

Progress Indicator

 Neural network

Elapsed time 1 min 17 sec
Estimated time left 3 min 21 sec (25% done)
Estimated cost 4,288,804 U
Model building speed 16,003 U/sec Cancel

Progress Indication for Machine Learning Model Building:
A Feasibility Demonstration

Gang Luo

Department of Biomedical Informatics and Medical Education, University of Washington
UW Medicine South Lake Union, 850 Republican Street, Building C, Box 358047

Seattle, WA 98195, USA
luogang@uw.edu

ABSTRACT

Progress indicators are desirable for machine learning model
building that often takes a long time, by continuously estimating
the remaining model building time and the portion of model
building work that has been finished. Recently, we proposed a
high-level framework using system approaches to support non-
trivial progress indicators for machine learning model building,
but offered no detailed implementation technique. It remains to be
seen whether it is feasible to provide such progress indicators. In
this paper, we fill this gap and give the first demonstration that
offering such progress indicators is viable. We describe detailed
progress indicator implementation techniques for three major,
supervised machine learning algorithms. We report an
implementation of these techniques in Weka.

Keywords
Machine learning, progress indicator, Weka

1. INTRODUCTION

Figure 1. A progress indicator for machine learning model
building.

Machine learning model building is time-consuming. As

mentioned in Khan et al. [11, page 121], it takes 2.5 days to use a
modern graphics processing unit to train a deep convolutional
neural network on 5,000 images. A team at Google reported
taking six months using a large computer cluster to train a deep
convolutional neural network on an internal Google data set with
100 million images [8]. As a standard rule of thumb in human-
computer interaction, every task taking >10 seconds needs a
progress indicator (see Figure 1) to continuously estimate the
remaining task execution time and the portion of the task that has
been finished [23, Chapter 5.5]. According to this rule of thumb
and as evidenced by several user requests [1, 10], progress
indicators are desirable for machine learning model building. This
desideratum can also be shown by drawing an analogy to database
query execution. Due to numerous user requests, Microsoft

recently incorporated progress indicators into its SQL Server
database management system [12]. Compared to database query
execution, machine learning model building needs progress
indicators even more, as it usually runs several orders of
magnitude more slowly on the same amount of data. In addition to
making the machine learning software more user friendly and
helping users better use their time, sophisticated progress
indicators can also facilitate load management and automatic
administration, e.g., in order to finish building a model in a given
amount of time [20]. As detailed in our paper [20], some machine
learning software provides trivial progress indicators for model
building with certain machine learning algorithms, like displaying
the number of decision trees that have been formed in a random
forest. Yet, to the best of our knowledge, no existing machine
learning software offers a non-trivial progress indicator.

Recently, we proposed a high-level framework using system
approaches to support non-trivial progress indicators for machine
learning model building, but offered no detailed implementation
technique [20]. It is an open question whether such progress
indicators can be provided and give useful information. In this
paper, we fill this gap by demonstrating for the first time that
offering such progress indicators is viable. We describe detailed
progress indicator implementation techniques for three major,
supervised machine learning algorithms: neural network, decision
tree, and random forest. We report an implementation of these
techniques in Weka [32]. While the resulting progress indicator
could be enhanced, our experiments show that it is useful even
with varying run-time system loads and estimation errors from the
machine learning software. Furthermore, it incurs a negligible
penalty on model building time.

Sophisticated progress indicators originated from the database
community [5, 16-18]. To support progress indicators for machine
learning model building, we modify several system techniques
originally developed for database query progress indicators. In
addition, we design several new techniques tailored to machine
learning model building, and use a different method to estimate
the model building cost for each machine learning algorithm.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 reviews our previously
proposed, high-level framework for supporting progress indicators
for machine learning model building. Section 4 presents a set of
progress indicator implementation techniques for three supervised
machine learning algorithms. Section 5 reports an implementation
of these techniques in Weka. Section 6 points out some interesting
areas for future work. We conclude in Section 7.

2. RELATED WORK
In this section, we briefly discuss related work. A detailed

discussion of related work is provided in our prior paper [20].

Sophisticated progress indicators

Researchers have built sophisticated progress indicators for
database queries [5, 12, 16-18], subgraph queries [33], static
program analysis [13], program compilation [15], and MapReduce
jobs [21, 22]. In addition, we have designed sophisticated progress
indicators for automatic machine learning model selection [14,
19]. Since each type of task has its own properties, we cannot use
the techniques described in prior work [5, 13-18, 21, 22, 33] for
machine learning model building directly without modification.

Predicting machine learning model building time

Multiple papers have been published on predicting machine
learning model building time [6, 25-29]. The predicted model
building time is usually inaccurate, is not continuously revised,
and could differ significantly from the actual model building time
on a loaded computer. Progress indicators need to keep revising
the predicted model building time.

Complexity analysis

For constructing a machine learning model, researchers have
conducted much work computing the time complexity and giving
theoretical bounds on the number of rounds that will be required
for passing through the training set [2, 30]. This information is
insufficient to support progress indicators and offers no estimate
of model building time on a loaded computer. Time complexity
usually ignores coefficients and lower order terms needed for
projecting model building cost. Data properties can affect the
number of needed rounds. The theoretical bounds on that number
are often loose and ignore data properties [24]. To support
progress indicators properly, the projected number of rounds
should be periodically revised as model building proceeds.

Below is a list of symbols used in the paper.

b number of training instances in each bootstrap sample
cavg the average actual cost of building each previous tree in

the random forest
C child node of an internal node of the decision tree
ce approximate cost of building the current tree in the

random forest
cj actual cost of building the j-th tree in the random forest
𝑐̂௞ projected cost of building the k-th tree in the random

forest
𝑐̂௉ଵ Procedure 1’s cost estimate
𝑐̂௉ଶ Procedure 2’s cost estimate
𝑐̂௉ଷ Procedure 3’s cost estimate
d total number of features of the data set
dcat number of categorical features of the data set
dJ number of relevant features needing to be checked at

internal node J of the decision tree
dnum number of numerical features of the data set
f(n) cost of sorting n training instances for a numerical

feature
g minimum number of data instances required at each leaf

node of the decision tree
𝐺෠௃ estimated growth cost of the subtree rooted at node J of

the decision tree
J internal node of the decision tree
l number of non-leaf levels of the decision tree
m number of trees included in the random forest
n number of training instances

nJ number of training instances reaching internal node J of
the decision tree

p estimated percentage of work that has been completed
for building the current tree in the random forest

R root node of the decision tree
S, S1, S2 set of training instances
|S| number of elements in the set of training instances S
Tj the j-th tree in the random forest
TJ the subtree rooted at internal node J of the decision tree
U unit of work
w amount of work in U that has been completed for

building the current tree in the random forest
g threshold for deciding whether to keep refining the

estimated growth cost of a subtree during its growth
s threshold for deciding whether to keep refining the

estimated sorting cost of a set of training instances
during the sorting process

3. OUR PREVIOUSLY PROPOSED
FRAMEWORK

In this section, we briefly review our previously proposed,
high-level framework for supporting progress indicators for
machine learning model building. We start with the model
building cost estimated by the machine learning software. Both
the projected model building cost and the current model building
speed are measured by U, the unit of work. When data are in the
form of a collection of data instances, each U depicts one data
instance. The model building cost is the total number of data
instances to be processed counting repeated processing.

During model building, we keep collecting multiple statistics
such as the number of model building iterations and the number of
data instances that have been processed. We keep monitoring the
model building speed defined as the number of Us processed in
the last K seconds. K’s default value is 10. While a model is being
built, we obtain more precise information about the model
building task and keep revising the estimated model building cost.
This more precise information is used to periodically update the
progress indicator. At any given time, the estimated remaining
model building time = the estimated remaining model building
cost / the current model building speed.

4. IMPLEMENTATION TECHNIQUES
In this section, we describe detailed progress indicator

implementation techniques for three major, supervised machine
learning algorithms: neural network, decision tree, and random
forest. Often, an algorithm can be implemented in one of several
ways [2, 32]. This paper’s goal is neither to cover many
algorithms and all possible ways of implementing each algorithm,
nor to have the progress indicator’s estimates attain the maximum
possible accuracy. Instead, our goal is to demonstrate, via using
three algorithms and some typical ways of implementing them as
case studies, that it is feasible to offer non-trivial and useful
progress indicators for machine learning model building. Users
can often benefit even from a rough estimate of the remaining
model building time [4].

4.1 Neural network
In this section, we describe the method for estimating the cost

of training a neural network. A neural network is trained in epochs.
Each epoch requires passing through all training instances once,

level 0

level 1

level 2

with a cost in U equal to the number of training instances. The
cost of training a neural network is estimated as the number of
training instances × the number of epochs needed. Before a neural
network can be trained, the user of the machine learning software
needs to specify the number of desired epochs as a hyper-
parameter value. We use this value as the estimated number of
epochs needed. If early stopping does not occur, the neural
network will be trained for this number of epochs.

4.2 Decision tree

In this section, we describe the method for estimating the cost
of building a decision tree. We consider a univariate decision tree
implemented using the C4.5 algorithm described in Witten et al.
[32]. The tree building process consists of two stages. In the first
stage, the tree grows fully. In the second stage, the tree is pruned.
The tree building cost is the sum of the tree growth and pruning
costs. Whenever we refine the estimated tree growth or pruning
cost, we revise the estimated tree building cost accordingly. Also,
once the tree grows fully, we know the exact tree growth cost and
update the estimated tree building cost correspondingly.

Building a decision tree requires many basic operations. An
example of a basic operation is comparing two training instances
based on a numerical feature’s values. In our computation, each
basic operation has a cost of 1U. In what follows, we first review
a classical result that will be used in estimating the tree building
cost (Section 4.2.1). Then we show how to estimate the tree
growth cost (Sections 4.2.2 and 4.2.3). Finally, we present how to
estimate the tree pruning cost (Sections 4.2.4 and 4.2.5).

4.2.1 A classical result

When estimating the tree building cost, we use the following
result, which has previously been used to analyze the quicksort
algorithm’s complexity.

Theorem 1. Given n=2h and the recursive equation 𝑙ሺ𝑛ሻ ൌ
2𝑙ሺ𝑛/2ሻ ൅ 𝑐𝑛, we have 𝑙ሺ𝑛ሻ ൌ 𝑛/2 ൈ 𝑙ሺ2ሻ ൅ 𝑐𝑛 ሺlogଶ 𝑛 െ 1ሻ.
Proof. 𝑙ሺ𝑛ሻ ൌ 2𝑙ሺ𝑛/2ሻ ൅ 𝑐𝑛

ൌ 2ሺ2𝑙ሺ𝑛/4ሻ ൅ 𝑐𝑛/2ሻ ൅ 𝑐𝑛
ൌ 2ଶ𝑙ሺ𝑛/4ሻ ൅ 2𝑐𝑛
ൌ ⋯
ൌ 2௛ିଵ𝑙ሺ𝑛/2௛ିଵሻ ൅ ሺℎ െ 1ሻ𝑐𝑛
ൌ 𝑛/2 ൈ 𝑙ሺ2ሻ ൅ 𝑐𝑛ሺlogଶ 𝑛 െ 1ሻ. (as ℎ ൌ logଶ 𝑛) ■

4.2.2 The initial tree growth cost estimate
In this section, we show how to compute the initial cost

estimate of fully growing a decision tree.

4.2.2.1 Overview

Let n denote the number of training instances, dcat denote the
number of categorical features, dnum denote the number of
numerical features, d=dcat+dnum denote the total number of
features of the data set, and g denote the minimum number of data
instances required at each leaf node of the tree.

Initially, before tree building starts, we make two simplifying
assumptions when estimating the tree growth cost, to make the
computation more tractable:
(1) Assumption 1: Each internal node J chooses one of the d

features as its splitting attribute. If the splitting attribute is a
numerical feature, J has two child nodes. This feature is
checked at each internal node below J (i.e., each descendant,
non-leaf node of J) to decide the test function to be used

there. Otherwise, if the splitting attribute is a categorical
feature, J can have >2 child nodes, one for each possible
feature value. This feature is no longer checked at any node
below J. We assume that each internal node chooses a
numerical feature as its splitting attribute. Consequently,
each internal node has two child nodes. All d features are
checked at each internal node to decide the test function to be
used there.

(2) Assumption 2: How balanced a tree is affects its growth
cost. A decision tree is usually reasonably, albeit not
perfectly, balanced [9]. Using this as a heuristic, we assume
the tree is perfectly balanced (Figure 2), with each leaf node
containing exactly g training instances. Also, we assume no
feature value is missing in any training instance.
Accordingly, the tree has ~n/g leaf nodes. When each
internal node has two child nodes, the tree has ~logଶሺ𝑛/𝑔ሻ
non-leaf levels. Each of the n training instances reaches
exactly one node on any given level. All training instances
arriving at each internal node are divided into two partitions
of equal size based on the test function used there.

As the tree is being built, we collect various statistics like the
number of training instances reaching each internal node and the
number of features needing to be checked at each internal node.
We keep correcting any inaccuracies caused by these two
assumptions so that the impact of these inaccuracies on the cost
estimate diminishes over time. This is essential for making the
tree growth cost estimated by the progress indicator more precise
over time.

Figure 2. A perfectly balanced decision tree.

The tree growth cost has three components, one for each of
three procedures:
1) Procedure 1: For each numerical feature, sort all training

instances based on its values. This is done once at the root
node. As shown in Witten et al. [32, pages 211-212],
repeated sorting can be avoided at other internal nodes using
additional storage. If this is not the case, training instances
need to be sorted for each numerical feature at each internal
node.

2) Procedure 2: Check every relevant feature at each internal
node to decide the test function to be used there.

3) Procedure 3: Split all training instances arriving at each
internal node into two or more partitions based on the test
function used there.

The tree growth cost is the sum of these three procedures’ costs.

4.2.2.2 Procedure 1’s initial cost estimate
In Procedure 1, the quicksort algorithm is often used to

implement sorting. In this case, we proceed similarly to the
standard best-case complexity analysis of the quicksort algorithm
to estimate the cost f(n) in U of sorting n training instances for a
numerical feature. Our cost estimation method computes both
coefficients and lower order terms, which are usually ignored in

complexity analysis. The cost of comparing two training instances
based on a numerical feature’s values is taken to be 1U. In the
best case, the pivot instance we pick from a set of training
instances divides the set into two partitions of equal size. To form
the two partitions, the pivot instance is compared with each other
training instance in the set, each with a cost of 1U. Then the two
partitions are sorted one after another. Thus, we have

𝑓ሺ𝑛ሻ ൌ 2𝑓ሺሺ𝑛 െ 1ሻ/2ሻ ൅ 𝑛 െ 1
2𝑓ሺ𝑛/2ሻ ൅ 𝑛.

Using the result described in Section 4.2.1, we obtain
 𝑓ሺ𝑛ሻ𝑛/2 ൈ 𝑓ሺ2ሻ ൅ 𝑛 ሺlogଶ 𝑛 െ 1ሻ

 ൌ 𝑛/2 ൅ 𝑛 ሺlogଶ 𝑛 െ 1ሻ
ൌ 𝑛 ሺlogଶ 𝑛 െ 1/2ሻ.

In the second step of the above derivation, we take f(2), the cost of
sorting two training instances, to be 1U. The rationale for this is
that to sort two training instances, we need to compare them based
on the numerical feature’s values. As the n training instances need
to be sorted once for each of the dnum numerical features,
Procedure 1’s cost in U is estimated to be

𝑐̂௉ଵ ൌ 𝑑௡௨௠𝑓ሺ𝑛ሻ
𝑑௡௨௠𝑛 ሺlogଶ 𝑛 െ 1/2ሻ.

The above discussion applies to the case that sorting of training
instances is done only at the root node and avoided at other
internal nodes using additional storage [32, pages 211-212]. If this
is not the case and training instances are sorted for each numerical
feature at each internal node, we estimate Procedure 1’s cost
instead as follows. Let l denote the number of non-leaf levels of
the tree. Based on Assumptions 1 and 2, the i-th (0≤i≤l-1) non-leaf
level has 2i internal nodes, each with n/2i training instances
reaching it. For each of the dnum numerical features, the cost of
sorting n/2i training instances at each such internal node is f(n/2i).
Procedure 1’s cost in U is estimated to be

𝑐̂௉ଵ ൌ ∑ 𝑑௡௨௠2௜𝑓ሺ
௡

ଶ೔
ሻ௟ିଵ

௜ୀ଴

ൎ 𝑑௡௨௠ ∑ 2௜
௡

ଶ೔
ሺlogଶ

௡

ଶ೔
െ 1/2ሻ௟ିଵ

௜ୀ଴

ൌ 𝑑௡௨௠ ∑ 𝑛 ሺlogଶ 𝑛 െ 𝑖 െ 1/2ሻ௟ିଵ
௜ୀ଴

ൌ 𝑑௡௨௠𝑛ሾሺlogଶ 𝑛 െ 1/2ሻ𝑙 െ 𝑙ሺ𝑙 െ 1ሻ/2ሿ
ൌ 𝑑௡௨௠𝑛𝑙ሾlogଶ 𝑛 െ 𝑙/2ሿ
𝑑௡௨௠𝑛 logଶሺ𝑛/𝑔ሻ logଶሺ𝑛𝑔ሻ /2. (as 𝑙 logଶሺ𝑛/𝑔ሻ)

4.2.2.3 Procedure 2’s initial cost estimate

In Procedure 2, we check every relevant feature at each internal
node to decide the test function to be used there. At an internal
node, each of the d features is relevant and checked based on
Assumption 1. To check a categorical feature, we pass through all
training instances arriving at the node once, with a cost in U = the
number of these training instances. To check a numerical feature,
we first sort all training instances arriving at the node based on the
feature’s values, and then pass through them once. The former’s
cost is already included in Procedure 1’s cost, and thus is
excluded from Procedure 2’s cost. The latter’s cost in U = the
number of these training instances.

Based on Assumption 2, all n training instances reach each of
the ~logଶሺ𝑛/𝑔ሻ non-leaf levels of the tree. For every non-leaf
level and each of the d features, we pass through all n training
instances once to check the feature at all internal nodes at that
level, with a cost in U = n. Accordingly, Procedure 2’s cost in U is
estimated to be 𝑐̂௉ଶ ൌ 𝑑𝑛 logଶሺ𝑛/𝑔ሻ.

4.2.2.4 Procedure 3’s initial cost estimate

In Procedure 3, we split all training instances arriving at each
internal node into two or more partitions based on the test

function used there. To split all training instances arriving at an
internal node, we pass through them once, with a cost in U = the
number of these training instances.

Based on Assumption 2, all n training instances reach each of
the ~logଶሺ𝑛/𝑔ሻ non-leaf levels of the tree. At each non-leaf level,
we pass through all n training instances once to split them at all
internal nodes at that level, with a cost in U = n. In addition, for
each of the dnum numerical features, we pass through all n training
instances a second time at all internal nodes at that level, with a
cost in U = n. This is to produce the data structure in each
partition recording the sort order of the training instances there
based on the feature’s values [32, pages 211-212]. Putting it all
together, Procedure 3’s cost in U is estimated to be 𝑐̂௉ଷ ൌ
ሺ𝑑௡௨௠ ൅ 1ሻ𝑛 logଶሺ𝑛/𝑔ሻ.

4.2.3 Refining the estimated tree growth cost

In this section, we show how to continuously refine the cost
estimate of fully growing a decision tree. We first present how to
keep refining Procedures 2 and 3’s cost estimates (Section
4.2.3.2). Then we describe how to refine Procedure 1’s cost
estimate regularly (Sections 4.2.3.3 and 4.2.3.4). At cost
refinement time, the tree growth cost is projected as the sum of
Procedures 1, 2, and 3’s cost estimates. Whenever we refine the
cost estimate of Procedure 1, 2, or 3, we revise the estimated tree
growth cost accordingly. Also, once Procedure 1 finishes at the
root node, we know Procedure 1’s exact cost and revise the
estimated tree growth cost accordingly.

4.2.3.1 Collecting statistics

During tree building, we track both the number of training
instances nJ arriving and the number of relevant features dJ
needing to be checked at each internal node J of the tree. All
numerical features are relevant at each internal node. In
comparison, once a categorical feature is used as the splitting
attribute at an internal node J, the feature becomes irrelevant at
each internal node below J. Thus, we compute dJ recursively. For
the root node R, dR = the total number of features d of the data set.
For each child internal node C of J, dC=dJ if a numerical feature is
used as the splitting attribute at J. dC=dJ-1 if a categorical feature
is used as the splitting attribute at J.

4.2.3.2 Refining Procedures 2 and 3’s cost estimates

When arriving at an internal node J, we compute the test
function to be used at J, and then split all training instances
reaching J into two or more partitions based on the test function.
Before the split is done, we estimate the growth cost of each
subtree rooted at a child internal node of J based on Assumptions
1 and 2: a numerical feature will be used as the splitting attribute
at J to divide the nJ training instances reaching J into two
partitions of equal size. In Procedure 2, to check each of the dJ
relevant features at J to decide the test function to be used there,
we incur a cost of dJnJ. In Procedure 3, to split the nJ training
instances reaching J into partitions and to create the data structure
in each partition recording the sort order for each of the dnum
numerical features [32, pages 211-212], we incur a cost of
ሺ𝑑௡௨௠ ൅ 1ሻ𝑛௃.

Once the split is complete, for each child internal node C of J,
we know both the number of training instances nC reaching C and
the number of features dC needing to be checked at C. Then, if
needed, using an approach similar to that in Sections 4.2.2.3 and

4.2.2.4 to estimate and add Procedures 2 and 3’s costs, we project
the growth cost of the subtree rooted at C as

𝐺෠஼ ൌ 𝑐̂௉ଶ ൅ 𝑐̂௉ଷ
ൌ 𝑑஼𝑛஼ logଶሺ𝑛஼/𝑔ሻ ൅ ሺ𝑑௡௨௠ ൅ 1ሻ𝑛஼ logଶሺ𝑛஼/𝑔ሻ
ൌ ሺ𝑑஼ ൅ 𝑑௡௨௠ ൅ 1ሻ 𝑛஼logଶሺ𝑛஼/𝑔ሻ.

When no training instance reaching J has a missing splitting
attribute value, we have ∑ 𝑛஼஼ ൌ 𝑛௃. Otherwise, if some training
instances reaching J have missing splitting attribute values and are
put into every partition at J, we have ∑ 𝑛஼஼ ൐ 𝑛௃.

When arriving at an internal node J, we compare the projected
growth cost 𝐺෠௃ ൌ ሺ𝑑௃ ൅ 𝑑௡௨௠ ൅ 1ሻ 𝑛௃logଶሺ𝑛௃/𝑔ሻ of the subtree

TJ rooted at J with a given threshold g. When J is the root node,
we have a slight abuse of notation: 𝐺෠௃ excludes Procedure 1’s
cost, which should be included in TJ’s growth cost. The
comparison has two possible results:
1) 𝐺෠௃ ൐ 𝜏௚: We keep refining the estimated growth cost of TJ

during its growth. When we finish Procedures 2 and 3 for J,
we refine the estimated tree growth cost as the sum of the
amount of work that has been completed, and the projected
growth cost of each top-level subtree remaining to be built.

2) 𝐺෠௃ ൑ 𝜏௚: We do not refine the estimated growth cost of TJ
during its growth. Instead, we can grow TJ fully and know its
actual growth cost quickly, without incurring any additional
estimation overhead. Once TJ grows fully, we refine the
estimated tree growth cost in the same way as mentioned
above.

In our implementation, we set g’s default value to 10,000 to
strike a balance between minimizing estimation overhead and
keeping refining the estimated tree building cost at a reasonable
frequency.

Figure 3. A decision tree under construction.

For example, Figure 3 shows a tree under construction. Nodes
J1, J2, and J4 and the subtree 𝑇௃య rooted at node J3 have been
formed. We just finished Procedures 2 and 3 for J4 whose 𝐺෠௃ర is

>g. The subtrees 𝑇௃ఱ , 𝑇௃ల , 𝑇௃ళ , and 𝑇௃ఴ rooted at nodes J5, J6, J7,
and J8, respectively, are yet to be built. By this time, we have
already known both the number of training instances arriving and
the number of relevant features needing to be checked at each of
J5, J6, J7, and J8. Using these numbers, we have projected 𝑇௃ఱ, 𝑇௃ల,
𝑇௃ళ , and 𝑇௃ఴ ’s growth costs. The estimated tree growth cost is
refined as the sum of the amount of work that has been done in
forming J1, J2, J4, and 𝑇௃య, and the projected growth costs of 𝑇௃ఱ,
𝑇௃ల, 𝑇௃ళ, and 𝑇௃ఴ.

4.2.3.3 Refining the cost estimate of sorting all
training instances for a numerical feature

We grow the tree starting from the root node. As mentioned in
Procedure 1, for each numerical feature at the root node, we use
the quicksort algorithm to sort all training instances based on the
feature’s values. Below, we show how to refine the cost estimate
of sorting all training instances for a numerical feature
continuously. Our discussion focuses on the case that no training
instance has a missing value for the feature. If this is not the case,
those training instances with missing values for the feature do not
need to be sorted. We modify our computation to estimate the
other training instances’ sorting cost. Procedure 1’s cost is the
sum of the sorting cost for each numerical feature.

Quicksort works by recursively partitioning the set of training
instances. As shown in Figure 4, this is similar to performing
Procedures 2 and 3 to grow a binary decision tree. Accordingly, to
keep refining the cost estimate of sorting all training instances for
a numerical feature, we use a method similar to that in Section
4.2.3.2 for refining Procedures 2 and 3’s cost estimates regularly.

Figure 4. A tree-style representation of the quicksort process.

Let |S| denote the number of elements in a set of training

instances S. During sorting, we track the number of elements in
each partition of training instances. To sort S, we pick from S one
pivot instance and compare it with each other training instance in
S, each with a cost of 1U. Accordingly, the other training
instances in S are split into two partitions S1 and S2, with
|S1|+|S2|=|S|-1. S1 and S2 are then sorted one after the other. Once
the split of S is done, we know |S1| and |S2|. Then, if needed, we
use the approach in Section 4.2.2.2 to project Sj’s (j=1, 2) sorting
cost in U as

𝑓൫|𝑆௝|൯ ൌ |𝑆௝| ሺlogଶห𝑆௝ห െ 1/2ሻ.
Before starting to sort a set of training instances S, we compare

|S| with a given threshold s. There are two possible cases:
1) |S|>s: We keep refining the estimated cost of sorting S

during the sorting process. Once the split of S is done, we
refine the estimated cost of sorting all training instances for
the numerical feature as the sum of the amount of work that
has been completed for this sorting, and the projected cost of
sorting each top-level partition of training instances
remaining to be processed.

2) |S|≤s: We do not refine the estimated cost of sorting S during
the sorting process. Instead, we can sort S and know its
actual sorting cost quickly, without incurring any additional
estimation overhead. Once S is sorted, we refine the
estimated cost of sorting all training instances for the
numerical feature in the same way as mentioned above.

pivot instance 1

partition 1
of training
instances

pivot instance 2

pivot instance 3

partition 2
of training
instances

partition 3
of training
instances

partition 4
of training
instances

J8J2

J1

J7 J4

J5

J3

J6

𝑇௃ఱ 𝑇௃ల 𝑇௃ళ 𝑇௃ఴ

𝑇௃య

In our implementation, we set s’s default value to 5,000 to strike
a balance between minimizing estimation overhead and keeping
refining the estimated tree building cost at a reasonable frequency.

4.2.3.4 Refining Procedure 1’s cost estimate

Next, we describe how to continuously refine Procedure 1’s
cost estimate. In Procedure 1, we sort all training instances for
each numerical feature one by one at the root node. This is similar
to building all trees in a random forest one after another. Section
4.3.2 presents our method for regularly refining a random forest’s
building cost estimate. We use a similar method to keep refining
Procedure 1’s cost estimate, by treating sorting all training
instances for a numerical feature at the root node like building a
tree in the random forest.

4.2.4 The initial tree pruning cost estimate

In this section, we show how to compute the initial tree pruning
cost estimate. Two procedures can be done to prune a tree: subtree
replacement and subtree raising. Our discussion focuses on the
most important procedure of subtree replacement. Subtree raising
can be time-consuming and is often not worthwhile [32, pages
214-215]. How to estimate its cost is left as an interesting area for
future work.

In subtree replacement, each subtree is checked. If deemed
appropriate, it is replaced by a leaf node. This check coupled with
potential replacement is done recursively, going from the leaf
nodes up towards the root node. We regard checking a subtree
coupled with potential replacement as a basic operation with a
cost of 1U. Each subtree is rooted at a distinct internal node. The
subtree replacement cost in U = the number of internal nodes.
Based on Assumption 2, the tree is projected to have ~n/g leaf
nodes. If it is full binary (Assumption 1), it has ~n/g-1 internal
nodes. Thus, we project both the subtree replacement cost in U
and the number of internal nodes in the tree to be n/g-1.

4.2.5 Refining the estimated tree pruning cost

In this section, we show how to continuously refine the
estimated cost of subtree replacement. During tree growth, we
track the number of internal nodes that have been created. To
revise the subtree replacement cost estimate, we refine the
projected number of internal nodes in the tree whenever
Procedures 2 and 3’s cost estimates are revised (see Section
4.2.3.2).

More specifically, when arriving at an internal node J, we split
all training instances reaching J into two or more partitions based
on the test function used at J. Once the split is done, for each child
internal node C of J, we know the number of training instances nC
reaching C. Then, if needed, using an approach similar to that in
Section 4.2.4, we project the number of internal nodes in the
subtree rooted at C as nC/g-1.

When arriving at an internal node J, we compare the projected
growth cost 𝐺෠௃ of the subtree TJ rooted at J with the threshold g.
There are two possible cases:
1) 𝐺෠௃ ൐ 𝜏௚: We keep refining the estimated number of internal

nodes in TJ during its growth. When we finish Procedures 2
and 3 for J, we refine the projected number of internal nodes
in the tree as the sum of the number of internal nodes that
have been created, and the projected number of internal
nodes in each top-level subtree remaining to be built.

2) 𝐺෠௃ ൑ 𝜏௚: We do not refine the estimated number of internal
nodes in TJ during its growth. Instead, we can grow TJ fully

and know its actual number of internal nodes quickly,
without incurring any additional estimation overhead. Once
TJ grows fully, we refine the projected number of internal
nodes in the tree in the same way as mentioned above.

Once the tree grows fully, we know the exact number of its
internal nodes.

4.3 Random forest

In this section, we describe the method for estimating the cost
of building a random forest.

4.3.1 The initial cost estimate

A random forest is an ensemble of decision trees. A separate
bootstrap sample of all training instances is created to build each
tree. The random forest’s building cost is the sum of each tree’s
building cost and each bootstrap sample’s creation cost.

Let b denote the number of training instances in each bootstrap
sample. We regard obtaining a training instance for a bootstrap
sample as a basic operation with a cost of 1U. Each bootstrap
sample’s creation cost in U = b.

Consider a random forest including m trees Tj (1≤j≤m). Before
building the random forest, we use the approach in Section 4.2.2
to compute an initial cost estimate of building a tree, by
considering the following three factors in deriving the cost
estimation formulas: 1) the tree is built using a bootstrap sample
with b training instances; 2) at each internal node of the tree, a
fixed fraction of all features rather than all features are examined;
and 3) no pruning is required. The initial cost estimate of building
the random forest

= (the initial cost estimate of building a tree + b) × m.

4.3.2 Refining the cost estimate

We build the m trees one by one, from T1 to Tm. We refine the
random forest’s building cost estimate whenever we finish
building a tree or revise its estimated building cost. When
building Ti (1≤i≤m), we already know each previous tree Tj’s
(1≤j≤i-1) actual building cost cj. These actual costs’ average value,
𝑐௔௩௚ ൌ ∑ 𝑐௩

௜ିଵ
௩ୀଵ /ሺ𝑖 െ 1ሻ, gives useful information for estimating

the building costs of Ti and each subsequent tree Tk (i+1≤k≤m).
We project the random forest’s building cost as the sum of each
previous tree Tj’s (1≤j≤i-1) actual building cost cj, Ti’s projected
building cost 𝑐̂௜ , each subsequent tree Tk’s (i+1≤k≤m) projected
building cost 𝑐̂௞, and each bootstrap sample’s creation cost b. We
use the approach in Section 4.2.3 to keep refining Ti’s
approximate building cost ce, by considering the three factors
listed in Section 4.3.1. There are two possible cases of projecting
the random forest’s building cost:
1) i=1: We use ce as Ti’s projected building cost. The random

forest’s projected building cost = m(ce + b).
2) i>1: We use both cavg and ce to project Ti’s building cost.

More specifically, let w denote the amount of work in U that
has been completed for building Ti. p=w/ce is an estimate of
the percentage of work that has been completed for building
Ti. Via linear interpolation, we project Ti’s building cost to be

𝑐̂௜ ൌ 𝑝 ൈ 𝑐௘ ൅ ሺ1 െ 𝑝ሻ ൈ 𝑐௔௩௚
ൌ 𝑤 ൅ ሺ1 െ 𝑝ሻ ൈ 𝑐௔௩௚.

At the beginning of building Ti, Ti’s building cost is projected
to be cavg, which is computed using prior, actual tree building
costs on the current data set and could be more accurate than
the estimate of ce. As Ti is being built, the projected cost 𝑐̂௜

keeps shifting towards ce. After Ti finishes building, the
projected cost 𝑐̂௜ = ce = Ti’s actual building cost.

We project each subsequent tree Tk (i+1≤k≤m)’s building
cost as the average cost of building each previous tree Tj
(1≤j≤i-1) and Ti:

𝑐̂௞ ൌ ሺ∑ 𝑐௩
௜ିଵ
௩ୀଵ ൅𝑐̂௜ሻ/𝑖.

Accordingly, the random forest’s projected building cost
 ൌ ∑ 𝑐௩

௜ିଵ
௩ୀଵ ൅𝑐̂௜ ൅ ∑ 𝑐̂௞ ൅ 𝑏𝑚௠

௞ୀ௜ାଵ
ൌ 𝑚ሾሺ∑ 𝑐௩

௜ିଵ
௩ୀଵ ൅𝑐̂௜ሻ/𝑖 ൅ 𝑏ሿ.

As individual trees are being built, our cost estimation method
tries to keep refining the random forest’s projected building cost
smoothly. When we switch from finishing building one tree to
starting building the next tree, the random forest’s projected
building cost experiences no sudden jump.

5. PERFORMANCE
In this section, we present the performance results of progress

indicators for machine learning model building. We implemented
our techniques described in Section 4 in Weka Version 3.8 [32].
Weka is a widely used, open-source machine learning and data
mining package. In all of our tests, our progress indicators could
be updated every ten seconds with negligible overhead and gave
useful information. We consider this to have met the three goals
we set in our prior paper [20] for progress indicators: continuously
revised estimates, minimal overhead, and acceptable pacing.

5.1 Experiment description
Our measurements were performed with Weka running on a

Dell Precision 7510 computer with one quad-core 2.70GHz
processor, 64GB main memory, one 2TB SATA disk, and running
the Microsoft Windows 10 Pro operating system.

We used two well-known benchmark data sets (Table 1) from
two standard machine learning data repositories [31, 34]. For each
machine learning algorithm covered in Section 4, we chose a data
set, on which model building took >100 seconds, to evaluate the
progress indicator. The Arrhythmia data set [31] was used to
evaluate the progress indicator for training neural networks. The
“MNIST basic” data set [34] was used to evaluate the progress
indicators for training the decision tree and random forest. In this
study, the accuracy that a particular machine learning algorithm
can achieve on a specific data set is irrelevant. Our purpose here is
to show how well our progress indicators work, rather than to find
the algorithm that can reach the highest accuracy on a given data
set. As every task taking >10 seconds needs a progress indicator
[23, Chapter 5.5], these two data sets are sufficient for
demonstrating both the need for progress indicators for model
building and our progress indicators’ performance. Using larger
data sets will alter neither the trends shown by the performance
curves nor our study’s main conclusions.

Table 1. The data sets used.

name # of data instances # of attributes # of classes
Arrhythmia 452 279 16
MNIST basic 62,000 784 10

We used the default hyper-parameter value setting in Weka,

except that for decision tree, we disabled subtree raising and did
not unnecessarily force any split point of a numerical feature to be
an actual data value. We performed two types of tests:
1) Unloaded system test: We built the machine learning model

on an unloaded system.

2) Workload interference test: We started model building on
an unloaded system. In the middle of model building, we
started a new program creating 20 threads. Each thread kept
running a CPU-intensive function until model building
finished. These 20 threads competed with model building for
CPU cycles.

For neural network, we report the progress indication results for
both the unloaded system and the workload interference tests. For
decision tree and random forest, we report the progress indication
results for the unloaded system test only. For the workload
interference test, the progress indication results for decision tree
and random forest are similar to those for neural network, and
provide no extra information. In all tests, we stored the progress
indicators’ outputs in a file.

5.2 Test results for neural network
5.2.1 Unloaded system test results for neural network

In this test, a neural network was trained on an unloaded
system. This test’s purpose is to show that for neural network
whose training follows a known, fixed pattern in the absence of
early stopping, the progress indicator’s estimates can be quite
precise on an unloaded system.

Figure 5 shows the model building cost estimated by the
progress indicator over time, with the exact model building cost
depicted by the horizontal dotted line. The curve that represents
the model building cost estimated by the progress indicator is a
straight line and overlaps with the horizontal dotted line depicting
the exact model building cost. During the entire model building
process, the progress indicator knew the number of epochs needed
and the exact model building cost.

Figure 5. Model building cost estimated over time (unloaded

system test for neural network).

Figure 6. Model building speed over time (unloaded system

test for neural network).

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300

es
ti

m
at

ed
 m

od
el

 b
ui

ld
in

g
co

st
 (

U
s)

time (seconds)

0

200

400

600

800

1000

0 50 100 150 200 250 300

m
od

el
 b

ui
ld

in
g

sp
ee

d
(U

s
pe

r
se

co
nd

)

time (seconds)

Figure 6 shows the model building speed monitored by the

progress indicator over time. As the sole job running in the
system, the neural network was trained at a regular pace, going
through one training instance at a time. During the entire model
building process, the monitored model building speed was
relatively stable.

Figure 7 shows the remaining model building time estimated by
the progress indicator over time, with the actual remaining model
building time depicted by the dashed line. The dashed line is close
to the curve showing the remaining model building time estimated
by the progress indicator. That is, during the entire model building
process, the remaining model building time estimated by the
progress indicator was quite precise. This is because during the
entire model building process, the progress indicator knew the
exact model building cost, and the model building speed was
relatively stable.

Figure 7. Remaining model building time estimated over time

(unloaded system test for neural network).

Figure 8 shows the progress indicator’s estimate of the

percentage of model building work that has been completed over
time. As work kept being performed at a relatively steady speed,
the completed percentage curve is close to a straight line.

Figure 8. Completed percentage estimated over time

(unloaded system test for neural network).

5.2.2 Workload interference test results for neural
network

In the workload interference test, we started training a neural
network on an unloaded system. In the middle of model training
(at 90 seconds), we started a new program creating 20 threads one
by one. Each thread kept running a CPU-intensive function until

model building finished. Spawning these 20 threads took time and
was completed at 150 seconds. These 20 threads made the system
heavily loaded, decreased model building speed, and increased
model building time from 290 seconds to 415 seconds. This test’s
purpose is to show how our progress indicator adjusts to varying
run-time system loads. In each figure of Section 5.2.2, we use two
vertical dash-dotted lines, one depicting the time when the new
program started running, and another indicating the time when all
20 threads were created.

Figure 9 shows the model building speed monitored by the
progress indicator over time. Before the new program began
running at 90 seconds, the shape of the curve in Figure 9 is similar
to that in Figure 6. Once the new program began running, the
model building speed kept decreasing as the 20 threads were
created one after another, until all of them were formed at 150
seconds. This reflected that the system load kept increasing as
new threads were started. After 150 seconds, the model building
speed remained relatively stable at a lower level.

Figure 9. Model building speed over time (workload

interference test for neural network).

Figure 10. Remaining model building time estimated over

time (workload interference test for neural network).

Figure 10 shows the remaining model building time estimated

by the progress indicator over time, with the actual remaining
model building time depicted by the dashed line. Before the new
program started running at 90 seconds, the shape of the curve in
Figure 10 is similar to that in Figure 7. During the entire model
building process, the progress indicator knew the exact model
building cost. Before 90 seconds, the progress indicator’s
estimation error of the remaining model building time mainly
resulted from the unexpected, large increase in system load
starting after 90 seconds. After the new program started running at
90 seconds and as the 20 threads were created one after another,

0

50

100

150

200

250

300

0 50 100 150 200 250 300

es
ti

m
at

ed
 r

em
ai

ni
ng

 m
od

el

bu
il

di
ng

 ti
m

e
(s

ec
on

ds
)

time (seconds)

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

es
ti

m
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

time (seconds)

0

200

400

600

800

1000

0 100 200 300 400 500

m
od

el
 b

ui
ld

in
g

sp
ee

d
(U

s
pe

r
se

co
nd

)

time (seconds)

0

100

200

300

400

500

0 100 200 300 400 500

es
ti

m
at

ed
 r

em
ai

ni
ng

 m
od

el

bu
il

di
ng

 ti
m

e
(s

ec
on

ds
)

time (seconds)

the remaining model building time estimated by the progress
indicator increased a few times. After all 20 threads were formed
at 150 seconds, the dashed line becomes close to the curve
showing the remaining model building time estimated by the
progress indicator. That is, the remaining model building time
estimated by the progress indicator became quite precise.

Figure 11 shows the progress indicator’s estimate of the
percentage of model building work that has been completed over
time. This percentage kept increasing over time, as work was
continuously being done. The impact of running the new program
is obvious starting from 90 seconds.

Figure 11. Completed percentage estimated over time

(workload interference test for neural network).

5.3 Test results for decision tree
In this test, a decision tree was trained on an unloaded system.

This test’s purpose is to show how the progress indicator handles
the machine learning software’s estimation errors for a base
model.

Figure 12 shows the model building cost estimated by the
progress indicator over time, with the exact model building cost
depicted by the horizontal dotted line. At the beginning of model
building, the progress indicator’s estimated model building cost,
which came from Weka, was far different from the exact model
building cost. The estimation error of the model building cost
resulted from the two simplifying assumptions we made in
Section 4.2.2.1 when estimating the tree growth cost. The closer
to the completion of model building, the more precise the model
building cost estimated by the progress indicator. This reflects the
progress indicator’s ability of continually correcting the
inaccuracies caused by these two assumptions.

Figure 12. Model building cost estimated over time (unloaded

system test for decision tree).

Figure 13 shows the model building speed monitored by the
progress indicator over time. During model building, the
monitored model building speed fluctuated. This results from the
fact that decision tree building requires several types of basic
operations. An example of a basic operation in Procedure 1 is
comparing two training instances based on a numerical feature’s
values. An example of a basic operation in Procedure 3 is
allocating a training instance reaching an internal node to one of
several partitions based on the test function used there. Different
types of basic operations have varying processing overhead. This
variance is ignored by our current cost estimation method.

Figure 13. Model building speed over time (unloaded system

test for decision tree).

Figure 14 shows the remaining model building time estimated

by the progress indicator over time, with the actual remaining
model building time depicted by the dashed line. At the beginning
of model building, the progress indicator’s estimated remaining
model building time was far different from the actual remaining
model building time. The closer to the completion of model
building, the more precise the remaining model building time
estimated by the progress indicator. This is because the model
building cost estimated by the progress indicator became more
precise as model building proceeded. The fluctuations in the
progress indicator’s estimated remaining model building time
resulted from the fluctuations in the monitored model building
speed, as well as from the continuous refinement the progress
indicator made to the estimated model building cost over time.

Figure 14. Remaining model building time estimated over

time (unloaded system test for decision tree).

Figure 15 shows the progress indicator’s estimate of the

percentage of model building work that has been completed over
time. This percentage kept increasing over time, as work was
continuously being done. Due to both the fluctuations in the

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

es
ti

m
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

time (seconds)

0

2.5E+09

5E+09

7.5E+09

1E+10

1.25E+10

1.5E+10

0 100 200 300 400 500 600

es
ti

m
at

ed
 m

od
el

 b
ui

ld
in

g
co

st
 (

U
s)

time (seconds)

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

0 100 200 300 400 500 600

m
od

el
 b

ui
ld

in
g

sp
ee

d
(U

s
pe

r
se

co
nd

)

time (seconds)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

es
ti

m
at

ed
 r

em
ai

ni
ng

 m
od

el

bu
il

di
ng

 ti
m

e
(s

ec
on

ds
)

time (seconds)

monitored model building speed and the continuous refinement
the progress indicator made to the estimated model building cost
over time, the completed percentage curve is not quite close to a
straight line.

Figure 15. Completed percentage estimated over time

(unloaded system test for decision tree).

5.4 Test results for random forest
In this test, a random forest was trained on an unloaded system.

This test’s purpose is to show how the progress indicator handles
the machine learning software’s estimation errors for an ensemble
model. In the default setting of Weka, a random forest includes
100 decision trees. On average, each tree took ~2.6 seconds to
build on the “MNIST basic” data set.

Figure 16 shows the model building cost estimated by the
progress indicator over time, with the exact model building cost
depicted by the horizontal dotted line. At the beginning of model
building, the progress indicator’s estimated model building cost,
which came from Weka, was far different from the exact model
building cost. However, once several decision trees were formed,
the progress indicator obtained a reasonably accurate estimate of
the average tree building cost, and could use this estimate to
compute an accurate cost estimate of building the random forest.
Thus, the progress indicator’s estimated model building cost
became close to the exact model building cost in 10-20 seconds.

Figure 16. Model building cost estimated over time (unloaded

system test for random forest).

Figure 17 shows the model building speed monitored by the

progress indicator over time. During model building, the
monitored model building speed fluctuated. This mainly resulted
from two factors varying the work done over time. First, differing
decision trees were built on different bootstrap samples of the data

set. Second, a distinct subset of features was examined at each
internal node of a tree.

Figure 17. Model building speed over time (unloaded system

test for random forest).

Figure 18 shows the remaining model building time estimated

by the progress indicator over time, with the actual remaining
model building time depicted by the dashed line. Starting from 10
seconds, the dashed line becomes reasonably close to the curve
showing the remaining model building time estimated by the
progress indicator. That is, the progress indicator’s estimated
remaining model building time became reasonably precise. The
closer to the completion of model building, the more precise the
remaining model building time estimated by the progress
indicator. Since the progress indicator’s estimated model building
cost no longer changed much after 20 seconds, the fluctuations in
the progress indicator’s estimated remaining model building time
mainly resulted from the fluctuations in the monitored model
building speed.

Figure 18. Remaining model building time estimated over

time (unloaded system test for random forest).

Figure 19 shows the progress indicator’s estimate of the

percentage of model building work that has been completed over
time. As the progress indicator’s estimated model building cost no
longer changed much after 20 seconds and work kept being
performed at a relatively steady speed, the completed percentage
curve is close to a straight line.

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600

es
ti

m
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

time (seconds)

0

2E+09

4E+09

6E+09

8E+09

1E+10

0 50 100 150 200 250 300

es
ti

m
at

ed
 m

od
el

 b
ui

ld
in

g
co

st
 (

U
s)

time (seconds)

0.E+00

1.E+07

2.E+07

3.E+07

0 50 100 150 200 250 300

m
od

el
 b

ui
ld

in
g

sp
ee

d
(U

s
pe

r
se

co
nd

)

time (seconds)

0

50

100

150

200

250

300

0 50 100 150 200 250 300

es
ti

m
at

ed
 r

em
ai

ni
ng

 m
od

el

bu
il

di
ng

 ti
m

e
(s

ec
on

ds
)

time (seconds)

Figure 19. Completed percentage estimated over time

(unloaded system test for random forest).

6. AREAS FOR FUTURE WORK
In this section, we point out some interesting areas for future

work to improve the progress indicator’s estimates for the
machine learning algorithms covered in Section 4. We hope this
will stimulate future research on this topic. As for the algorithms
not covered in Section 4, we leave it as another interesting area
for future work to design the detailed progress indicator
implementation techniques. Some high-level ideas of how to build
progress indicators for some of those algorithms are provided in
our paper [20].

6.1 Neural network
In training a neural network, overtraining can become an issue

and can be addressed by early stopping [3]. When the user of the
machine learning software allows early stopping, network training
may end early rather than always last for the full number of
epochs specified by the user. A standard way to implement early
stopping is to use a validation set separate from the training set.
When the neural network’s error on the validation set satisfies a
given criterion, such as increasing a certain number of times
consecutively, network training is stopped.

When early stopping is allowed, the number of epochs needed
for training the neural network is unknown beforehand and needs
to be estimated. Before network training starts, we can perform
meta-learning to compute an initial estimate of the number of
epochs needed. Meta-learning constructs a predictive model using
historical data from training neural networks on prior data sets.
The predictive model projects the number of epochs needed based
on the neural network’s hyper-parameter values and the data set’s
feature values. The projected number is always ≤ the number of
desired epochs specified by the user of the machine learning
software. Meta-learning was used previously to forecast machine
learning model building time [6, 25-29].

As a neural network is being trained, we periodically conduct
meta-learning to refine the estimated number of epochs needed. In
this case, we use a different predictive model, whose inputs
include not only the neural network’s hyper-parameter values and
the data set’s feature values, but also feature values extracted from
the curve that depicts the neural network’s error on the validation
set over the previous epochs. A high-level idea of how to
extrapolate and use this curve for this purpose is given in our
paper [20].

Training a deep neural network from scratch usually requires a
lot of labelled data. When a deep neural network needs to be
trained on a new data set of moderate size, supervised pre-training

is often used to address the issue of insufficient training data, by
initializing the network’s weights from those pre-trained on a
related, large data set [7]. When early stopping is allowed,
supervised pre-training impacts both the number of epochs needed
for training the network and the curve depicting the network’s
error on the validation set over epochs. This needs to be
considered during meta-learning. In the presence and absence of
supervised pre-training, we use two different sets of predictive
models to project the number of epochs needed.

When early stopping is allowed, the cost of repeatedly
evaluating the neural network on the validation set becomes part
of the model building cost. Going through a training instance once
has a different overhead from evaluating the neural network on a
validation instance. If this difference is large, we can reflect it in
the cost estimation by giving a weight ≠1 to the latter operation.

The weighting method can also be used to handle cost
estimation for voting. In voting, an ensemble of models forms the
final model. Its building cost is the sum of each individual
model’s building cost. The overhead of doing one unit of work
can vary across different individual models. If the variance is
large, we can reflect it in the cost estimation by giving a differing
weight to each individual model. One way to assign the weights is
to measure the average amount of CPU time taken to do one unit
of work for each individual model. We initialize the weights from
numbers computed from model building on historical data, and
keep adjusting the weights based on measurements obtained from
building the individual models in the current ensemble.

6.2 Decision tree

As shown in Section 4.2, building a decision tree requires
several types of basic operations. Different types of basic
operations have varying processing overhead. This variance is
ignored by our current cost estimation method. To make the
progress indicator’s estimates more precise, we can reflect this
variance in cost estimation by giving a distinct weight to each
type of basic operation. Similar to the approach mentioned above
for voting, one way to assign the weights is to measure the
average amount of CPU time taken to perform a basic operation
of each type.

Our current cost estimation method does not handle subtree
raising. Witten et al. [32, page 218] showed that given n training
instances, subtree raising has a time complexity of 𝑂ሺ𝑛ሺlogଶ 𝑛ሻଶሻ.
We can estimate the subtree raising cost as 𝑛ሺlogଶ 𝑛ሻଶ × a factor,
project the factor via meta-learning, and keep refining the
projected value during tree building.

7. CONCLUSIONS
In this paper, we describe detailed progress indicator

implementation techniques for three major, supervised machine
learning algorithms. Our main idea is to use a different method to
estimate the model building cost for each algorithm. As a model is
being built, we keep monitoring the current model building speed
and revising the estimated model building cost. We continuously
give the user an estimate of both the remaining model building
time and the percentage of model building work that has been
finished. Our experiments show that a non-trivial progress
indicator based on our techniques gives useful information, adapts
to varying run-time system loads, and compensates for the
machine learning software’s estimation errors. This provides the
first demonstration that offering non-trivial progress indicators for
machine learning model building is feasible.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

es
ti

m
at

ed
 c

om
pl

et
ed

pe

rc
en

ta
ge

time (seconds)

8. ACKNOWLEDGMENTS
We thank Dae Hyun Lee and Philip J. Brewster for helpful

discussions. GL was partially supported by the National Heart,
Lung, and Blood Institute of the National Institutes of Health
under Award Number R01HL142503. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

9. REFERENCES
[1] A progress bar for scikit-learn?

https://stackoverflow.com/questions/34251980/a-progress-
bar-for-scikit-learn.

[2] Aggarwal, C.C. Data Mining: The Textbook. New York, NY:
Springer 2015.

[3] Alpaydin, E. Introduction to Machine Learning. Cambridge,
MA: The MIT Press 2014.

[4] Berque, D.A., Goldberg, M.K. Monitoring an algorithm's
execution. Computational Support for Discrete Mathematics,
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 15, 1992:153-63.

[5] Chaudhuri, S., Narasayya, V.R., Ramamurthy, R. Estimating
progress of long running SQL queries. In: Proc. SIGMOD,
2004, pp. 803-14.

[6] Doan, T., Kalita, J. Predicting run time of classification
algorithms using meta-learning approach. Int J Machine
Learning & Cybernetics 2017;8(6):1929-43.

[7] Goodfellow, I., Bengio, Y., Courville, A. Deep Learning.
Cambridge, MA: MIT Press 2016.

[8] Hinton, G.E., Vinyals, O., Dean, J. Distilling the knowledge
in a neural network. In: Proc. NIPS Deep Learning and
Representation Learning Workshop, 2014, pp. 1-9.

[9] Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K. Algorithm
runtime prediction: methods & evaluation. Artif Intell
2014;206:79-111.

[10] Keras integration with TQDM progress bars.
https://github.com/bstriner/keras-tqdm.

[11] Khan, S., Rahmani, H., Afaq Ali Shah, S., Bennamoun, M. A
Guide to Convolutional Neural Networks for Computer
Vision. San Rafael, CA: Morgan & Claypool Publishers
2018.

[12] Lee, K., König, A.C., Narasayya, V.R., Ding, B., Chaudhuri,
S., Ellwein, B., Eksarevskiy, A., Kohli, M., Wyant, J.,
Prakash, P., Nehme, R.V., Li, J., Naughton, J.F. Operator and
query progress estimation in Microsoft SQL Server Live
Query Statistics. In: Proc. SIGMOD, 2016, pp. 1753-64.

[13] Lee, W., Oh, H., Yi, K. A progress bar for static analyzers.
In: Proc. SAS, 2014, pp. 184-200.

[14] Luo, G. PredicT-ML: a tool for automating machine learning
model building with big clinical data. Health Inf Sci Syst
2016;4:5.

[15] Luo, G., Chen, T., Yu, H. Toward a progress indicator for
program compilation. Software: Practice and Experience
2007;37(9):909-33.

[16] Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M. Toward a
progress indicator for database queries. In: Proc. SIGMOD,
2004, pp. 791-802.

[17] Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.
Increasing the accuracy and coverage of SQL progress
indicators. In: Proc. ICDE, 2005, pp. 853-64.

[18] Luo, G., Naughton, J.F., Yu, P.S. Multi-query SQL progress
indicators. In: Proc. EDBT, 2006, pp. 921-41.

[19] Luo, G., Stone, B.L., Johnson, M.D., Tarczy-Hornoch, P.,
Wilcox, A.B., Mooney, S.D., Sheng, X., Haug, P.J., Nkoy,
F.L. Automating construction of machine learning models
with clinical big data: proposal rationale and methods. JMIR
Res Protoc 2017;6(8):e175.

[20] Luo, G. Toward a progress indicator for machine learning
model building and data mining algorithm execution: a
position paper. SIGKDD Explorations 2017;19(2):13-24.

[21] Morton, K., Balazinska, M., Grossman, D. ParaTimer: a
progress indicator for MapReduce DAGs. In: Proc.
SIGMOD, 2010, pp. 507-18.

[22] Morton, K., Friesen, A.L., Balazinska, M., Grossman, D.
Estimating the progress of MapReduce pipelines. In: Proc.
ICDE, 2010, pp. 681-4.

[23] Nielsen, J. Usability Engineering. San Francisco, CA:
Morgan Kaufmann 1993.

[24] Pan, X., Venkataraman, S., Tai, Z., Gonzalez, J. Hemingway:
modeling distributed optimization algorithms. In: Proc. NIPS
Workshop on Machine Learning Systems, 2016.

[25] Priya, R., de Souza, B.F., Rossi, A.L.D., de Carvalho André,
C.P.L.F. Predicting execution time of machine learning tasks
for scheduling. Int J Hybrid Intell Syst 2013;10(1):23-32.

[26] Priya, R., de Souza, B.F., Rossi, A.L.D., de Carvalho André,
C.P.L.F. Using genetic algorithms to improve prediction of
execution times of ML tasks. In: Proc. HAIS (1), 2012, pp.
196-207.

[27] Priya, R., de Souza, B.F., Rossi, A.L.D., de Carvalho André,
C.P.L.F. Predicting execution time of machine learning tasks
using metalearning. In: Proc. WICT, 2011, pp. 1193-8.

[28] Reif, M., Shafait, F., Dengel, A. Prediction of classifier
training time including parameter optimization. In: Proc. KI,
2011, pp. 260-71.

[29] Snoek, J., Larochelle, H., Adams, R.P. Practical Bayesian
optimization of machine learning algorithms. In: Proc. NIPS,
2012, pp. 2960-8.

[30] Sra, S., Nowozin, S., Wright, S.J. Optimization for Machine
Learning. Cambridge, MA: The MIT Press 2011.

[31] University of California, Irvine machine learning repository.
http://archive.ics.uci.edu/ml/.

[32] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. Data Mining:
Practical Machine Learning Tools and Techniques, 4th ed.
Burlington, MA: Morgan Kaufmann 2016.

[33] Xie, X., Fan, Z., Choi, B., Yi, P., Bhowmick, S.S., Zhou, S.
PIGEON: progress indicator for subgraph queries. In: Proc.
ICDE, 2015, pp. 1492-5.

[34] Web page of DeepVsShallowComparisonICML2007.
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007.

