1 Unloaded system test results for neural network 

In this test, a neural network was trained on an unloaded 
system. This test’s purpose is to show that for neural network 
whose training follows a known, fixed pattern in the absence of 
early stopping, the progress indicator’s estimates can be quite 
precise on an unloaded system. 

Figure 5 shows the model building cost estimated by the 
progress indicator over time, with the exact model building cost 
depicted by the horizontal dotted line. The curve that represents 
the model building cost estimated by the progress indicator is a 
straight line and overlaps with the horizontal dotted line depicting 
the exact model building cost. During the entire model building 
process, the progress indicator knew the number of epochs needed 
and the exact model building cost. 

 

 
Figure 5. Model building cost estimated over time (unloaded 

system test for neural network). 
 

 
Figure 6. Model building speed over time (unloaded system 

test for neural network). 
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Figure 6 shows the model building speed monitored by the 

progress indicator over time. As the sole job running in the 
system, the neural network was trained at a regular pace, going 
through one training instance at a time. During the entire model 
building process, the monitored model building speed was 
relatively stable. 

Figure 7 shows the remaining model building time estimated by 
the progress indicator over time, with the actual remaining model 
building time depicted by the dashed line. The dashed line is close 
to the curve showing the remaining model building time estimated 
by the progress indicator. That is, during the entire model building 
process, the remaining model building time estimated by the 
progress indicator was quite precise. This is because during the 
entire model building process, the progress indicator knew the 
exact model building cost, and the model building speed was 
relatively stable. 

 

 
Figure 7. Remaining model building time estimated over time 

(unloaded system test for neural network). 
 
Figure 8 shows the progress indicator’s estimate of the 

percentage of model building work that has been completed over 
time. As work kept being performed at a relatively steady speed, 
the completed percentage curve is close to a straight line. 

 

 
Figure 8. Completed percentage estimated over time 

(unloaded system test for neural network). 
 

5.2.2 Workload interference test results for neural 
network 

In the workload interference test, we started training a neural 
network on an unloaded system. In the middle of model training 
(at 90 seconds), we started a new program creating 20 threads one 
by one. Each thread kept running a CPU-intensive function until 

model building finished. Spawning these 20 threads took time and 
was completed at 150 seconds. These 20 threads made the system 
heavily loaded, decreased model building speed, and increased 
model building time from 290 seconds to 415 seconds. This test’s 
purpose is to show how our progress indicator adjusts to varying 
run-time system loads. In each figure of Section 5.2.2, we use two 
vertical dash-dotted lines, one depicting the time when the new 
program started running, and another indicating the time when all 
20 threads were created. 

Figure 9 shows the model building speed monitored by the 
progress indicator over time. Before the new program began 
running at 90 seconds, the shape of the curve in Figure 9 is similar 
to that in Figure 6. Once the new program began running, the 
model building speed kept decreasing as the 20 threads were 
created one after another, until all of them were formed at 150 
seconds. This reflected that the system load kept increasing as 
new threads were started. After 150 seconds, the model building 
speed remained relatively stable at a lower level. 
 

 
Figure 9. Model building speed over time (workload 

interference test for neural network). 
 

 

 
Figure 10. Remaining model building time estimated over 

time (workload interference test for neural network). 
 
Figure 10 shows the remaining model building time estimated 

by the progress indicator over time, with the actual remaining 
model building time depicted by the dashed line. Before the new 
program started running at 90 seconds, the shape of the curve in 
Figure 10 is similar to that in Figure 7. During the entire model 
building process, the progress indicator knew the exact model 
building cost. Before 90 seconds, the progress indicator’s 
estimation error of the remaining model building time mainly 
resulted from the unexpected, large increase in system load 
starting after 90 seconds. After the new program started running at 
90 seconds and as the 20 threads were created one after another, 
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the remaining model building time estimated by the progress 
indicator increased a few times. After all 20 threads were formed 
at 150 seconds, the dashed line becomes close to the curve 
showing the remaining model building time estimated by the 
progress indicator. That is, the remaining model building time 
estimated by the progress indicator became quite precise. 

Figure 11 shows the progress indicator’s estimate of the 
percentage of model building work that has been completed over 
time. This percentage kept increasing over time, as work was 
continuously being done. The impact of running the new program 
is obvious starting from 90 seconds. 
 

 
Figure 11. Completed percentage estimated over time 

(workload interference test for neural network). 
 

5.3 Test results for decision tree 
In this test, a decision tree was trained on an unloaded system. 

This test’s purpose is to show how the progress indicator handles 
the machine learning software’s estimation errors for a base 
model. 

Figure 12 shows the model building cost estimated by the 
progress indicator over time, with the exact model building cost 
depicted by the horizontal dotted line. At the beginning of model 
building, the progress indicator’s estimated model building cost, 
which came from Weka, was far different from the exact model 
building cost. The estimation error of the model building cost 
resulted from the two simplifying assumptions we made in 
Section 4.2.2.1 when estimating the tree growth cost. The closer 
to the completion of model building, the more precise the model 
building cost estimated by the progress indicator. This reflects the 
progress indicator’s ability of continually correcting the 
inaccuracies caused by these two assumptions. 
 

 
Figure 12. Model building cost estimated over time (unloaded 

system test for decision tree). 
 

Figure 13 shows the model building speed monitored by the 
progress indicator over time. During model building, the 
monitored model building speed fluctuated. This results from the 
fact that decision tree building requires several types of basic 
operations. An example of a basic operation in Procedure 1 is 
comparing two training instances based on a numerical feature’s 
values. An example of a basic operation in Procedure 3 is 
allocating a training instance reaching an internal node to one of 
several partitions based on the test function used there. Different 
types of basic operations have varying processing overhead. This 
variance is ignored by our current cost estimation method. 
 

 
Figure 13. Model building speed over time (unloaded system 

test for decision tree). 
 
Figure 14 shows the remaining model building time estimated 

by the progress indicator over time, with the actual remaining 
model building time depicted by the dashed line. At the beginning 
of model building, the progress indicator’s estimated remaining 
model building time was far different from the actual remaining 
model building time. The closer to the completion of model 
building, the more precise the remaining model building time 
estimated by the progress indicator. This is because the model 
building cost estimated by the progress indicator became more 
precise as model building proceeded. The fluctuations in the 
progress indicator’s estimated remaining model building time 
resulted from the fluctuations in the monitored model building 
speed, as well as from the continuous refinement the progress 
indicator made to the estimated model building cost over time. 
 

 
Figure 14. Remaining model building time estimated over 

time (unloaded system test for decision tree). 
 
Figure 15 shows the progress indicator’s estimate of the 

percentage of model building work that has been completed over 
time. This percentage kept increasing over time, as work was 
continuously being done. Due to both the fluctuations in the 
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monitored model building speed and the continuous refinement 
the progress indicator made to the estimated model building cost 
over time, the completed percentage curve is not quite close to a 
straight line. 
 

 
Figure 15. Completed percentage estimated over time 

(unloaded system test for decision tree). 
 

5.4 Test results for random forest 
In this test, a random forest was trained on an unloaded system. 

This test’s purpose is to show how the progress indicator handles 
the machine learning software’s estimation errors for an ensemble 
model. In the default setting of Weka, a random forest includes 
100 decision trees. On average, each tree took ~2.6 seconds to 
build on the “MNIST basic” data set. 

Figure 16 shows the model building cost estimated by the 
progress indicator over time, with the exact model building cost 
depicted by the horizontal dotted line. At the beginning of model 
building, the progress indicator’s estimated model building cost, 
which came from Weka, was far different from the exact model 
building cost. However, once several decision trees were formed, 
the progress indicator obtained a reasonably accurate estimate of 
the average tree building cost, and could use this estimate to 
compute an accurate cost estimate of building the random forest. 
Thus, the progress indicator’s estimated model building cost 
became close to the exact model building cost in 10-20 seconds. 
 

 
Figure 16. Model building cost estimated over time (unloaded 

system test for random forest). 
 
Figure 17 shows the model building speed monitored by the 

progress indicator over time. During model building, the 
monitored model building speed fluctuated. This mainly resulted 
from two factors varying the work done over time. First, differing 
decision trees were built on different bootstrap samples of the data 

set. Second, a distinct subset of features was examined at each 
internal node of a tree. 
 

 
Figure 17. Model building speed over time (unloaded system 

test for random forest). 
 
Figure 18 shows the remaining model building time estimated 

by the progress indicator over time, with the actual remaining 
model building time depicted by the dashed line. Starting from 10 
seconds, the dashed line becomes reasonably close to the curve 
showing the remaining model building time estimated by the 
progress indicator. That is, the progress indicator’s estimated 
remaining model building time became reasonably precise. The 
closer to the completion of model building, the more precise the 
remaining model building time estimated by the progress 
indicator. Since the progress indicator’s estimated model building 
cost no longer changed much after 20 seconds, the fluctuations in 
the progress indicator’s estimated remaining model building time 
mainly resulted from the fluctuations in the monitored model 
building speed. 
 

 
Figure 18. Remaining model building time estimated over 

time (unloaded system test for random forest). 
 
Figure 19 shows the progress indicator’s estimate of the 

percentage of model building work that has been completed over 
time. As the progress indicator’s estimated model building cost no 
longer changed much after 20 seconds and work kept being 
performed at a relatively steady speed, the completed percentage 
curve is close to a straight line. 
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Figure 19. Completed percentage estimated over time 

(unloaded system test for random forest). 
 

6. AREAS FOR FUTURE WORK 
In this section, we point out some interesting areas for future 

work to improve the progress indicator’s estimates for the 
machine learning algorithms covered in Section 4. We hope this 
will stimulate future research on this topic. As for the algorithms 
not covered in Section 4, we leave it as another interesting area 
for future work to design the detailed progress indicator 
implementation techniques. Some high-level ideas of how to build 
progress indicators for some of those algorithms are provided in 
our paper [20]. 
 

6.1 Neural network 
In training a neural network, overtraining can become an issue 

and can be addressed by early stopping [3]. When the user of the 
machine learning software allows early stopping, network training 
may end early rather than always last for the full number of 
epochs specified by the user. A standard way to implement early 
stopping is to use a validation set separate from the training set. 
When the neural network’s error on the validation set satisfies a 
given criterion, such as increasing a certain number of times 
consecutively, network training is stopped. 

When early stopping is allowed, the number of epochs needed 
for training the neural network is unknown beforehand and needs 
to be estimated. Before network training starts, we can perform 
meta-learning to compute an initial estimate of the number of 
epochs needed. Meta-learning constructs a predictive model using 
historical data from training neural networks on prior data sets. 
The predictive model projects the number of epochs needed based 
on the neural network’s hyper-parameter values and the data set’s 
feature values. The projected number is always ≤ the number of 
desired epochs specified by the user of the machine learning 
software. Meta-learning was used previously to forecast machine 
learning model building time [6, 25-29]. 

As a neural network is being trained, we periodically conduct 
meta-learning to refine the estimated number of epochs needed. In 
this case, we use a different predictive model, whose inputs 
include not only the neural network’s hyper-parameter values and 
the data set’s feature values, but also feature values extracted from 
the curve that depicts the neural network’s error on the validation 
set over the previous epochs. A high-level idea of how to 
extrapolate and use this curve for this purpose is given in our 
paper [20]. 

Training a deep neural network from scratch usually requires a 
lot of labelled data. When a deep neural network needs to be 
trained on a new data set of moderate size, supervised pre-training 

is often used to address the issue of insufficient training data, by 
initializing the network’s weights from those pre-trained on a 
related, large data set [7]. When early stopping is allowed, 
supervised pre-training impacts both the number of epochs needed 
for training the network and the curve depicting the network’s 
error on the validation set over epochs. This needs to be 
considered during meta-learning. In the presence and absence of 
supervised pre-training, we use two different sets of predictive 
models to project the number of epochs needed. 

When early stopping is allowed, the cost of repeatedly 
evaluating the neural network on the validation set becomes part 
of the model building cost. Going through a training instance once 
has a different overhead from evaluating the neural network on a 
validation instance. If this difference is large, we can reflect it in 
the cost estimation by giving a weight ≠1 to the latter operation. 

The weighting method can also be used to handle cost 
estimation for voting. In voting, an ensemble of models forms the 
final model. Its building cost is the sum of each individual 
model’s building cost. The overhead of doing one unit of work 
can vary across different individual models. If the variance is 
large, we can reflect it in the cost estimation by giving a differing 
weight to each individual model. One way to assign the weights is 
to measure the average amount of CPU time taken to do one unit 
of work for each individual model. We initialize the weights from 
numbers computed from model building on historical data, and 
keep adjusting the weights based on measurements obtained from 
building the individual models in the current ensemble. 
 
6.2 Decision tree 

As shown in Section 4.2, building a decision tree requires 
several types of basic operations. Different types of basic 
operations have varying processing overhead. This variance is 
ignored by our current cost estimation method. To make the 
progress indicator’s estimates more precise, we can reflect this 
variance in cost estimation by giving a distinct weight to each 
type of basic operation. Similar to the approach mentioned above 
for voting, one way to assign the weights is to measure the 
average amount of CPU time taken to perform a basic operation 
of each type. 

Our current cost estimation method does not handle subtree 
raising. Witten et al. [32, page 218] showed that given n training 
instances, subtree raising has a time complexity of 𝑂ሺ𝑛ሺlogଶ 𝑛ሻଶሻ. 
We can estimate the subtree raising cost as 𝑛ሺlogଶ 𝑛ሻଶ × a factor, 
project the factor via meta-learning, and keep refining the 
projected value during tree building. 

 

7. CONCLUSIONS 
In this paper, we describe detailed progress indicator 

implementation techniques for three major, supervised machine 
learning algorithms. Our main idea is to use a different method to 
estimate the model building cost for each algorithm. As a model is 
being built, we keep monitoring the current model building speed 
and revising the estimated model building cost. We continuously 
give the user an estimate of both the remaining model building 
time and the percentage of model building work that has been 
finished. Our experiments show that a non-trivial progress 
indicator based on our techniques gives useful information, adapts 
to varying run-time system loads, and compensates for the 
machine learning software’s estimation errors. This provides the 
first demonstration that offering non-trivial progress indicators for 
machine learning model building is feasible. 
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