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Abstract 
Background: Asthma affects a large proportion of the population and leads to a lot of hospital encounters covering both 
hospitalizations and emergency department visits every year. To lower the number of such encounters, many healthcare systems 
and health plans deploy predictive models to prospectively find patients at high risk and offer them care management services 
for preventive care. Yet, the previous models do not have enough accuracy to serve this purpose well. Embracing the modeling 
strategy of examining many candidate features, we newly built a machine learning model to forecast asthmatic patients’ future 
asthma hospital encounters at Intermountain Healthcare, a non-academic healthcare system. This model is more accurate than 
the previous published models. But, it is unclear how well our modeling strategy generalizes to academic healthcare systems, 
whose patient composition is different from Intermountain Healthcare’s. 
Objective: This study evaluates our modeling strategy’s generalizability to University of Washington Medicine (UWM), an 
academic healthcare system. 
Methods: All of the adult asthmatic patients who visited UWM facilities between 2011 and 2018 served as the patient cohort. 
We considered 234 candidate features. Through secondary analysis of 82,888 UWM data instances from 2011 to 2018, we 
built a machine learning model to forecast asthmatic patients’ asthma hospital encounters in the subsequent 12 months. 
Results: Our UWM model yielded an area under the receiver operating characteristic curve (AUC) of 0.902. When placing the 
cutoff point for making binary classification at the top 10.00% (1,464/14,644) of asthmatic patients with the biggest forecasted 
risk, our UWM model yielded an accuracy of 90.60% (13,268/14,644), a sensitivity of 70.18% (153/218), and a specificity of 
90.91% (13,115/14,426). 
Conclusions: Our modeling strategy showed excellent generalizability to UWM, leading to a model with an AUC that is higher 
than all of the AUCs previously reported in the literature for forecasting asthma hospital encounters. After further optimization, 
our model could be employed to facilitate efficient and effective allocation of asthma care management resources to improve 
outcomes. 
 
International Registered Report Identifier (IRRID): PRR2-10.2196/5039 
 
Keywords: Asthma; forecasting; machine learning; patient care management; risk factors 
 
Introduction 
Background 

 In the United States, 7.7% of people have asthma, which is responsible for 188,968 hospitalizations, 1,776,851 emergency 
department (ED) visits, and 3,441 deaths annually [1]. To reduce asthma hospital encounters covering both hospitalizations 
and ED visits, many healthcare systems and health plans deploy predictive models to prospectively find patients at high risk 
and offer them care management services for preventive care. University of Washington Medicine (UWM), Intermountain 
Healthcare, and Kaiser Permanente Northern California [2] are three examples of such healthcare systems. Examples of such 
health plans include those in nine of 12 metropolitan communities [3]. Once a patient is deemed high risk and enrolled in a 
care management program, a care manager will regularly assess the patient’s asthma control, adjust the patient’s asthma 
medications if necessary, and help the patient make appointments for health and related services. Using effective care 
management, as many as 40% of future hospital encounters by asthmatic patients can be avoided [4-7]. 

Due to its limited service capacity, a care management program normally enrolls at most 3% of patients with a particular 
condition [8]. To maximize the benefits of this resource intensive program, it is crucial for the program to enroll only the 
highest-risk patients. After all, the deployed predictive model’s accuracy (or lack thereof) places an upper bound on the 
program’s effectiveness. Before us, several research groups have built multiple models for forecasting asthmatic patients’ future 
asthma hospital encounters. Every such model examined only a few features [2,9-22]. Overlooking some important features in 
the model degrades model accuracy, making the model miss at least half of the patients who will experience future asthma 
hospital encounters and incorrectly forecast future asthma hospital encounters for many other asthmatic patients. These errors 
result in impaired patient outcomes and wasted healthcare spending [23]. In non-medical fields, people frequently adopt the 
modeling strategy of examining many candidate features to enhance machine learning models’ accuracy [24-27]. Embracing 
this modeling strategy for medical data, we newly built a machine learning model to forecast asthmatic patients’ future asthma 
hospital encounters at Intermountain Healthcare, a non-academic healthcare system [23]. Our Intermountain Healthcare model 
raised the area under the receiver operating characteristic curve (AUC) to 0.859, which is higher than every previous published 
model’s AUC by 0.049 or more. While this progress is encouraging, it is unclear how well our modeling strategy generalizes 
to academic healthcare systems, which normally care for more complex and sicker patients than non-academic healthcare 
systems [28]. 
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Objective 
This study evaluates our modeling strategy’s generalizability to UWM, an academic healthcare system. Similar to our 

Intermountain Healthcare model [23], our UWM model employs clinical and administrative data to forecast asthmatic patients’ 
future asthma hospital encounters covering both hospitalizations and ED visits. There are two possible values of the categorical 
dependent variable: whether the asthmatic patient will incur asthma hospital encounters in the subsequent 12 months or not. 
This paper reports the development and evaluation of our UWM model. 
 
Our contributions 

This study makes three innovative contributions: 
1) We conducted the first evaluation of our modeling strategy’s generalizability to an academic healthcare system. 
2) We evaluated the predictive power of 71 new features, which were unused in our prior study [23], for forecasting asthma 

hospital encounters. 
3) We evaluated the generalizability of our Intermountain Healthcare model to UWM, as well as the generalizability of our 

UWM model to Intermountain Healthcare. To the best of our knowledge, this is the first time that model generalizability 
has been evaluated in both directions. Previously, model generalizability was evaluated solely in one direction, by assessing 
the performance of a model built using one site’s data on another site’s data [17]. 

 
Methods 
Study design and ethics approval 

UWM’s and Intermountain Healthcare’s institutional review boards approved this secondary analysis study on clinical and 
administrative data. 
 
Patient cohort 

UWM is the biggest academic healthcare system in Washington State. Its enterprise data warehouse contains clinical and 
administrative data of 3 hospitals and 12 clinics for adults. Our patient cohort covered the adult asthmatic patients (age≥18) 
who visited any of these UWM facilities between 2011 and 2018. We defined a patient to have asthma in a specific year if the 
encounter billing database contained at least one asthma diagnosis code (International Classification of Diseases, Ninth 
Revision [ICD-9]: 493.0x, 493.1x, 493.8x, 493.9x; International Classification of Diseases, Tenth Revision [ICD-10]: J45.x) 
record on the patient in that year [10,29,30]. As the sole exclusion criterion, we eliminated those patients who passed away in 
that year. 
 
Prediction target (a.k.a. the dependent variable) 

The prediction target came from our previous study [23]. We defined an asthma hospital encounter as a hospitalization or an 
ED visit that has asthma as its principal diagnosis (ICD-9: 493.0x, 493.1x, 493.8x, 493.9x; ICD-10: J45.x). As Figure 1 shows, 
for each patient deemed to have asthma in a specific year, we used any asthma hospital encounter at UWM in the subsequent 
12 months, i.e., the 12 months after the end of this year, as the outcome of interest. We adopted the patient’s data by the end of 
this year to forecast the patient’s outcome in the subsequent 12 months. 
 

 
Figure 1. The time periods used to compute the features and the prediction target for an (index year, patient) pair. 

 

January 1, 2011 

Time period that spans the index year and 
was used to compute the other 208 features 

The last day of 
the index year 

The last day of the 
(index+1) year 

Time 
The first day of the 

index year 

Time period that spans from 2011 to the index 
year and was used to compute 27 features 

Time period used to compute 
the prediction target 

The first day of the 
pre-index year 

Time period that spans the pre-index and index years and was used to compute one feature, the percentage of 
the PCP’s asthmatic patients in the pre-index year incurring asthma hospital encounters in the index year 
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Data set 
The UWM enterprise data warehouse supplied a structured data set, which contained clinical and administrative data on our 

patient cohort’s encounters at the 3 UWM hospitals and 12 UWM clinics between 2011 and 2019. 
 

Features (a.k.a. independent variables) 
Similar to what we did previously [23], we examined 234 candidate features describing a wide variety of characteristics. 

Table 1 of Multimedia Appendix 1 describes these features calculated on the structured attributes in our data set, with the 71 
new features not used in our prior study [23] marked in italics. Throughout this paper, every mention of the number of a 
particular kind of items like medications counts multiplicity whenever the word differing is absent. For instance, consider a 
patient who was ordered medications twice in a given year. The first time medications 1 and 2 were ordered for the patient. 
The second time medications 2 and 3 were ordered for the patient. Then the total number of medications ordered for the patient 
in this year is four. The total number of differing medications ordered for the patient in this year is three. 

Every input data instance to the predictive model addresses a unique (index year, patient) pair and is used to forecast the 
patient’s outcome in the subsequent 12 months, i.e., the 12 months after the end of the index year. For that pair, we computed 
the patient’s age and primary care provider (PCP) on the last day of the index year. The PCP identified was the patient’s last 
PCP recorded in the electronic medical record system on or before the last day of the index year. As Figure 1 shows, adopting 
the data in the pre-index and index years, we computed one feature: the percentage of the PCP’s asthmatic patients in the pre-
index year incurring asthma hospital encounters in the index year. Using the data from 2011 to the index year, we computed 
25 features: the number of years from the first encounter related to asthma in the data set, the number of years from the first 
encounter related to chronic obstructive pulmonary disease in the data set, family history of asthma, 15 features related to the 
problem list, and seven allergy features. We derived the other 208 features on the data in the index year. 
 
Data analysis 
Data preparation 

Our UWM data set included peak expiratory flow values, which were absent in the Intermountain Healthcare data set adopted 
in our prior study [23]. Adopting the lower and upper bounds supplied by a clinical expert in our team, we deemed all peak 
expiratory flow values over 700 biologically implausible. Adopting the data preparation approach used in our prior paper [23] 
and this criterion, we pinpointed biologically implausible values, marked them missing, and normalized data. As the outcome 
of interest came from the subsequent year, our data set included eight years of effective data (2011-2018) over the nine-year 
period of 2011-2019. To be consistent with future model use in practice, we used the 2011-2017 data to train models and the 
2018 data to evaluate model performance. 

 
Performance metrics 

 
Table 1. The confusion matrix. 

Outcome class Future asthma hospital encounters No future asthma hospital encounter  
Forecasted future asthma hospital encounters  True positive (TP) False positive (FP) 

Forecasted no future asthma hospital encounter  False negative (FN) True negative (TN) 
 

As presented in Table 1 and the formulas below, we evaluated model performance using six standard metrics: accuracy, 
AUC, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). 

accuracy = (TP+TN)/(TP+TN+FP+FN), 
sensitivity = TP/(TP+FN), 
specificity = TN/(TN+FP), 
positive predictive value = TP/(TP+FP), 
negative predictive value = TN/(TN+FN). 

We performed 1,000-fold bootstrap analysis [31] to calculate the six performance measures’ 95% confidence intervals. For 
instance, we computed our final UWM model’s performance measures on each bootstrap sample of the 2018 data. The 2.5th 
and 97.5th percentiles of the 1,000 values we obtained for every performance metric gave the corresponding performance 
measure’s 95% confidence interval. We rendered the receiver operating characteristic curve to show the sensitivity-specificity 
tradeoff. 
 
Classification algorithms 

As in our prior paper [23], our predictive models were built using Weka Version 3.9 [32]. Weka is a core open-source 
software package for data mining and machine learning. It integrates a large number of popular feature selection techniques 
and machine learning algorithms. We checked the extreme gradient boosting (XGBoost) machine learning classification 
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algorithm [33] implemented in the software package XGBoost4J [34], as well as the 39 native classification algorithms in Weka 
listed in our previous paper’s [23] online appendix. As an efficient and scalable realization of gradient boosting, XGBoost is a 
form of an ensemble of decision trees. Since XGBoost accepts only numerical features, we used one-hot encoding to transform 
categorical features to numerical features before giving them to XGBoost. We employed the 2011-2017 training data and the 
automatic machine learning model selection method developed in our prior work [35] to automatically select the feature 
selection technique, classification algorithm, data balancing method for handling imbalanced data, and hyper-parameter values 
among all of the pertinent ones. On average, our method can reduce model error rate by 11% and search time by 28 times than 
the modern Auto-WEKA automatic machine learning model selection method [35,36]. 

 
This study mainly evaluated our modeling strategy’s generalizability to UWM via employing the UWM training set to train 

multiple models and then checking their performance on the UWM test set. In addition, we conducted two experiments to 
evaluate our models’ generalizability across health systems. 

 
Evaluating the generalizability of our Intermountain Healthcare model to UWM 

In the first experiment, we evaluated the generalizability of our Intermountain Healthcare model to UWM. Previously, we 
developed both a simplified model and a full model on the Intermountain Healthcare data set [23]. Our simplified Intermountain 
Healthcare model uses the top 21 features whose importance values calculated by XGBoost on that data set are ≥0.01 [23]. 
Compared to our full Intermountain Healthcare model using 142 features, our simplified Intermountain Healthcare model 
retained nearly all of its predictive power. Our UWM data set contained the top 21 features and missed some other features 
adopted in our full Intermountain Healthcare model. We evaluated our simplified Intermountain Healthcare model’s 
performance on the UWM test set twice. The first time, we retrained our simplified Intermountain Healthcare model on the 
UWM training set. The second time, we did no retraining and just directly applied our original simplified Intermountain 
Healthcare model trained on the Intermountain Healthcare training set. 

 
Evaluating the generalizability of our UWM model to Intermountain Healthcare 

In the second experiment, we evaluated the generalizability of our UWM model to Intermountain Healthcare. We employed 
a simplified UWM model, which used only the top features whose importance values calculated by XGBoost on the UWM 
training set were ≥0.01. For any top feature that was newly introduced in this study and was unused in our prior study [23], we 
computed the feature on the Intermountain Healthcare data set. We evaluated our simplified UWM model’s performance on 
the Intermountain Healthcare test set twice. The first time, we retrained our simplified UWM model on the Intermountain 
Healthcare training set. The second time, we did no retraining and just directly applied our simplified UWM model trained on 
the UWM training set. 

 
Results 
Demographic and clinical characteristics of our patient cohort 

Each data instance addresses a unique (index year, patient) pair. Table 2 and Table 3 show the demographic and clinical 
characteristics of our UWM patient cohort during 2011-2017 and 2018, respectively. The characteristics are similar across the 
two time periods. During 2011-2017 and 2018, 1.74% (1,184/68,244) and 1.49% (218/14,644) of data instances were linked to 
asthma hospital encounters in the subsequent 12 months, respectively. 
 

Table 2. Demographic and clinical characteristics of the asthmatic patients at UWM during 2011-2017. 
Characteristic Data instances 

(N=68,244), n 
(%) 

Data instances connecting to 
asthma hospital encounters 

in the subsequent 12 months 
(N=1,184), n (%) 

Data instances connecting to 
no asthma hospital encounter 
in the subsequent 12 months 

(N=67,060), n (%) 
Age 

 <40 23,459 (34.38) 466 (39.36) 22,993 (34.29) 
 40 to 65 33,889 (49.66) 583 (49.24) 33,306 (49.67) 
 65+ 10,896 (15.97) 135 (11.40) 10,761 (16.05) 

Gender 
 Male 24,198 (35.46) 551 (46.54) 23,647 (35.26) 
 Female 44,046 (64.54) 633 (53.46) 43,413 (64.74) 

Race 
 American Indian or Alaska native 1,358 (1.99) 32 (2.70) 1,326 (1.98) 
 Asian 5,721 (8.38) 96 (8.11) 5,625 (8.39) 
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 Black or African American 8,420 (12.34) 520 (43.92) 7,900 (11.78) 
 Native Hawaiian or other Pacific islander 673 (0.99) 14 (1.18) 659 (0.98) 
 White 47,747 (69.97) 507 (42.82) 47,240 (70.44) 
 Unknown or not reported 4,325 (6.34) 15 (1.27) 4,310 (6.43) 

Ethnicity 
 Hispanic 3,526 (5.17) 82 (6.93) 3,444 (5.14) 
 Non-Hispanic 56,309 (82.51) 1,062 (89.70) 55,247 (82.38) 
 Unknown or not reported 8,409 (12.32) 40 (3.38) 8,369 (12.48) 

Insurance 
 Private 40,009 (58.63) 424 (35.81) 39,585 (59.03) 
 Public 28,787 (42.18) 756 (63.85) 28,031 (41.80) 
 Self-paid or charity 1,366 (2.00) 65 (5.49) 1,301 (1.94) 

No. of years from the first encounter related to asthma in the data set 
 ≤3 60,873 (89.20) 986 (83.28) 59,887 (89.30) 
 >3 7,371 (10.80) 198 (16.72) 7,173 (10.70) 

Asthma medication prescription 
 Inhaled corticosteroid 28,889 (42.33) 626 (52.88) 28,263 (42.15) 
 Inhaled corticosteroid/long-acting beta-2 

agonist combination 
22,015 (32.26) 499 (42.15) 21,516 (32.08) 

 Leukotriene modifier 8,171 (11.97) 201 (16.98) 7,970 (11.88) 
 Long-acting beta-2 agonist 12,293 (18.01) 374 (31.59) 11,919 (17.77) 
 Mast cell stabilizer 47 (0.07) 4 (0.34) 43 (0.06) 
 Short-acting inhaled beta-2 agonist 47,808 (70.05) 1,010 (85.30) 46,798 (69.79) 
 Systemic corticosteroid 18,699 (27.40) 614 (51.86) 18,085 (26.97) 

Comorbidity 
 Allergic rhinitis 11,449 (16.78) 172 (14.53) 11,277 (16.82) 
 Anxiety or depression 19,885 (29.14) 372 (31.42) 19,513 (29.10) 
 Bronchopulmonary dysplasia 1 (0.00) 0 (0.00) 1 (0.00) 
 Chronic obstructive pulmonary disease 3,826 (5.61) 133 (11.23) 3,693 (5.51) 
 Cystic fibrosis 61 (0.09) 1 (0.08) 60 (0.09) 
 Eczema 3,891 (5.70) 66 (5.57) 3,825 (5.70) 
 Gastroesophageal reflux 12,291 (18.01) 238 (20.10) 12,053 (17.97) 
 Obesity 7,845 (11.50) 177 (14.95) 7,668 (11.43) 
 Sinusitis 7,261 (10.64) 89 (7.52) 7,172 (10.69) 
 Sleep apnea 4,556 (6.68) 88 (7.43) 4,468 (6.66) 

Smoking status 
 Current smoker 14,081 (20.63) 255 (21.54) 13,826 (20.62) 
 Former smoker 15,530 (22.76) 221 (18.67) 15,309 (22.83) 
 Never smoker or unknown 38,633 (56.61) 708 (59.80) 37,925 (56.55) 

 
Table 3. Demographic and clinical characteristics of the asthmatic patients at UWM in 2018. 

Characteristic Data instances 
(N=14,644), n 

(%) 

Data instances connecting to 
asthma hospital encounters 

in the subsequent 12 months 
(N=218), n (%) 

Data instances connecting to 
no asthma hospital encounter 
in the subsequent 12 months 

(N=14,426), n (%) 
Age 

 <40 4,823 (32.94) 77 (35.32) 4,746 (32.90) 
 40 to 65 6,794 (46.39) 111 (50.92) 6,683 (46.33) 
 65+ 3,027 (20.67) 30 (13.76) 2,997 (20.78) 

Gender 
 Male 5,238 (35.77) 100 (45.87) 5,138 (35.62) 
 Female 9,406 (64.23) 118 (54.13) 9,288 (64.38) 

Race 
 American Indian or Alaska native 281 (1.92) 8 (3.67) 273 (1.89) 
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 Asian 1,325 (9.05) 18 (8.26) 1,307 (9.06) 
 Black or African American 1,570 (10.72) 79 (36.24) 1,491 (10.34) 
 Native Hawaiian or other Pacific islander 131 (0.89) 2 (0.92) 129 (0.89) 
 White 10,213 (69.74) 110 (50.46) 10,103 (70.03) 
 Unknown or not reported 1,124 (7.68) 1 (0.46) 1,123 (7.78) 

Ethnicity 
 Hispanic 850 (5.80) 20 (9.17) 830 (5.75) 
 Non-Hispanic 12,566 (85.81) 196 (89.91) 12,370 (85.75) 
 Unknown or not reported 1,228 (8.39) 2 (0.92) 1,226 (8.50) 

Insurance 
 Private 10,800 (73.75) 108 (49.54) 10,692 (74.12) 
 Public 8,023 (54.79) 182 (83.49) 7,841 (54.35) 
 Self-paid or charity 484 (3.31) 25 (11.47) 459 (3.18) 

No. of years from the first encounter related to asthma in the data set 
 ≤3 10,566 (72.15) 124 (56.88) 10,442 (72.38) 
 >3 4,078 (27.85) 94 (43.12) 3,984 (27.62) 

Asthma medication prescription 
 Inhaled corticosteroid 6,177 (42.18) 108 (49.54) 6,069 (42.07) 
 Inhaled corticosteroid/long-acting beta-2 

agonist combination 
4,508 (30.78) 83 (38.07) 4,425 (30.67) 

 Leukotriene modifier 2,176 (14.86) 46 (21.10) 2,130 (14.77) 
 Long-acting beta-2 agonist 2,518 (17.19) 62 (28.44) 2,456 (17.02) 
 Mast cell stabilizer 14 (0.10) 1 (0.46) 13 (0.09) 
 Short-acting inhaled beta-2 agonist 9,704 (66.27) 164 (75.23) 9,540 (66.13) 
 Systemic corticosteroid 4,163 (28.43) 120 (55.05) 4,043 (28.03) 

Comorbidity 
 Allergic rhinitis 2,095 (14.31) 26 (11.93) 2,069 (14.34) 
 Anxiety or depression 4,346 (29.68) 62 (28.44) 4,284 (29.70) 
 Bronchopulmonary dysplasia 4 (0.03) 0 (0.00) 4 (0.03) 
 Chronic obstructive pulmonary disease 932 (6.36) 30 (13.76) 902 (6.25) 
 Cystic fibrosis 17 (0.12) 0 (0.00) 17 (0.12) 
 Eczema 743 (5.07) 11 (5.05) 732 (5.07) 
 Gastroesophageal reflux 2,657 (18.14) 46 (21.10) 2,611 (18.10) 
 Obesity 1,604 (10.95) 25 (11.47) 1,579 (10.95) 
 Sinusitis 1,372 (9.37) 15 (6.88) 1,357 (9.41) 
 Sleep apnea 1,499 (10.24) 24 (11.01) 1,475 (10.22) 

Smoking status 
 Current smoker 3,242 (22.14) 49 (22.48) 3,193 (22.13) 
 Former smoker 3,494 (23.86) 41 (18.81) 3,453 (23.94) 
 Never smoker or unknown 7,908 (54.00) 128 (58.72) 7,780 (53.93) 

 
As the χ2 two-sample test showed, for both the 2011-2017 and 2018 data, the data instances connecting to future asthma 

hospital encounters and those connecting to no future asthma hospital encounter exhibited the same distribution for anxiety or 
depression occurrence (P=.74 for the 2018 data and P=.09 for the 2011-2017 data), bronchopulmonary dysplasia occurrence 
(P=1.00), cystic fibrosis occurrence (P=1.00), eczema occurrence (P=1.00 for the 2018 data and P=.90 for the 2011-2017 data), 
gastroesophageal reflux occurrence (P=.29 for the 2018 data and P=.06 for the 2011-2017 data), and sleep apnea occurrence 
(P=.79 for the 2018 data and P=.32 for the 2011-2017 data). These two sets of data instances exhibited differing distributions 
for gender (P=.002 for the 2018 data and P<.001 for the 2011-2017 data), ethnicity (P<.001), insurance category (P<.001), 
race (P<.001), systemic corticosteroid prescription (P<.001), inhaled corticosteroid prescription (P=.02 for the 2018 data and 
P<.001 for the 2011-2017 data), inhaled corticosteroid/long-acting beta-2 agonist combination prescription (P=.02 for the 2018 
data and P<.001 for the 2011-2017 data), short-acting inhaled beta-2 agonist prescription (P=.006 for the 2018 data and P<.001 
for the 2011-2017 data), long-acting beta-2 agonist prescription (P<.001), leukotriene modifier prescription (P=.01 for the 2018 
data and P<.001 for the 2011-2017 data), and chronic obstructive pulmonary disease occurrence (P<.001). For the 2011-2017 
data, these two sets of data instances exhibited differing distributions for mast cell stabilizer prescription (P=.003), obesity 
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occurrence (P<.001), sinusitis occurrence (P<.001), allergic rhinitis occurrence (P=.04), and smoking status (P=.003). For the 
2018 data, these two sets of data instances exhibited the same distribution for mast cell stabilizer prescription (P=.52), obesity 
occurrence (P=.89), sinusitis occurrence (P=.25), allergic rhinitis occurrence (P=.36), and smoking status (P=.19). 

As the Cochran-Armitage trend test [37] showed, the data instances connecting to future asthma hospital encounters and 
those connecting to no future asthma hospital encounter exhibited the same distribution for age (P=.06) in the 2018 data and 
differing distributions for age (P<.001) in the 2011-2017 data. For both the 2018 and 2011-2017 data, these two sets of data 
instances exhibited differing distributions for the number of years from the first encounter related to asthma in the data set 
(P<.001). 

Table 4 shows the number of asthmatic patients and the number of their visits in each year between 2011 and 2018. 
 

Table 4. The number of asthmatic patients and the number of their visits in each year between 2011 and 2018. 
Year Number of asthmatic patients Number of visits by asthmatic patients 
2011 6,852 32,910 
2012 7,768 40,730 
2013 7,754 39,385 
2014 9,785 58,953 
2015 10,587 69,285 
2016 12,072 78,605 
2017 13,426 87,403 
2018 14,644 94,875 

 
Classification algorithm and features adopted by our final UWM model 

Our automatic machine learning model selection method [35] selected the XGBoost classification algorithm [33]. XGBoost 
is a form of an ensemble of decision trees that can naturally deal with missing feature values. As described in Hastie et al. [38] 
in detail, XGBoost automatically calculates the importance value of each feature based on its apportioned contribution to the 
model. Our final UWM model was formed using XGBoost and 71 features displayed in descending order of their importance 
values in Table 2 of Multimedia Appendix 1. XGBoost automatically removed the other features because they had no additional 
predictive power. 

 
Performance measures yielded by our final UWM model 

On the UWM test set, our final model yielded an AUC of 0.902 (95% CI: 0.879-0.924). Figure 2 presents the model’s receiver 
operating characteristic curve. Table 5 lists the model’s performance measures when the cutoff point for making binary 
classification was placed at different top percentages of asthmatic patients having the biggest forecasted risk. When the cutoff 
point was placed at the top 10.00% (1,464/14,644), the model yielded an accuracy of 90.60% (13,268/14,644; 95% CI: 90.13-
91.06), a sensitivity of 70.18% (153/218; 95% CI: 63.77-75.98), a specificity of 90.91% (13,115/14,426; 95% CI: 90.45-91.38), 
a PPV of 10.45% (153/1,464; 95% CI: 8.90-11.97), and an NPV of 99.51% (13,115/13,180; 95% CI: 99.39-99.62). Table 6 
displays the model’s confusion matrix in this case. 
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Figure 2. The receiver operating characteristic curve of our final UWM model. 
 

Table 5. Our final UWM model’s performance measures when the cutoff point for making binary classification was placed at 
different top percentages of asthmatic patients having the biggest forecasted risk. 
Top percentage of asthmatic 
patients having the biggest 

forecasted risk (%) 

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

1 98.40 
(14,410/14,644) 

29.82 (65/218) 99.44 
(14,345/14,426) 

44.52 (65/146) 98.94 
(14,345/14,498) 

2 97.76 
(14,316/14644) 

41.74 (91/218) 98.61 
(14,225/14,426) 

31.16 (91/292) 99.12 
(14,225/14,352) 

3 96.92 
(14,193/14,644) 

47.25 
(103/218) 

97.67 
(14,090/14,426) 

23.46 (103/439) 99.19 
(14,090/14,205) 

4 96.02 
(14,061/14,644) 

50.46 
(110/218) 

96.71 
(13,951/14,426) 

18.80 (110/585) 99.23 
(13,951/14,059) 

5 95.17 
(13,936/14,644) 

55.50 
(121/218) 

95.76 
(13,815/14,426) 

16.53 (121/732) 99.30 
(13,815/13,912) 

6 94.28 
(13,806/14,644) 

59.17 
(129/218) 

94.81 
(13,677/14,426) 

14.69 (129/878) 99.35 
(13,677/13,766) 

7 93.33 
(13,667/14,644) 

61.01 
(133/218) 

93.82 
(13,534/14,426) 

12.98 (133/1,025) 99.38 
(13,534/13,619) 

8 92.39 
(13,529/14,644) 

62.84 
(137/218) 

92.83 
(13,392/14,426) 

11.70 (137/1,171) 99.40 
(13,392/13,473) 

9 91.58 
(13,411/14,644) 

69.27 
(151/218) 

91.92 
(13,260/14,426) 

11.47 (151/1,317) 99.50 
(13,260/13,327) 

10 90.60 
(13,268/14,644) 

70.18 
(153/218) 

90.91 
(13,115/14,426) 

10.45 (153/1,464) 99.51 
(13,115/13,180) 

15 85.88 
(12,576/14,644) 

79.36 
(173/218) 

85.98 
(12,403/14,426) 

7.88 (173/2,196) 99.64 
(12,403/12,448) 

20 80.99 
(11,860/14,644) 

83.03 
(181/218) 

80.96 
(11,679/14,426) 

6.18 (181/2,928) 99.68 
(11,679/11,716) 

25 76.12 
(11,147/14,644) 

87.61 
(191/218) 

75.95 
(10,956/14,426) 

5.22 (191/3,661) 99.75 
(10,956/10,983) 

 
Table 6. Our final UWM model’s confusion matrix when the cutoff point for making binary classification was placed at the 
top 10.00% (1,464/14,644) of asthmatic patients having the biggest forecasted risk. 

Outcome class Future asthma hospital encounters No future asthma hospital encounter 

Se
ns

iti
vi

ty
 

1-Specificity 
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Forecasted future asthma hospital encounters  153 1,311 
Forecasted no future asthma hospital encounter 65 13,115 
 

Several features like family history of asthma were calculated on two or more years of data. When we dropped these features 
and checked solely those features calculated on one year of data, the model’s AUC decreased from 0.902 to 0.899. If we 
employed only the top 17 features in Table 2 of Multimedia Appendix 1 whose importance values are ≥0.01 and ignored the 
other 217 features, the model’s AUC decreased from 0.902 to 0.898 (95% CI: 0.874-0.919). In this case, when we placed the 
cutoff point for making binary classification at the top 10.00% (1,464/14,644) of asthmatic patients having the biggest 
forecasted risk, the model’s accuracy decreased from 90.60% (13,268/14,644) to 90.59% (13,266/14,644; 95% CI: 90.11-
91.06), sensitivity decreased from 70.18% (153/218) to 69.72% (152/218; 95% CI: 63.59-75.52), specificity remained at 
90.91% (13,114/14,426; 95% CI: 90.42-91.37), PPV decreased from 10.45% (153/1,464) to 10.38% (152/1,464; 95% CI: 8.82-
11.97), and NPV decreased from 99.51% (13,115/13,180) to 99.50% (13,114/13,180; 95% CI: 99.38-99.61). 
 
Performance measures yielded by our simplified Intermountain Healthcare model on UWM data 

When we did no retraining and applied our original simplified Intermountain Healthcare model trained on the Intermountain 
Healthcare training set [23] directly to the UWM test set, the model yielded an AUC of 0.861 (95% CI: 0.835-0.885). When 
we placed the cutoff point for making binary classification at the top 10.00% (1,464/14,644) of asthmatic patients having the 
biggest forecasted risk, the model yielded an accuracy of 90.29% (13,222/14,644; 95% CI: 89.81-90.77), a sensitivity of 59.63% 
(130/218; 95% CI: 53.39-65.68), a specificity of 90.75% (13,092/14,426; 95% CI: 90.28-91.20), a PPV of 8.88% (130/1,464; 
95% CI: 7.46-10.34), and an NPV of 99.33% (13,092/13,180; 95% CI: 99.20-99.46). 

After we used the UWM training set to retrain our simplified Intermountain Healthcare model [23], the retrained model 
yielded on the UWM test set an AUC of 0.874 (95% CI: 0.848-0.896). When we placed the cutoff point for making binary 
classification at the top 10.00% (1,464/14,644) of asthmatic patients having the biggest forecasted risk, the model yielded an 
accuracy of 90.34% (13,230/14,644; 95% CI: 89.85-90.80), a sensitivity of 61.47% (134/218; 95% CI: 54.63-67.66), a 
specificity of 90.78% (13,096/14,426; 95% CI: 90.32-91.23), a PPV of 9.15% (134/1,464; 95% CI: 7.62-10.66), and an NPV 
of 99.36% (13,096/13,180; 95% CI: 99.22-99.49). 
 
Performance measures yielded by our simplified UWM model on Intermountain Healthcare data 

Our simplified UWM model used only the top 17 features whose importance values are ≥0.01. When we did no retraining 
and applied our simplified UWM model trained on the UWM training set directly to the Intermountain Healthcare test set, the 
model yielded an AUC of 0.814 (95% CI: 0.798-0.830). When we placed the cutoff point for making binary classification at 
the top 10.00% (1,926/19,256) of asthmatic patients having the biggest forecasted risk, the model yielded an accuracy of 
89.76% (17,285/19,256; 95% CI: 89.32-90.18), a sensitivity of 47.17% (383/812; 95% CI: 43.81-50.58), a specificity of 
91.64% (16,902/18,444; 95% CI: 91.24-92.03), a PPV of 19.90% (383/1,925; 95% CI: 18.16-21.60), and an NPV of 97.52% 
(16,902/17,331; 95% CI: 97.28-97.75). 

After we used the Intermountain Healthcare training set to retrain our simplified UWM model, the retrained model yielded 
on the Intermountain Healthcare test set an AUC of 0.846 (95% CI: 0.831-0.859). When we placed the cutoff point for making 
binary classification at the top 10.00% (1,926/19,256) of asthmatic patients having the biggest forecasted risk, the model yielded 
an accuracy of 90.11% (17,351/19,256; 95% CI: 89.64-90.56), a sensitivity of 51.23% (416/812; 95% CI: 47.55-54.49), a 
specificity of 91.82% (16,935/18,444; 95% CI: 91.43-92.21), a PPV of 21.62% (416/1,925; 95% CI: 19.81-23.41), and an NPV 
of 97.72% (16,935/17,331; 95% CI: 97.48-97.93). 
 
Discussion 
Principal results 

We built a model on UWM data to forecast asthmatic patients’ asthma hospital encounters in the subsequent 12 months. 
Table 7 reveals that our final UWM model yielded an AUC that is higher than the previously reported AUC of every existing 
model [2,9-23]. That is, our modeling strategy of examining many candidate features to enhance model accuracy showed 
excellent generalizability to UWM. After further optimization to boost its accuracy and to automatically give explanations of 
its predictions [39,40] to allow clinical interpretability, our UWM model could be employed to facilitate efficient and effective 
allocation of asthma care management resources to improve outcomes. 
 

Table 7. A comparison of our final UWM model and several existing models for forecasting asthmatic patients’ future 
hospitalizations and ED visits. “-” means that the initial paper showing the model did not give the performance measure. 

Model Prediction target No. of data 
instances 

No. of 
features 

Classification 
algorithm 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

AUC 
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the model 
adopted 

Our final 
UWM model 

Asthma hospital 
encounters  

82,888 71 XGBoost 70.18 90.91 10.45 99.51 0.902 

Our 
Intermountain 
Healthcare 
model [23] 

Asthma hospital 
encounters  

334,564 142 XGBoost 53.69 91.93 22.65 97.83 0.859 

Loymans et 
al. [9] 

Asthma 
exacerbation 

611 7 Logistic 
regression 

- - - - 0.8 

Schatz et al. 
[10] 

Asthma-induced 
hospitalization in 
children 

4,197 5 Logistic 
regression 

43.9 89.8 5.6 99.1 0.781 

Schatz et al. 
[10] 

Asthma-induced 
hospitalization in 
adults 

6,904 3 Logistic 
regression 

44.9 87.0 3.9 99.3 0.712 

Eisner et al. 
[11] 

Asthma-induced 
hospitalization 

2,858 1 Logistic 
regression 

- - - - 0.689 

Eisner et al. 
[11] 

Asthma-induced 
ED visit 

2,415 3 Logistic 
regression 

- - - - 0.751 

Sato et al. 
[12] 

Severe asthma 
exacerbation 

78 3 Classification and 
regression tree 

- - - - 0.625 

Miller et al. 
[14] 

Asthma hospital 
encounters  

2,821 17 Logistic 
regression 

- - - - 0.81 

Yurk et al. 
[16] 

Lost day or hospital 
encounters for 
asthma  

4,888 11 Logistic 
regression 

77 63 82 56 0.78 

Lieu et al. [2] Asthma-induced 
hospitalization  

16,520 7 Proportional-
hazards 
regression 

- - - - 0.79 

Lieu et al. [2] Asthma-induced 
ED visit 

16,520 7 Proportional-
hazards 
regression 

- - - - 0.69 

Lieu et al. 
[18] 

Asthma hospital 
encounters 

7,141 4 Classification and 
regression tree 

49.0 83.6 18.5 - - 

Schatz et al. 
[19] 

Asthma hospital 
encounters  

14,893 4 Logistic 
regression 

25.4 92.0 22.0 93.2 0.614 

Forno et al. 
[21] 

Severe asthma 
exacerbation 

615 17 Scoring - - - - 0.75 

Xiang et al. 
[22] 

Asthma 
exacerbation 

31,433 - Recurrent neural 
network 

- - - - 0.70 

 
In Table 2 of Multimedia Appendix 1, both the five most important features and multiple other features within the top 17 

indicate loss of asthma control. It is important to note that loss of asthma control could be due in part to factors not well captured 
in our data, such as socioeconomic circumstances, variable management practices among providers, access to subspecialty 
clinicians, and non-adherence to medications and treatments. Variable asthma severity across patients over time also influences 
this process. 

We checked 234 candidate features. Our final UWM model used 30.3% (71/234) of them. Despite being correlated with the 
outcome, many unused features had no extra predictive power on the UWM data set over the features adopted in our final 
UWM model. 

When we did no retraining on the UWM data and directly applied our original simplified Intermountain Healthcare model 
trained on the Intermountain Healthcare training set [23], the model yielded an AUC of 0.861 on the UWM test set. This AUC 
is 0.041 lower than our final UWM model’s AUC, but is still larger than the previously reported AUC of every existing model 
for forecasting asthmatic patients’ future hospitalizations and ED visits (see Table 7). Hence, our simplified Intermountain 
Healthcare model showed excellent generalizability to UWM. 
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Compared to our full UWM model using 71 features, our simplified UWM model retained nearly all of its predictive power. 
When we did no retraining on the Intermountain Healthcare data and directly applied our simplified UWM model trained on 
the UWM training set, the model yielded an AUC of 0.814 on the Intermountain Healthcare test set. This AUC is 0.045 lower 
than our full Intermountain Healthcare model’s AUC, but is still larger than the previously reported AUC of every existing 
model developed by others for forecasting asthmatic patients’ future hospitalizations and ED visits (see Table 7). Hence, our 
simplified UWM model showed excellent generalizability to Intermountain Healthcare. 

 
Comparison with the previous work 

Researchers have built multiple models to forecast asthmatic patients’ future hospitalizations and ED visits [2,9-23]. Table 
7 compares our final UWM model with these models, which cover all of the relevant models described in Loymans et al.’s 
systematic review [17]. Our final UWM model’s AUC is 0.902. Our Intermountain Healthcare model’s AUC is 0.859. Every 
other existing model has a previously reported AUC ≤ 0.81 [2,9-22], which is lower than our final UWM model’s AUC by at 
least 0.091. 

It is important to consider the prevalence of the outcome of interest when comparing different predictive models’ 
performance. Compared to other existing models, Yurk et al.’s model [16] achieved a higher sensitivity and PPV mainly 
because it adopted a differing prediction target: asthma hospital encounters or at least one day lost for diminished activities or 
missing work for asthma. This prediction target had a 54% prevalence rate in asthmatic patients and was therefore easier to 
forecast. If Yurk et al.’s model were employed to forecast asthma hospital encounters, an outcome that had a <2% prevalence 
rate in asthmatic patients, the model’s sensitivity and PPV would likely drop. 

Xiang et al.’s [22] recurrent neural network model reached a low AUC of 0.7 mainly because it used mostly inpatient data 
with little outpatient data; adopted only three types of attributes: medication, diagnosis, and demographics; and did not merge 
individual asthma medications into asthma medication categories such as nebulizer and short-acting beta-2 agonist. That is, the 
low AUC does not prove that the recurrent neural network is ineffective at predicting asthma outcomes, but is mainly due to 
incomplete data and insufficient feature modeling. In comparison, in building our final UWM model, we used both inpatient 
and outpatient data, adopted many types of attributes, and merged individual asthma medications into asthma medication 
categories to better capture and model the relationship among different asthma medications. 

Excluding Yurk et al.’s model [16], every existing published model has a sensitivity ≤ 53.69%, which is significantly lower 
than our final UWM model’s sensitivity of 70.18%. For the asthmatic patients who will have future asthma hospital encounters, 
sensitivity is the percentage of them identified by the model. The difference in sensitivity could have a significant impact on 
healthcare utilization. Due to asthma’s high prevalence rate, for every 10% increase in the identified percentage of asthmatic 
patients who would have future asthma hospital encounters, up to 7,759 more hospitalizations and 71,074 more ED visits could 
be avoided in the U.S. each year with effective care management [1,4-7]. 

The targeted poor outcome’s prevalence rate greatly impacts the PPV of any predictive model [41]. In our UWM test data 
set, 1.49% (218/14,644) of asthmatic patients had future asthma hospital encounters. When we placed the cutoff point for 
making binary classification at the top 10.00% (1,464/14,644) of asthmatic patients with the biggest forecasted risk, an 
impeccable model in theory would yield the highest possible PPV of 14.89% (218/1,464). Our final UWM model yielded a 
PPV of 10.45% (153/1,464), which is 70.18% of the highest possible PPV in theory. In comparison, our Intermountain 
Healthcare model achieved a PPV of 22.65% [23]. This is 53.69% of the highest possible PPV that an impeccable model in 
theory would yield on the Intermountain Healthcare test set. Lieu et al.’s [18] model yielded a PPV of 18.5% on a data set 
where 6.9% of asthmatic patients had future asthma hospital encounters. Schatz et al.’s [19] model yielded a PPV of 22.0% on 
a data set where 6.5% of asthmatic patients had future asthma hospital encounters. Compared to our case with UWM, both 
populations have a higher prevalence of asthma hospital encounters, which allows the PPV to be higher. Excluding these PPVs 
and Yurk et al.’s [16] model’s PPV, no other existing published model’s PPV exceeds 5.6%. 

Our final UWM model and our Intermountain Healthcare model [23] have similar top features whose importance values are 
≥0.01. In both models, many top features are related to prior ED visits and asthma medications. We had not identified several 
candidate features at the construction time of our Intermountain Healthcare model. They appeared as top features and affected 
the ranks and importance values of the other top features in our final UWM model. 

Differing models in Table 7 were built using different patient cohorts and employ similar, but not necessarily identical 
prediction targets. Some features used in the models built by other researchers, such as certain features computed from patient 
reported outcomes and patient surveys, are unavailable in our UWM data set. Hence, we were unable to show the performance 
measures that the models built by other researchers would achieve on our UWM data set. Yet, we are confident that the 
techniques used by us improved prediction accuracy. Our final UWM model was built using a state-of-the-art machine learning 
algorithm, XGBoost. Compared to statistical methods such as logistic regression, machine learning can enhance prediction 
accuracy with less strict assumptions on data distribution [8,42,43]. Compared to the models built by other researchers, our 
final UWM model was built using more patients and a more extensive set of candidate features done with careful feature 
engineering, both of which are known to often help improve prediction accuracy [24-27,32]. As partial evidence for this, we 
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built predictive models for asthma hospital encounters using data from three healthcare systems UWM, Intermountain 
Healthcare [23], and Kaiser Permanente Southern California [44]. For each of the three healthcare systems, we started model 
building with around 20 candidate features and obtained unsatisfactory accuracy. This motivated us to examine several hundred 
candidate features. Ultimately, for each of the three healthcare systems, we built a model with an AUC that is higher than all 
of the AUCs other researchers previously reported in the literature for forecasting asthma hospital encounters [23,44]. This 
demonstrated the generalizability of our modeling strategy for forecasting asthma hospital encounters. 
 
Considerations concerning the potential clinical use 

Our final UWM model has an AUC that is higher than all of the AUCs previously reported in the literature for forecasting 
asthma hospital encounters, but still had a seemingly low PPV of 10.45% (153/1,464). Nevertheless, this model could provide 
value in clinical care: 
(1) Healthcare systems like UWM, Intermountain Healthcare, and Kaiser Permanente Northern California [2] are using 

proprietary models to allocate asthma care management resources. These models and the models formerly built by others 
have similar performance measures. Our final UWM model has an AUC that is higher than the previously reported AUCs 
of all of these models. 

(2) As explained above, even an impeccable model in theory would reach a low PPV because the poor outcome of interest has 
a low prevalence rate in our data set. For such an outcome, sensitivity better reflects the model’s potential clinical value 
than PPV. Our final UWM model had a higher sensitivity than the previously reported sensitivity of every existing model 
using a comparable prediction target. It is important to note that while asthma hospital encounters have an overall low 
prevalence rate in the asthmatic patient population, they have significant financial and clinical impacts at both the 
population and the individual patient level. 

(3) A PPV of 10.45% (153/1,464) is useful for finding high-risk asthmatic patients to receive low-cost preventive 
interventions. Below are four examples of such interventions: training the patient to record a diary about environmental 
triggers, coaching the patient to use an asthma inhaler correctly, coaching the patient to use a peak flow meter correctly 
and giving it to the patient to do self-monitoring of symptoms at home, and asking a nurse to do extra follow-up phone 
calls with the patient and/or the patient’s caregiver. These interventions could have a significant impact on patient outcomes. 

Our final UWM model employed 71 features. Reducing the number of features could ease clinical deployment of our model. 
To this end, if a minor decrease of prediction accuracy could be tolerated, one could adopt the top few features whose 
importance values are greater than a given threshold like 0.01 and drop the other features. The importance value of a feature 
varies across healthcare systems. Ideally, one should first calculate the features’ importance values on a data set from the target 
healthcare system before choosing the features to retain. 

As is typical with complex machine learning models, an XGBoost model using many features is hard to interpret. This can 
limit clinical understandability and adoption, particularly by clinicians who are resistant to using automated tools. In the future, 
we plan to adopt our previously developed method [39,40] to automatically explain the prediction results of our final UWM 
model. 

Our final UWM model was constructed using XGBoost [33]. For binary classification on imbalanced data, XGBoost 
leverages a hyper-parameter scale_pos_weight to balance the two outcome classes’ weights [45]. To maximize the AUC of our 
UWM model, our automatic model selection method [35] altered scale_pos_weight to a non-default value to balance the two 
outcome classes [46]. This incurs a side effect of significantly shrinking the model’s forecasted probabilities of having future 
asthma hospital encounters to values much less than the actual probabilities [46]. This does not preclude us from choosing the 
top few percent of asthmatic patients having the greatest forecasted risk to receive various preventive interventions. To prevent 
this side effect from occurring, we could remain scale_pos_weight at its default value of one without doing any balancing. As 
a tradeoff, the model’s AUC would decrease from 0.902 to 0.885 (95% CI: 0.861-0.907), yet even this decreased AUC is larger 
than all of the AUCs previously reported in the literature for forecasting asthma hospital encounters. 
 
Limitations 

This study has at least four limitations that could be interesting topics for future work: 
(1) It is possible to raise model accuracy further using other features beyond those checked in this study. For example, features 

derived from environmental and physiological data gathered by intelligent wearable devices could have this potential. 
(2) This study used purely structured data and checked only non-deep learning classification algorithms. It is possible to raise 

model accuracy further using deep learning as well as features derived from unstructured clinical notes using natural 
language processing techniques [40,47]. 

(3) Our UWM data set contained no data on patients’ healthcare use outside of UWM. Hence, we limited the prediction target 
to asthma hospital encounters at UWM instead of asthma hospital encounters anywhere. Also, the features we checked 
were derived from patients’ incomplete administrative and clinical data [48-51]. It would be worth investigating how 
model accuracy would vary if we have more complete administrative and clinical data of patients [52]. 
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(4) This study evaluated our modeling strategy’s generalizability to an academic healthcare system on a single outcome of a 
complex chronic disease. We recently showed that our modeling strategy also generalizes well to Kaiser Permanente 
Southern California for the same predictive modeling problem [44]. We plan to investigate our modeling strategy’s 
generalizability to other diseases, outcomes, and healthcare systems in the future. 

 
Conclusions 

In the first evaluation of its generalizability to an academic healthcare system, our modeling strategy of examining many 
candidate features to enhance prediction accuracy showed excellent generalizability to UWM and led to a model with an AUC 
that is higher than all of the AUCs previously reported in the literature for forecasting asthma hospital encounters. After further 
optimization, our UWM model could be employed to facilitate efficient and effective allocation of asthma care management 
resources to improve outcomes. 
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Appendix 
 

Table 1. The list of candidate features considered in this study. 
Feature category Features 
Features on patient 
demographics  

Ethnicity (Hispanic or non-Hispanic); gender; age; marital status (married, single, partnered, 
divorced, widowed, or separated); race; and language. 

Features related to laboratory 
tests 

No. of laboratory tests; no. of laboratory tests having abnormal results; no. of days from the 
most recent laboratory test; whether an immunoglobulin E (IgE) test was performed; whether 
the greatest total serum IgE level is abnormally high; the greatest total serum IgE level; the 
largest percentage of blood eosinophils; and the largest blood eosinophil count.  
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Features related to vital signs The mean diastolic blood pressure; the mean heart rate; the mean systolic blood pressure; the 
highest diastolic blood pressure; the mean temperature; the highest systolic blood pressure; 
the greatest heart rate; the mean respiratory rate; the greatest respiratory rate; the highest 
temperature; the mean peripheral capillary oxygen saturation (SpO2); the lowest SpO2; the 
mean peak expiratory flow; the lowest peak expiratory flow; the relative change of weight = 
(the most recently documented weight / the first documented weight - 1) × 100%; the largest 
body mass index (BMI); and the relative change of BMI = (the most recently documented BMI 
/ the first documented BMI - 1) × 100%. 

Features that are related to 
diagnoses and calculated 
solely on ICD-9 and ICD-10 
diagnosis codes 

No. of ICD-9 and ICD-10 diagnosis codes; no. of years from the first encounter related to 
asthma in the data set; no. of primary or principal asthma diagnoses; no. of asthma diagnoses; 
whether the most recent asthma diagnosis is a primary or principal one; the severity of the 
most recent asthma diagnosis; the severity of the most severe asthma diagnosis; no. of 
diagnoses of asthma with status asthmaticus; no. of diagnoses of asthma with (acute) 
exacerbation; the exacerbation severity (uncomplicated, exacerbation, or asthmaticus) of the 
most recent asthma diagnosis; the greatest exacerbation severity of any asthma diagnosis; no. 
of days from the most recent asthma diagnosis; no. of days from the most recent diagnosis of 
asthma with (acute) exacerbation or status asthmaticus; no. of diagnoses of noncompliance 
with medication regimen; family history of asthma; chronic obstructive pulmonary disease; 
no. of years from the first encounter related to chronic obstructive pulmonary disease in the 
data set; esophagitis; allergic rhinitis; anxiety or depression; ischemic heart disease; eczema; 
gastroesophageal reflux; sleep apnea; gastrostomy tube; obesity; Alzheimer’s or Parkinson’s 
disease; upper respiratory tract infection; decreased tone; increased tone; cystic fibrosis; 
immunoglobulin A (IgA) deficiency; pneumonia; vocal cord dysfunction; psoriasis; 
anaphylaxis; vasculitis; cirrhosis; gastrointestinal bleeding; gastrointestinal obstruction; 
inflammatory bowel disease; mental disorder; breathing abnormality like dyspnea; pregnancy; 
vitamin D deficiency; myocardial infarction; folate deficiency; congestive heart failure; 
malignancy; peripheral vascular disease; dementia; peptic ulcer disease; cerebrovascular 
disease; substance use; rheumatic disease; diabetes with chronic complication; renal disease; 
diabetes without chronic complication; bronchopulmonary dysplasia; moderate or severe liver 
disease; mild liver disease; paraplegia or hemiplegia; acquired immunodeficiency syndrome; 
and metastatic solid tumor. 

Features that are related to 
diagnoses and calculated 
jointly on ICD-9 and ICD-10 
procedure codes along with 
ICD-9 and ICD-10 diagnosis 
codes 

Tracheostomy. 

Features that are related to 
diagnoses and calculated 
jointly on Current Procedural 
Terminology (CPT) and 
Healthcare Common 
Procedure Coding System 
(HCPCS) procedure codes 
along with ICD-9 and ICD-10 
diagnosis codes 

Cataract; and sinusitis. 

Features related to the 
problem list 

No. of active problems; no. of active problems of wheezing; no. of active problems of asthma 
with (acute) exacerbations; no. of active problems of asthma; no. of active problems of obesity; 
no. of active problems of congestive heart failure; no. of active problems of sleep apnea; no. 
of active problems of hypertension; no. of active problems of chronic obstructive pulmonary 
disease; no. of active problems of rhinitis; no. of active problems of diabetes; no. of active 
problems of anxiety/depression; no.of active problems of gastroesophageal reflux disease; no. 
of active problems about smoking; and the priority of the last active problem of asthma. 

Features related to 
medications  

Total no. of medications ordered; no. of medication orders; total no. of differing medications 
ordered; total no. of medication refills permitted; total no. of units of medications ordered; 
total no. of asthma medications ordered; no. of asthma medication orders; total no. of differing 
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asthma medications ordered; total no. of asthma medication refills permitted; total no. of units 
of asthma medications ordered; total no. of short-acting beta-2 agonists ordered; total no. of 
refills permitted for short-acting beta-2 agonists; total no. of units of short-acting beta-2 
agonists ordered; total no. of systemic corticosteroids ordered; total no. of refills permitted for 
systemic corticosteroids; total no. of units of systemic corticosteroids ordered; no. of asthma 
reliever orders; total no. of asthma relievers ordered; total no. of refills permitted for asthma 
relievers; total no. of differing asthma relievers ordered; total no. of units of asthma relievers 
ordered; total no. of units of asthma relievers ordered that are neither short-acting beta-2 
agonists nor systemic corticosteroids; total no. of asthma relievers ordered that are neither 
short-acting beta-2 agonists nor systemic corticosteroids; no. of asthma controller orders; total 
no. of asthma controllers ordered; total no. of units of asthma controllers ordered; total no. 
of differing asthma controllers ordered; total no. of refills permitted for asthma controllers; 
total no. of inhaled corticosteroids ordered; total no. of refills permitted for inhaled 
corticosteroids; total no. of units of inhaled corticosteroids ordered; total no. of mast cell 
stabilizers ordered; total no. of refills permitted for mast cell stabilizers; total no. of units of 
mast cell stabilizers ordered; whether nebulizer was used; total no. of nebulizer medications 
ordered; no. of nebulizer medication orders; total no. of units of nebulizer medications 
ordered; total no. of differing nebulizer medications ordered; total no. of refills permitted for 
nebulizer medications; and whether spacer was used. 

Features related to insurances Whether the patient had any public insurance on the last day; whether the patient had any 
private insurance on the last day; and whether the patient was paid by oneself or a charity on 
the last day. 

Features related to the 
patient’s visit types 

No. of ED visits; no. of ED visits related to asthma; the most recent ED visit’s length of stay; 
the mean length of stay of an ED visit; no. of visits; no. of outpatient visits to the patient’s 
PCP; no. of outpatient visits; no. of outpatient visits whose primary diagnosis is asthma; no. 
of hospitalizations; the hospitalizations’ total length; the mean length of a hospitalization; no. 
of hospitalizations, ED visits, and outpatient visits; no. of intensive care admissions; the most 
emergent admission type of all of the visits; the most recent visit’s admission type (elective, 
urgent, emergency, or trauma); no. of major visits for asthma; and the most recent visit’s type 
(ED visit, outpatient visit, or hospitalization). As in our prior paper [23], we defined a major 
visit for asthma as an ED visit having an asthma diagnosis code, a hospitalization having an 
asthma diagnosis code, or an outpatient visit having a primary diagnosis of asthma. An 
outpatient visit having only a secondary diagnosis of asthma was treated as a minor visit for 
asthma. 

Features on visit status and 
appointment scheduling  

The day of the week when the most recent ED visit began; no. of cancelled appointments; the 
most recent visit’s discharge disposition location (home, left against medical advice, or other 
non-home location); no. of no shows; no. of times of leaving against medical advice; for the 
most recent visit, the time to the actual visit after making the request showing its urgency; 
across all of the visits, the shortest time to the actual visit after making the request; whether 
the most recent hospitalization came from the ED; no. of days from the most recent 
hospitalization; no. of visits having same day appointments; no. of days from the most recent 
ED visit; no. of days from the most recent outpatient visit; no. of days from the most recent 
ED visit on asthma; and no. of days from the most recent outpatient visit on asthma. 

Features describing the 
patient’s care continuity 
degree  

No. of differing asthma medication prescribers; no. of differing EDs the patient went to; no. 
of differing medication prescribers; no. of differing providers the patient saw in outpatient 
visits; and no. of differing PCPs of the patient. 

Features related to procedures Mechanical ventilation reflected by ICD-10 and ICD-9 procedure codes; no. of ICD-10 and 
ICD-9 procedure codes; no. of HCPCS procedure codes of home oxygen therapy; no. of CPT 
procedure codes of the fractional exhaled nitric oxide test; no. of CPT/HCPCS procedure 
codes; no. of CPT procedure codes of pulmonary function tests; and no. of CPT/HCPCS 
procedure codes of influenza vaccination. 

Allergy features Indicator of drug or material allergy; the greatest severity of the patient’s drug or material 
allergies; indicator of environmental allergy; the greatest severity of the patient’s 
environmental allergies; indicator of food allergy; the greatest severity of the patient’s food 
allergies; and no. of the patient’s allergies. 
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Features related to pulmonary 
function tests 

The mean forced expiratory volume in 1 second (FEV1); and the lowest FEV1. 

Features related to social 
behavior history  

No. of fluid ounces of alcohol the patient consumed every week according to the most recent 
record; whether the patient was ever documented of consuming alcohol; whether the patient 
consumed alcohol according to the most recent record; the mean no. of fluid ounces of alcohol 
the patient consumed every week across all of the records; no. of alcohol drinks the patient 
consumed every week according to the most recent record; the mean no. of alcohol drinks the 
patient consumed every week across all of the records; no. of packs of cigarettes the patient 
consumed every day according to the most recent record; whether the patient was a smoker 
according to the most recent record; the mean no. of packs of cigarettes the patient consumed 
every day across all of the records; whether the patient was a former smoker according to the 
most recent record; no. of years the patient had smoked for according to the most recent 
record; no. of times the patient took illicit drugs every week according to the most recent 
record; whether the patient took any illicit drug according to the most recent record; the mean 
no. of times the patient took illicit drugs every week across all of the records; and whether the 
patient was ever documented of taking any illicit drug. 

Provider features We defined the patient’s PCP known at the most recent clinic visit as the patient’s current 
PCP. We considered the following PCP features: no. of years that the PCP had practiced at 
UWM for; the PCP’s age; whether the patient is of the same gender as the PCP; the PCP’s 
primary specialty; whether the PCP is a resident; the PCP’s type (physician, nurse, physician 
assistant, or other); the PCP’s clinician title (doctor of medicine, registered nurse, physician 
assistant, or other); the percentage of the PCP’s asthmatic patients in the pre-index year 
incurring asthma hospital encounters in the index year; and no. of asthmatic patients of the 
PCP. 

 
Table 2. The features used in our final UWM predictive model and their importance values. 
Rank Feature Importance calculated as 

the feature’s apportioned 
contribution to the model 

1 No. of ED visits related to asthma 0.2113 
2 The mean length of stay of an ED visit 0.1088 
3 No. of days from the most recent ED visit 0.1075 
4 No. of primary or principal asthma diagnoses 0.0986 
5 No. of days from the most recent diagnosis of asthma with (acute) exacerbation or status 

asthmaticus 
0.0798 

6 Whether the patient is black 0.0423 
7 No. of ED visits 0.0368 
8 No. of asthma diagnoses 0.0322 
9 No. of years from the first encounter related to asthma in the data set 0.0233 

10 No. of nebulizer medication orders 0.0174 
11 Whether the patient is white 0.0148 
12 The highest systolic blood pressure 0.0128 
13 No. of CPT/HCPCS procedure codes 0.0120 
14 The largest BMI 0.0107 
15 The most recent ED visit’s length of stay 0.0104 
16 Whether the patient is married 0.0102 
17 Total no. of units of medications ordered 0.0101 
18 No. of asthma medication orders 0.0087 
19 Whether nebulizer was used 0.0082 
20 No. of no shows 0.0081 
21 Total no. of differing asthma medications ordered 0.0078 
22 The mean heart rate 0.0072 
23 No. of diagnoses of asthma with (acute) exacerbation 0.0070 
24 Whether the patient had any private insurance on the last day 0.0060 
25 The mean respiratory rate 0.0058 
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26 No. of days from the most recent asthma diagnosis 0.0056 
27 For the most recent visit, the time to the actual visit after making the request 0.0054 
28 The mean systolic blood pressure 0.0053 
29 Total no. of differing medications ordered 0.0046 
30 Whether the patient has any drug or material allergy 0.0046 
31 Whether the patient had any public insurance on the last day 0.0042 
32 The lowest SpO2 0.0040 
33 No. of active problems 0.0038 
34 Whether the most recent visit is an ED visit 0.0038 
35 The highest temperature 0.0037 
36 No. of laboratory tests 0.0034 
37 No. of asthma controller orders 0.0029 
38 No. of visits 0.0029 
39 Total no. of short-acting beta-2 agonists ordered 0.0029 
40 The largest blood eosinophil count 0.0028 
41 No. of medication orders 0.0027 
42 Total no. of asthma relievers ordered that are neither short-acting beta-2 agonists nor 

systemic corticosteroids 
0.0025 

43 The mean temperature 0.0022 
44 Total no. of inhaled corticosteroids ordered 0.0020 
45 No. of days from the most recent outpatient visit on asthma 0.0020 
46 The severity of the most recent asthma diagnosis 0.0020 
47 Total no. of refills permitted for short-acting beta-2 agonists 0.0019 
48 No. of differing providers the patient saw in outpatient visits 0.0019 
49 Age 0.0019 
50 No. of outpatient visits to the patient’s PCP 0.0019 
51 No. of laboratory tests having abnormal results 0.0018 
52 Total no. of systemic corticosteroids ordered 0.0016 
53 Whether the most recent asthma diagnosis is a primary or principal one 0.0014 
54 Whether the patient is single 0.0013 
55 The day of the week when the most recent ED visit began 0.0013 
56 The relative change of BMI 0.0013 
57 The mean length of a hospitalization 0.0012 
58 No. of days from the most recent ED visit on asthma 0.0011 
59 No. of active problems of asthma 0.0010 
60 Total no. of differing nebulizer medications ordered 0.0010 
61 Total no. of differing asthma relievers ordered 0.0010 
62 Total no. of refills permitted for asthma controllers 0.0010 
63 Whether the patient has any mental disorder 0.0009 
64 The relative change of weight 0.0008 
65 Whether the most recent visit’s admission type is emergency 0.0007 
66 Whether the patient was a smoker according to the most recent record 0.0007 
67 Whether the most recent hospitalization came from the ED 0.0006 
68 The severity of the most severe asthma diagnosis 0.0005 
69 No. of outpatient visits 0.0005 
70 Total no. of medication refills permitted 0.0005 
71 The highest diastolic blood pressure 0.0005 

 
Abbreviations: 

BMI: body mass index 
CPT: Current Procedural Terminology 
FEV1: forced expiratory volume in 1 second 
FVC: forced vital capacity 
HCPCS: Healthcare Common Procedure Coding System 
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IgE: immunoglobulin E 
SpO2: peripheral capillary oxygen saturation 
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