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Abstract

Trustworthy survival prediction is essential for clinical decision making. Longitudinal elec-
tronic health records (EHRs) provide a uniquely powerful opportunity for the prediction.
However, it is challenging to accurately model the continuous clinical progression of patients
underlying the irregularly sampled clinical features and to transparently link the progres-
sion to survival outcomes. To address these challenges, we develop TrajSurv, a model that
learns continuous latent trajectories from longitudinal EHR data for trustworthy survival
prediction. TrajSurv employs a neural controlled differential equation (NCDE) to extract
continuous-time latent states from the irregularly sampled data, forming continuous la-
tent trajectories. To ensure the latent trajectories reflect the clinical progression, TrajSurv
aligns the latent state space with patient state space through a time-aware contrastive learn-
ing approach. To transparently link clinical progression to the survival outcome, TrajSurv
uses latent trajectories in a two-step divide-and-conquer interpretation process. First, it
explains how the changes in clinical features translate into the latent trajectory’s evolution
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using a learned vector field. Second, it clusters these latent trajectories to identify key clin-
ical progression patterns associated with different survival outcomes. Evaluations on two
real-world medical datasets, MIMIC-III and eICU, show TrajSurv’s competitive accuracy
and superior transparency over existing deep learning methods.

1. Introduction

Accurate and transparent survival prediction is crucial for trustworthy clinical decision
making Alabdallah (2025). Longitudinal electronic health records (EHRs), which cap-
ture patients’ evolving clinical status through irregularly sampled clinical features, provide
rich temporal information for survival prediction Lee et al. (2019). Although deep learn-
ing models have been developed to leverage this information and enhance accuracy, two
key challenges remain unresolved: accurately modeling continuous clinical progression and
transparently linking that progression to survival outcomes Xie et al. (2022).

To accurately model the continuous clinical progression, it is important to aggregate ir-
regularly sampled clinical features within a continuous-time framework in a clinically aligned
way. Recurrent neural networks (RNNs) Nagpal et al. (2021); Lee et al. (2019) aggregate
features at discrete times, potentially discarding the underlying continuous-time patterns.
A recent approach, SurvLatentODE Moon et al. (2022) leverages neural ordinary differen-
tial equations (NODEs) to aggregate features into continuous-time latent states. However,
without high-quality supervision signals to guide the latent states at earlier time points, it
may learn latent states’ trajectories that do not consistently align with the patient’s ac-
tual clinical progression, even if the ultimate latent state is shown to be clinically relevant.
This may lead to suboptimal modeling of clinical progression and suboptimal prediction
accuracy.

To transparently link the clinical progression to the outcome, it is essential to provide
an end-to-end interpretation of how changes in clinical features, i.e., feature velocities, lead
to the outcome. However, existing models mainly interpret the contribution of clinical
features’ absolute values at observed time points Lee et al. (2019), but they do not fully
explain how feature velocities relate to survival. This is a critical gap, as clinicians recognize
the predictive value of feature velocities in longitudinal data besides their absolute values.
For example, creatinine kinetics are used to define acute kidney injury Waikar and Bonventre
(2009).

To address these challenges, we introduce TrajSurv, which learns continuous latent tra-
jectories from longitudinal EHR for trustworthy survival prediction. To ensure the accurate
modeling of continuous clinical progression, TrajSurv uses a neural controlled differential
equation (NCDE) Kidger et al. (2020) to aggregate clinical feature changes over time into
continuous latent trajectories, and designs a time-aware contrastive learning (TACL) ob-
jective to explicitly align the latent trajectories with actual clinical progression. TACL not
only improves the prediction accuracy, but also learns clinically aligned latent trajectories
that split the model into feature-to-trajectory and trajectory-to-outcome processes. This
enables a divide-and-conquer approach for end-to-end transparency, leveraging a learned
vector field and latent trajectory clustering. The implementation of TrajSurv is available
at https://github.com/zengsihang/TrajSurv.
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Generalizable Insights about Machine Learning in the Context of Healthcare

• Accurate modeling of continuous clinical progression improves trustwor-
thiness for longitudinal EHR analysis. With NCDE and TACL, TrajSurv accu-
rately models the continuous clinical progression, improving prediction accuracy and
enabling transparency.

• Divide-and-conquer approach improves end-to-end model transparency.
TrajSurv achieves its end-to-end transparency by splitting the model into feature-
to-trajectory and trajectory-to-outcome steps for interpretation.

Figure 1: An illustration of TrajSurv and its two-step interpretation. (A) Model architec-
ture. (B) TrajSurv’s vector field interpretation. (C) TrajSurv’s latent trajectory clustering.

2. Related Work

Deep learning has demonstrated efficacy in survival prediction from longitudinal EHRs,
capturing complex temporal dependencies. Recurrent Deep Survival Machines (RDSM)
Nagpal et al. (2021) and Dynamic-DeepHit Lee et al. (2019) leveraged RNNs and aggregated
irregularly sampled clinical features at discrete times, which may not accurately model the
continuous clinical progression. Although Dynamic-DeepHit offered interpretability through
feature importance, attention weights, and predicted risks, neither method fully explained
how the clinical features’ changes over time relate to survival outcomes. Recent continuous-
time models, including NODEs Chen et al. (2018), ODE-RNN Rubanova et al. (2019), and
NCDEs Kidger et al. (2020), map irregularly sampled time series into the continuously
evolved latent states in the latent space through differential equations. SurvLatentODE
Moon et al. (2022) leveraged ODE-RNN to model time-varying clinical features. Still, the
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interpretation was limited to the last latent state, potentially lacking clinical relevance at
earlier time points due to limited supervision, which may affect the model’s accuracy and
transparency. CoxSig Bleistein et al. (2024), employing NCDEs, focused on theoretical
advancements and offered limited insight into NCDE’s latent trajectory. In this study, we
demonstrate how TrajSurv’s continuous latent trajectories ensure accurate and transparent
survival prediction.

3. Methods

3.1. Problem Formulation

3.1.1. Survival Prediction

We consider a right-censored survival dataset D = {(X i, T i, δi)}Ni=1, consisting of N patients
with longitudinal EHR data X i, time-to-event T i, and event indicator δi. For each patient
i, the longitudinal EHR data X i = {(tij , xij)}

ni
j=1 represents an irregularly sampled time

series of clinical features, where xij ∈ Rd is a d-dimensional clinical feature vector at time

tij , and ti0 = 0 is defined the same for all patients as a starting time point (e.g., time of

admission). X i is irregularly sampled, which means that the total number of observations
ni and intervals between observations vary across patients, with clinical features containing
missing values. The time-to-event T i is defined by the time from the last observation tini

to the event of interest (e.g., in-hospital death) or censoring (e.g., discharge). The event
indicator δi = 1 if the event occurs and δi = 0 if censored.

The task of survival prediction is to model the survival distribution given X i up to the
last observation, predicting the hazard function:

λ(t|X i) = lim
∆t→0

P (t ≤ T i ≤ t+ ∆t|T i ≥ t,X i)
∆t

(1)

or equivalently, the survival function S(t|X i) = P (T i > t|X i).
In this study, we aggregate longitudinal EHR data X i in a shared latent space Z,

where the patient status at time t is encoded as a latent state zit ∈ Z. The latent state
zit summarizes the patient’s historical information up to t without knowing the clinical
features after t, and the continuous latent trajectory τ i = {zit, t ∈ [0, tini

]} summarizes how
latent states evolve in Z. We seek to train a clinically aligned latent space Z for accurate
and transparent survival prediction, where the continuous latent trajectory τ i represents
patients’ clinical progression. For simplicity, we omit the superscript i in the following
sections, except where differentiation between patients is required.

3.1.2. Clinical Alignment

To make the continuous latent trajectory clinically meaningful, we have to align the entire
latent space with the clinical meaning of patient states, where a patient state captures
the patient’s current condition and the trend in the current condition. We define clinical
alignment for latent states zt at a given time point t as the property whereby close latent
states correspond to similar patient conditions and their ongoing trends, while distant latent
states correspond to distinct conditions or trends. This definition allows us to assess the local
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clinical relevance of the latent space at any specific time. However, directly comparing latent
states at different time points does not provide a reliable measure of clinical alignment across
these points. This is because the distance between zt and zt′ (where t 6= t′) could arise from
genuine differences in patient states or simply from drift over time. Therefore, we consider
entire latent trajectories τ , which inherently encode both time and the evolution of patient
states. We define clinical alignment for latent trajectories as the property whereby similar
trajectories represent similar evolutions of patient conditions, while dissimilar trajectories
represent distinct evolutions. This definition focuses on the overall pattern of change over
time, rather than point-to-point comparisons of individual latent states. As the trend
information is inherently included in the evolution of patient conditions, it is not used as a
separate metric to define clinical alignment for latent trajectories.

To practically capture clinical alignment, we utilize existing clinical assessments of sever-
ity as proxies for the patients condition. These assessments represent established clinical
knowledge about patient conditions. Examples of such assessments include the Sequential
Organ Failure Assessment (SOFA) score and the Acute Physiology And Chronic Health
Evaluation (APACHE) score for intensive care unit (ICU) settings, and the Model for End-
Stage Liver Disease (MELD) score for chronic liver disease. We denote the severity at time
t as st and define the ongoing trend of severity as vt = (st+∆t−st−∆t)/2∆t, representing the
changing rate of severity at t. The choice of ∆t is tailored to the specific clinical scenario,
ensuring that the severity trend captures meaningful changes in the patient’s condition over
time, rather than merely reflecting noise from small time intervals. Both severity and its
trend can be high-dimensional if the assessment involves multiple components (e.g., different
components in the SOFA score).

3.2. TrajSurv: Model Architecture

In this section, we introduce the architecture of TrajSurv. TrajSurv uses an NCDE to map
irregularly sampled clinical features in longitudinal EHR into continuous latent trajectories,
where the last latent states are linked to the survival outcomes. We further design a time-
aware contrastive learning objective (TACL) to align latent trajectories with actual clinical
progression. Figure 1A shows an illustration of TrajSurv.

3.2.1. Mapping Longitudinal EHR to Continuous Latent Trajectories

TrajSurv uses NCDE as an encoder to aggregate temporal information from longitudinal
EHR data. NCDE is a latent state-based method that learns continuous-time latent states
driven by an irregularly sampled input process Kidger et al. (2020). Similar to previous
work Seedat et al. (2022), the use of NCDE in TrajSurv is motivated by its ability to capture
the underlying continuous process from irregularly sampled clinical features, rather than
discretely modeling the data (e.g., RNNs and transformers) or modeling through latent
trajectories that only depend on initial values (e.g., NODEs).

Specifically, TrajSurv maps longitudinal EHR X = {(tj , xj)}nj=0 into a continuous latent
trajectory τ = {zt, t ∈ [0, tn]}. Following previous practices Kidger et al. (2020); Morrill
et al. (2021), the longitudinal EHR is interpolated into a continuous control signal {Xt, t ∈
[0, tn]} through the cubic Hermite splines with backward differences scheme such that Xtj =
(xj , tj) ∈ Rd+1. The initial observation X0 is mapped into a dz-dimensional latent space
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using a feed forward network (FFN) gφ : Rd+1 → Rdz . Subsequent continuous-time latent
states are the solutions to an NCDE parameterized by a vector field fθ : Rdz → Rdz×(d+1):

zt = z0 +

∫ t

0
fθ(zs)dXs (2)

where z0 = gφ(X0), t ∈ [0, tn], and the integral is a Riemann-Stieltjes integral. Therefore,
the latent trajectory τ is the solution to an NCDE controlled by the underlying process
of irregularly sampled clinical features. This transformation is realized through the vector
field fθ, which maps the changes of clinical features dXt into the evolution of latent states.

3.2.2. Linking Latent Trajectory to Survival Outcome

Because TrajSurv transforms irregularly sampled clinical features into evolved latent states,
the last latent state ztn accumulates the temporal information up to tn. Therefore, ztn is
used as an aggregated predictor for the survival outcome. Similar to DeepSurv Katzman
et al. (2018), we use a nonlinear Cox proportional hazard model leveraging an FFN for more
accurate prediction. In particular, the hazard function λ(t|X ) is decomposed into a baseline
hazard λ0(t) and the exponential of a risk score r, where r is derived from ztn through an
FFN Gη : Rdz → R:

λ(t|X ) = λ(t|ztn) = λ0(t) · r = λ0(t) · exp (Gη(ztn)) (3)

We optimize TrajSurv’s survival prediction using two loss functions. The first is the
negative partial likelihood loss, commonly applied in Cox proportional hazard models Cox
(1972). For any t ≥ 0, the risk set R(t) is defined as the index set of patients still at
risk (i.e., surviving equal or longer than t): R(t) = {i|Ti ≥ t}. The negative log partial
likelihood loss LPL is then formulated as:

LPL = − 1

Nδ=1

N∑
i=1

I(δi = 1) log
exp(ri)∑

k∈R(T i) exp(rk)
(4)

where Nδ=1 is the number of patients who experienced the event and I(.) is the indica-
tor function. Minimizing LPL corresponds to maximizing the risk score of patients who
had events, relative to those who survived longer. To further improve the concordance of
predicted risk scores between patients, similar to previous work Wang et al. (2021), we in-
troduce a smoothed pairwise ranking loss LPR to encourage patients with shorter survival
times to have higher risk scores through pairwise ranking, defined as:

LPR =
1

Nδ=1

N∑
i=1

∑
k∈R(T i)

I(δi = 1)σ(rk − ri) (5)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, providing a smoothed and differen-
tiable approximation of the indicator function. The final survival loss LSURV is the sum of
the two loss functions.

LSURV = LPL + LPR (6)
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3.2.3. Clinical Alignment of Latent Trajectory

Previous studies have shown that linking the last latent state ztn to the survival outcome
could learn clinically meaningful last states, where closer states represent similar outcomes
Moon et al. (2022). However, because there is no explicit supervision on prior latent states,
TrajSurv’s latent trajectory τ is not guaranteed to be clinically aligned, i.e., the proximity of
latent trajectories may not correspond to similar clinical progression, though they ultimately
arrive at a clinically meaningful distribution. This may affect trustworthiness because the
clinical progression information is not accurately and transparently captured. To ensure
TrajSurv’s latent trajectories reflect clinical progression, we design a TACL objective.

While aligning two continuous-time processes, the latent trajectory and clinical pro-
gression, is challenging, the TACL objective simplifies this alignment by only aligning an-
chor latent states with high-quality labels while accounting for the time intervals between
them. It is inspired by the anchor-based methods that select representative anchor points
to enhance computational efficiency and reduce noise Yang et al. (2025), facilitating robust
alignment. Although the alignment is performed at discrete time points for a latent trajec-
tory, we expect it to propagate across the timeline due to the time-aware design and the
continuous-time nature of the latent space, allowing for consistent alignment throughout
the entire trajectory.

We use latent states at observation time points as anchor latent states. For simplicity,
we denote the set of anchor latent states as Z = {zk} =

⋃N
i=1{zitj}

ni
j=0. To avoid confusion, in

the remainder of this section, |Z| will refer to the number of anchor latent states in a single
batch, and the subscripts will refer to distinct anchor latent states and their properties.

Specifically, we align anchor latent states zi across all patients in a batch with their
corresponding severity si and severity trend vi through contrastive learning Khosla et al.
(2021). The contrastive learning guides anchor latent states with similar labels, which are
severity and trend in our scenario, to be closer in the latent space. Because both severity and
its trend are continuous variables, we employ a contrastive learning for regression framework
called Rank-N-Contrast Zha et al. (2024). This framework learns the latent distance based
on the rank of label distance. If we directly adopt Rank-N-Contrast, we have the negative
log-likelihood loss:

LRNC = − 1

|Z|2

|Z|∑
i=1

|Z|∑
j=1

log
exp(sim(zi, zj)/κ1)∑

zk∈Si,j exp(sim(zi, zk)/κ1)
(7)

where Si,j = {zk|k 6= i, |si − sk| + δ|vi − vk| > |si − sj | + δ|vi − vj |} is the set of latent
states with larger label distance with zi than the label distance between zi and zj , δ is
a hyperparameter that balances the severity and its trend, κ1 is a hyperparameter that
controls the sensitivity of contrast, and sim(·, ·) is the similarity between two latent states.

However, this direct adoption does not account for the time intervals between latent
states, which may inadequately capture the time-dependent nature of clinical progres-

sion. Therefore, we introduce a time mask Φ(ti, tj ;κ2) = exp(− |ti−tj |κ2
) applied to the

log-likelihood term in LRNC , forming our TACL objective. The time mask penalizes the
contrasts between latent states separated by larger time intervals. This allows latent states
with a large time interval to separate even if they share similar patient states. The hyper-
parameter κ2 controls the strength of this penalty and can be adjusted for different clinical
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scenarios to reflect the time sensitivity of clinical progression. Formally, the TACL objective
LTACL is defined as:

LTACL = − 1

|Z|2

|Z|∑
i=1

|Z|∑
j=1

Φ(ti, tj ;κ2) log
exp(sim(zi, zj)/κ1)∑

zk∈Si,j exp(sim(zi, zk)/κ1)
(8)

Overall, TrajSurv’s loss function is:

L = LSURV + αLTACL (9)

where α adjusts the relative strength of clinical alignment to survival prediction.

3.3. TrajSurv: Model Interpretation

While the relationship between changes in clinical features and survival outcomes is com-
plex, TrajSurv’s latent trajectory divides and conquers this process into two steps: mapping
longitudinal EHR into continuous latent trajectories and linking latent trajectories to sur-
vival outcomes. The transparency can then be achieved by analyzing NCDE’s vector field
to understand how changes in clinical features lead to the evolution of latent trajectories,
and by clustering latent trajectories to identify key clinical progression patterns linked to
different survival outcomes. An illustration of model interpretation is shown in Figure 1B
and C.

3.3.1. Step 1: Vector Field Interpretation

The vector field fθ maps the changes of clinical features into continuous latent trajectories.
To further understand this transformation, we first transform the integral form of the NCDE
2 to the derivative form:

dz

dt
(t) = fθ (z(t))

dX

dt
(t) (10)

For a specific time point t, the vector of latent velocity dz
dt (t) is computed as the product

of the matrix fθ(z(t)) and the vector of clinical feature velocity dX
dt (t). Expanding the matrix

fθ into column vectors, the latent velocity can be represented as the linear combination of
the columns of fθ weighed by the clinical feature velocity. Therefore, each column of fθ
represents the influence of a unit change in a specific clinical feature on the magnitude and
direction of the latent state’s moving velocity. We analyze the columns of fθ as follows:

• Feature Importance: The magnitude of each column indicates the importance of
the corresponding clinical feature in driving latent state evolution. Features with
larger column magnitudes have a greater impact on the evolution of the latent state.

• Feature Relevance: The cosine similarity between two columns captures the rele-
vance of the corresponding features in driving latent states evolution. If the cosine
similarity is high, it suggests that similar changes in these features tend to move the
latent state in similar directions. Conversely, if the cosine similarity is low, it indi-
cates that similar changes in these features tend to move the latent state in opposing
directions.
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This approach provides an elegant and interpretable framework for understanding how
changes in clinical features drive latent state evolution and produce the latent trajectory,
through the feature importance and relevance. Practically, instead of analyzing the vector
field at specific times for specific patients, we estimate the average vector field f̄θ by sampling
latent states z(t) across patients and time points and averaging their vector field fθ(z(t)).
This average field provides an overall perspective on feature importance and relevance.
We note that these average patterns may not generalize to individual cases and should be
interpreted cautiously.

3.3.2. Step 2: Latent Trajectory Clustering

Trained with the TACL objective, TrajSurv’s continuous latent trajectory is expected to
be clinically aligned. This means that similar latent trajectories, reflecting the evolution
of underlying patient states, can correlate with similar clinical progression and survival
outcomes. To investigate this, we employ dynamic time warping (DTW) Müller (2007), a
time series clustering method that finds optimal alignments between sequences of different
lengths and outputs distances. Using DTW, we cluster latent trajectories (τi, i = 1, ..., N)
into C distinct groups. We visualize the cluster centroidsderived using the DTW barycenter
averaging algorithmin the latent space. We compute the average severity trajectory over
time for each cluster, aiming to reveal key clinical progression patterns. We further as-
sess the association between the clusters and survival outcomes using Kaplan-Meier (KM)
curves, hypothesizing that latent trajectory patterns may serve as prognostic indicators.

4. Experiments

In this section, we briefly introduce the experiment settings and refer readers to the Ap-
pendix for more details.

4.1. Dataset and Setup

We evaluated TrajSurv’s survival prediction performance on two real-world EHR datasets in
the ICU setting, MIMIC-III Johnson et al. (2016) and eICU Pollard et al. (2018). Similar to
prior work Moon et al. (2022), the prediction task is to estimate time to in-hospital mortality
based on longitudinal EHR data in the first 36 hours of admission. This prediction task is
crucial for timely care and optimal resource allocation in ICU Moon et al. (2022).

In ICU, the SOFA score assesses the performance of six organ systems (respiration,
coagulation, liver, cardiovascular, neurologic, and renal), with each component ranging from
0 to 4 and higher scores indicating more severe organ dysfunction. The overall SOFA score
is the sum of these 6 components and higher scores indicate a higher risk of ICU mortality
Shafigh et al. (2024). In the experiments, we used the SOFA score and its six components
as st, representing patient conditions over time. SOFA scores st were processed hourly from
forward-imputed data, and SOFA trends vt were computed by the SOFA’s average changing
rate over 4-hour intervals (∆t = 2) to smooth fluctuations and capture meaningful trends.
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4.2. MIMIC-III and eICU Cohort

The MIMIC-III cohort included 20,258 hospital admissions and 53 clinical features in 1-hour
resolution. The eICU cohort included 116,503 hospital admissions and 53 clinical features
in 1-hour resolution. Both cohorts featured irregularly sampled time series data. To ensure
computational efficiency, the time series data was pre-processed to only include hourly time
points with more than 20 observed features (See Appendix A.5 and B.1). For both cohorts,
t0 was defined as the time of hospital admission, and the time-to-event T was the time from
the last record (tn, xn); tn ≤ 36 to in-hospital mortality. Patients who survived were right
censored at discharge. Clinical features were standardized. Each dataset was randomly
split into training (70%), validation (10%), and test sets (20%).

4.3. Comparison Methods

We compared the survival prediction performance of TrajSurv with three machine learning
models, one clinical model, and four deep learning models. The machine learning mod-
els included the Cox proportional hazards model with elastic net penalty (CoxPH) Cox
(1972), gradient-boosted Cox proportional hazards model (Boosting) Cox (1972); Friedman
(2001), and random survival forest (RSF) Ishwaran et al. (2008). For the clinical model,
we computed the longitudinal overall SOFA scores every 4 hour to create an aggregated
9-dimensional SOFA feature, and applied the Cox proportional hazards model (SOFA) for
survival prediction. In the deep learning category, we evaluated models designed for survival
prediction using longitudinal EHR data, including RDSM Nagpal et al. (2021), SurvLatent
ODE (SLODE) Moon et al. (2022), and Dynamic-DeepHit (DDH) Lee et al. (2019).

4.4. Evaluation Metrics

We evaluated survival prediction performance using three commonly used time-dependent
metrics: the concordance index (C-index), the time-dependent Brier score, and the dy-
namic area under the curve (AUC). The C-index and dynamic AUC measure the model’s
discrimination ability to distinguish patient risks. The Brier score assesses both the model’s
discrimination ability and its calibration. Specifically, we implemented the metrics using
the concordance index ipcw, brier score, and cumulative dynamic auc functions from scikit-
survival module Pölsterl (2020). We computed the average across quartiles of follow-up
times in the dataset for these metrics. We reported the average performance across 5 runs
with different random seeds. Hyperparameters were tuned on the validation set.

For TrajSurv, we further evaluated the clinical alignment between latent states and
patient states by computing Spearman’s correlation between latent distance and SOFA or
SOFA trend distance at each time point.

5. Results on Real Data

5.1. Survival Prediction Performance

Table 1 presents the survival prediction performance across comparison models and Traj-
Surv. Compared to existing models, TrajSurv achieved a higher C-index and dynamic AUC
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Table 1: Survival Prediction Performance Comparison, mean ± std. Bold values indicate
the best performance among all models or deep learning models for a given metric.

MIMIC-III eICU

Model C-index Brier AUC C-index Brier AUC

ML
CoxPH 0.706 ± 0.012 0.058 ± 0.002 0.698 ± 0.012 0.751 ± 0.007 0.044 ± 0.001 0.733 ± 0.007
Boosting 0.766 ± 0.014 0.054 ± 0.002 0.754 ± 0.014 0.781 ± 0.005 0.043 ± 0.001 0.761 ± 0.005
RSF 0.784 ± 0.013 0.053 ± 0.002 0.774 ± 0.014 0.804 ± 0.004 0.042 ± 0.001 0.783 ± 0.004

Clinical SOFA 0.754 ± 0.012 0.053 ± 0.003 0.729 ± 0.013 0.755 ± 0.006 0.044 ± 0.001 0.726 ± 0.006

DL

RDSM 0.772 ± 0.012 0.061 ± 0.002 0.757 ± 0.012 0.796 ± 0.004 0.048 ± 0.001 0.779 ± 0.004
SLODE 0.762 ± 0.018 0.064 ± 0.004 0.745 ± 0.020 0.780 ± 0.007 0.045 ± 0.000 0.756 ± 0.007
DDH 0.768 ± 0.014 0.072 ± 0.005 0.748 ± 0.014 0.818 ± 0.005 0.051 ± 0.002 0.796 ± 0.005
TrajSurv 0.803 ± 0.011 0.056 ± 0.002 0.790 ± 0.013 0.823 ± 0.006 0.044 ± 0.001 0.803 ± 0.006

and comparable Brier score, indicating improved discrimination and competitive calibration
performance. (For more details, see Appendix)

Ablation Study To examine how our additional objectives improve the performance over
vanilla NCDE, we conducted ablation studies on MIMIC-III by removing the time mask in
LTACL (A1), removing the entire LTACL (A2), and removing both LTACL and LPR (A3). As
shown in Figure 2A and B, comparing A2 and A3, we found that adding LPR improves the
performance over vanilla NCDE. Comparing A1 and A2, we found that contrastive learning
slightly improves the discrimination ability, potentially due to additional supervision for the
latent states. TrajSurv outperforms both A1 and A2, implying the validity of our model
design involving the time-dependent nature of clinical progression.

Cross-Cohort Generalization To assess out-of-distribution generalization, we performed
a cross-cohort evaluation by training TrajSurv on the full MIMIC-III training set and test-
ing it on a random sample of 4,000 patients from the eICU dataset. The model achieved a
C-index of 0.760 and a Brier score of 0.038, demonstrating robust performance on unseen
data from different hospital systems.

5.2. Clinical Alignment Performance

Figure 2: Ablation study showing improved (A) C-index and (B) Brier score. Spearman’s
correlation between latent distance and label distance, (C) SOFA distances, and (D) SOFA
trend distances, with or without the TACL objective.

Figure 2C and D shows how the correlations change over time with and without TACL
on MIMIC-III data. Without TACL, the model has relatively high correlations with SOFA
and SOFA trend at the end of the 36-hour period, while they drop significantly in the middle.
This suggests that despite the clinical alignment of the last latent state, the evolution of
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latent states does not align with the clinical progression. Trained with the TACL objective,
TrajSurv retains the correlations at the end, and has significantly higher correlations with
SOFA and slightly higher correlations with SOFA trend in the middle of the 36 hours. This
suggests that latent states across the time horizon are more clinically aligned with patient
states. Therefore, the evolution of latent states better reflects the clinical progression.

5.3. Interpretation

In this section, we validate TrajSurv’s two-step interpretation process with known clinical
knowledge on the test set of MIMIC-III data at the population level.

5.3.1. Feature Importance and Relevance from TrajSurv’s Vector Field

From the columns of f̄θ (Figure 3A), we obtained feature importance and feature relevance
following the procedure in section 3.3.1. As shown in Figure 3B, the top 15 influential
features are ranked by the magnitude of the columns in the average vector field. Among the
most important are blood urea nitrogen, total bilirubin, white blood cell count, creatinine,
and hematocrit. These findings are consistent with previous ICU studies identifying these
as significant indicators of patient states Chia et al. (2021); Iwase et al. (2022). For instance,
blood urea nitrogen, creatinine, hematocrit, lactate, and PH were identified among the top
6 significant clinical features in a previous study Chia et al. (2021). The feature importance
derived from the vector field provides a dynamical perspective, suggesting that changes in
these features drive latent state shifts more rapidly than others.

Additionally, we plotted a heatmap of cosine similarities between columns of the vector
field to reveal specific relationships among features (Figure 3C), providing an understanding
of feature relevance in driving latent state transitions. For instance, creatinine and urea
nitrogen display high positive cosine similarity, suggesting that their similar change pat-
terns result in latent state shifts in nearly identical directions. This alignment is clinically
consistent, as both are indicators of kidney function, where elevated levels may indicate
renal impairment Hosten (1990). In contrast, urea nitrogen and bicarbonate show a high
negative cosine similarity, meaning their parallel increases or decreases drive latent states in
opposing directions. This finding aligns with evidence that urea nitrogen and bicarbonate
are often inversely related in certain conditions Papadoyannakis et al. (1984); Balakrishnan
et al. (2011). For example, bicarbonate supplementation is associated with reduced blood
urea nitrogen levels in chronic renal failure patients Papadoyannakis et al. (1984).

These relationships derived from TrajSurv’s vector field confirm known clinical associ-
ations while illustrating how TrajSurv captures the dynamical interdependencies between
features that influence latent state evolution. We found these interpretations to be robust
across different random data splits. For instance, blood urea nitrogen, total bilirubin, and
white blood cell count were consistently ranked as top-5 important features, and the cosine
similarity between creatinine and urea nitrogen remained stable at 0.60± 0.06 across three
different random seeds. Note that the feature importance and relevance were data-driven
and should be interpreted with caution.
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Figure 3: Feature importance and relevance derived from TrajSurv’s vector field. (A)
Columns of the average vector field; (B) Features with top 15 importance; (C) Cosine
similarities between selected features.

Figure 4: Clustering of latent trajectories with (A) the centroids of clusters; (B) the average
SOFA trajectories of clusters; and (C) survival curves of clusters.

5.3.2. Latent Trajectory Clustering

Clustering latent trajectories using DTW, we obtained four clusters. Figure 4A shows the
centroids of four clusters in the latent space, dividing the space into subdomains. Examining
the average SOFA score trajectories (Figure 4B) of these clusters reveals four distinct disease
progression patterns. ISQI cluster starts with high SOFA scores that decrease rapidly
(initially severe, quickly improving - ISQI). ISK cluster maintains a consistently high SOFA
score with a slight increase early on, indicating an initially severe condition that gradually
worsens (initially severe, keep - ISK). IMK cluster and IMSI cluster exhibit lower SOFA
scores, with scores remaining stable over time for the former (initially mild, keep - IMK)
and slowly improving for the latter (initially mild, slowly improving - IMSI). These clusters
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suggest that TrajSurvs continuous latent trajectories represent different clinical progression
patterns in the ICU.

The KM survival curve for each cluster reveals distinct survival patterns aligned with
the clinical progression identified in the latent trajectories, hence stratifying risks. The
ISQI subgroup, characterized by severe initial conditions that rapidly improve, shows the
highest survival probability over time, suggesting that patients with early improvement
after critical onset are less likely to experience adverse outcomes. In contrast, the ISK
subgroup, with consistently high severity and a gradually worsening trend, displays the
lowest survival probability, indicating a sustained high risk. The IMSI and IMK subgroups,
representing milder initial conditions with slow improvement or stability, show intermediate
survival outcomes. The statistically significant separation among the KM curves highlights
the strength of TrajSurvs continuous latent trajectories in capturing meaningful clinical
progression patterns, effectively stratifying risk based on the evolved patient conditions.

5.4. Case Study

A case study of two patients in MIMIC-III demonstrates TrajSurvs patient-level interpreta-
tion of how latent trajectories lead to predictions consistent with actual clinical progression.

For patient P1, TrajSurv predicts a favorable survival outcome after the last observation
(Figure 5A). This prediction is supported by several aspects of P1s latent trajectory. First,
as shown in Figure 5B, P1s latent trajectory falls within the ISQI subgroup, indicating a
generally positive prognosis. Additionally, P1’s latent trajectory sequentially goes through
regions S1 and S2 on the latent space, where the phenotypic properties of latent space (see
Appendix for the calculation) show severe but improving neurologic symptoms at S1 and
mild symptoms at S2 (Figure 5C). This is consistent with P1’s actual SOFA trajectory and
discharge note, confirming neurologic improvement post-coronary artery bypass surgery on
the first admission day (Figure 5D).

For patient P2, TrajSurv predicts a poor survival outcome following the last observation
(Figure 5A). This result is supported by P2s latent trajectory (Figure 5B). P2s trajectory
shows a sudden shift from the IMSI subdomain to ISK subdomain, suggesting an abrupt de-
terioration mid-visit. P2’s trajectory passes through S3, S4, and S5 regions, which indicate
initial presentation with mild symptoms (S3) that progress to multiple organ dysfunction
(S4 and S5). In the absence of discharge notes, we compared this interpretation to P2s ac-
tual SOFA trajectory, diagnosis codes, and actual survival time, showing consistency with
a sepsis diagnosis and rapid decline leading to death within 300 hours.

This case study suggests TrajSurvs potential to provide clinicians with interpretable
insights consistent with patient outcomes and clinical progression.

6. Discussion

In this study, we propose TrajSurv, a method for survival prediction that learns contin-
uous latent trajectories from longitudinal EHR. TrajSurv leverages NCDE to capture the
continuous process of evolving clinical features, mapping this evolution to continuous la-
tent trajectories. We further incorporate a TACL objective to ensure the clinical alignment
of these trajectories, improving both accuracy and transparency. Paired with a two-step
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Figure 5: Case studies of two patients (P1 and P2). (A) Predicted survival probability
after the last observation; (B) Continuous latent trajectories until the last observation; (C)
Average phenotypic properties of S1 and S2 of the latent space; (D) Evidence from EHR
for P1, including the ground truth SOFA trajectory and the discharge note; (E) Average
phenotypic properties of S3, S4, and S5; (F) Evidence from EHR for P2, including the
ground truth SOFA trajectory and the Diagnosis codes.

divide-and-conquer interpretation process, TrajSurv enables trustworthy survival predic-
tion, achieving competitive prediction performance and superior transparency.

With increasing emphasis on the need for reliable and transparent AI systems in health-
care, TrajSurv provides a viable direction for the transparent modeling of longitudinal
EHR by learning clinically aligned continuous latent trajectories and interpreting the model
through a divide-and-conquer approach. The divide-and-conquer interpretation process
provides a dynamical perspective on how the temporal changes of clinical features link to
the outcome, enriching existing interpretation methods and fostering trust in the model’s
outputs. By providing a clear and visual representation of clinical progression, TrajSurv
contributes to the development of trustworthy AI tools for clinical use.

A key innovation in TrajSurv lies in its TACL objective. This objective works as a soft
regularization to the latent space by explicitly aligning the latent trajectory with actual
clinical progression while respecting its time-dependent nature. By contrasting latent rep-
resentations of patient states at different time points, TACL encourages the model to learn
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trajectories that are not only predictive of survival but also clinically meaningful. This
enables clinically meaningful vector field analysis and cluster patterns in our two-step inter-
pretation process. Through our ablation, we found that TACL improved both performance
and clinical alignment.

The patient’s clinical progression is a complex and dynamic process, and TrajSurvs
TACL offers insights into how latent trajectories align with this process. Our analysis re-
veals that TACL learns latent states that correspond more closely to severity levels than
to severity trends (Figure 2C and D). This finding is consistent with prior research show-
ing that mean and peak SOFA scores are stronger ICU prognosticators than changes in
SOFA (∆-SOFA) Ferreira et al. (2001), suggesting that TACL may prioritize the most
salient dimensions of multidimensional patient states. Future research may further refine
this alignment by incorporating more comprehensive patient state definitions or advanc-
ing alignment techniques. As one of the early efforts, TrajSurv establishes a framework
for transparent longitudinal EHR modeling by quantifying patient states, aligning latent
trajectories with clinical progression, and interpreting with a divide-and-conquer approach.

Our work builds upon and extends previous research utilizing NCDEs. While studies
like TE-CDE Seedat et al. (2022) and CoxSig Bleistein et al. (2024) have employed NCDEs
for tasks like continuous-time counterfactual prediction and dynamical survival prediction,
they have largely underexplored the rich information contained within the latent trajectory
and vector field. TrajSurv specifically leverages NCDE’s capacity to represent the continu-
ous nature of clinical progression transparently and quantitatively, linking clinical feature
evolution to the latent trajectory. Crucially, the feature importance and relevance derived
from the NCDE vector field provide a novel and elegant way to interpret how changes in
different clinical features jointly influence changes in the latent space. For example, similar
changes in creatinine and urea nitrogen lead to the similar transition of latent states.

Finally, TrajSurv holds considerable potential for clinical translation. Its accurate sur-
vival prediction and risk stratification can facilitate clinical resource allocation and decision-
making. Critically, as shown in the case study, the interpretable outputs provided by Traj-
Surv can empower clinicians by providing insights into the prediction process, fostering trust
and acceptance in clinical settings. While comprehensive clinical validation across diverse
cohorts remains necessary, we believe TrajSurv represents a significant step toward trust-
worthy AI tools in clinical practice and can inspire the development of future explainable
AI models for longitudinal EHR data.

Limitations Our model design relies on an existing clinical assessment like SOFA as
the supervision signal. While these assessments offer a practical way to quantify patient
states, they do not fully represent patient states and reduce the model flexibility in various
clinical contexts, as not all clinical contexts provide such assessments. Future research may
explore purely data-driven methods to ensure clinical alignment or define patient states
more comprehensively using more adaptable labels, such as knowledge graphs or key clinical
variables, rather than pre-existing assessments. Furthermore, future research is needed to
understand the clinical alignment between latent trajectories and clinical progression from
a more holistic view. Finally, population-level properties may not fit individual cases, and
we leave individual-level vector field analysis for future studies.
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Appendix A. Additional Results

A.1. Model Calibration

To assess TrajSurv’s calibration, we generated calibration plots across quartiles of follow-up
times on MIMIC-III data. Figure S1 illustrates that TrajSurvs predicted risk scores align
well with observed outcomes at the median follow-up time but show slight underestimation
at the 25% quartile and slight overestimation at the 75% quartile. Overall, TrajSurvs
calibration is competitive with other methods.

A.2. Phenotypic Properties of Latent Space

To visually examine the phenotypic properties of the clinically aligned latent space, we
plotted the dominant phenotypes and corresponding severity across regions in the latent
space on MIMIC-III data. For each region, we averaged the SOFA component scores of
the 50 nearest latent states, effectively representing the typical phenotype within that area.
The dominant phenotype is then obtained from the highest average SOFA component in
that region. As shown in Figure S2, distinct regions in this space represent different clinical
phenotypes, while close states reflect consistent dominant phenotypes and severity. For
instance, the lower corner of the latent space corresponds to severe cardiovascular conditions.
This demonstrates that the proximity in TrajSurv’s latent space indicates similar patient
phenotypic patterns.

A.3. Feature Importance and Relevance of All Features

Figure S3 and S4 show the full feature importance and relevance figures from the vector
field interpretation on MIMIC III. We note that these average patterns obtained from data-
driven analysis should be carefully interpreted and should not be directly used in clinical
practice.

A.4. Interpretation Method Comparison

TrajSurv’s interpretation is a two-step process: (1) vector field interpretation for the feature-
to-trajectory mapping, and (2) latent trajectory clustering for the trajectory-to-outcome
linkage. The vector field interpretation offers insights distinct from, yet complementary to,
methods like SHAP Lundberg and Lee (2017) or permutation importance Altmann et al.
(2010):

• It explains how changes in clinical features dynamically influence the magnitude and
direction of the patient’s latent trajectory over continuous time.

• It allows assessment of feature relevance by measuring how similarly features drive
this trajectory evolution via cosine similarity of vector field columns.

Table S1 compares different interpretation methods. We highlight that TrajSurv com-
bines vector field interpretation with latent trajectory clustering, hence enabling end-to-end
interpretation from a dynamical perspective.
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A.5. Additional Experiments on Model Generalization

We conducted additional experiments on TrajSurv’s generalization using the MIMIC-III
dataset. The results demonstrate TrajSurv’s robustness across different settings.

Full vs. Reduced Data We compared the full data (hourly data from the raw database)
and the reduced data (only including hours with more than 20 observed features). The C-
index is 0.806 on the full data and 0.803 on the reduced data, with about 3 times faster
training on the reduced data. Therefore, we used reduced data during our experiments,
which achieves computational efficiency while preserving fair comparison.

Short Trajectory We performed an experiment using only the data between 18 and 36
hours after admissions, rather than the full 36-hour data in the main paper. TrajSurv
achieves a C-index of 0.788, compared to 0.803 with 36-hour data, indicating robustness
despite information loss.

Limited Training Data To assess performance with limited training data, we experi-
mented with a 20% training, 40% validation, and 40% test split on MIMIC-III data. Traj-
Surv achieves a C-index of 0.752, compared to 0.746 of RSF, demonstrating generalizability
even with reduced training data.

A.6. Interpolation Method

TrajSurv employs cubic Hermite splines with backward differences for input path interpo-
lation. This is recommended by prior NCDE literature Kidger et al. (2020); Morrill et al.
(2021) for its smoothness, online processing capability, and efficient integration. To explore
alternatives, we experimented with rectilinear interpolation, which is also an online method,
yielding a C-index of 0.789, slightly below TrajSurv with cubic splines (C-index 0.803).

Appendix B. Experimental Details

B.1. MIMIC-III Cohort

The MIMIC-III cohort includes 20,258 hospital admissions and 53 clinical features in 1-hour
resolution. The dataset has 1,743 events. The 53 clinical features were the lab and chart
events with top occurrence and demographics. The clinical features include arterial blood
pressure diastolic, arterial blood pressure mean, arterial blood pressure systolic, alanine
aminotransferase, alkaline phosphatase, anion gap, aspartate aminotransferase, base ex-
cess, basophils, bicarbonate, bilirubin total, calcium total, calculated total carbon dioxide,
chloride, creatinine, central venous pressure, eosinophils, free calcium, glucose, heart rate,
hematocrit, hemoglobin, international normalized ratio, lactate, lymphocytes, magnesium,
mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscu-
lar volume, monocytes, oxygen saturation, pulmonary artery pressure diastolic, pulmonary
artery pressure mean, pulmonary artery pressure systolic, partial pressure of carbon diox-
ide, pH, phosphate, platelet count, partial pressure of oxygen, potassium, potassium whole
blood, prothrombin time, partial thromboplastin time, red cell distribution width, red blood
cell count, respiratory rate, sodium, temperature, urea nitrogen, white blood cell count,
gender, age, and body mass index.
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Table S1: Comparison of Interpretation Methods.

SHAP / Permuta-
tion Importance

Attention Mecha-
nisms

TrajSurv’s Vector
Field Interpreta-
tion

Primary Insight Contribution of each
feature to a specific
outcome

Which input fea-
tures/time steps are
most influential for
an outcome

How feature changes
drive the evolution
& direction of latent
state trajectories

Temporal Aspect Typically static for a
given prediction; can
be applied at different
times but doesn’t in-
herently model evolu-
tion

Highlights salient in-
puts/time steps for
discrete predictions

Models
continuous-time
dynamics; captures
how features influ-
ence on trajectory
evolution

Focus of Importance Importance for the
magnitude of the final
prediction

Importance for the fi-
nal output

Importance for latent
trajectory evolution
(magnitude and
direction)

Feature Interaction Can compute SHAP
interaction values

Does not directly pro-
vide feature interac-
tions

Relevance in
co-directing tra-
jectory evolution

Granularity Insight into outcome
prediction

Insight into outcome
prediction

Insight into the
feature-to-trajectory
dynamical process

The MIMIC-III cohort is inherently irregularly sampled. For computational feasibility
and a fair comparison with baselines, we only included hourly time points where more than
20 features were observed. This cohort has an average of 4.02 hourly clinical observations
per patient within the first 36 hours and an overall feature missingness rate of 57.7% across
all time steps.

B.2. eICU Cohort

The eICU cohort includes 116,503 hospital admissions and 53 clinical features in 1-hour res-
olution. The dataset has 7,958 events. The clinical features include basophils, eosinophils,
lymphocytes, monocytes, polymorphonuclear leukocytes, alanine aminotransferase, aspar-
tate aminotransferase, blood urea nitrogen, fraction of inspired oxygen, bicarbonate, hema-
tocrit, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concen-
tration, mean corpuscular volume, mean platelet volume, prothrombin time, international
normalized ratio, red blood cell count, red cell distribution width, white blood cell count
(x1000), albumin, alkaline phosphatase, anion gap, bedside glucose, calcium, chloride, crea-
tinine, glucose, magnesium, pH, partial pressure of carbon dioxide, partial pressure of oxy-
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gen, phosphate, platelet count (x1000), potassium, sodium, total bilirubin, total protein,
temperature, arterial oxygen saturation, heart rate, respiration rate, central venous pres-
sure, end-tidal carbon dioxide, systemic arterial systolic pressure, systemic arterial diastolic
pressure, systemic arterial mean pressure, pulmonary artery systolic pressure, pulmonary
artery diastolic pressure, pulmonary artery mean pressure, age, and body mass index.

The eICU cohort is also inherently irregularly sampled, and similarly preprocessed.
This cohort has an average of 3.15 hourly clinical observations per patient within the first
36 hours and an overall feature missingness rate of 55.0% across all time steps.

B.3. Hyperparameter Tuning

Hyperparameters were tuned on the validation set. Specifically, for TrajSurv, we conducted
a random search Bergstra and Bengio (2012) to tune the hyperparameters. The searching
space of key hyperparameters is shown in Table S2. The search ranges were informed
by common practice, prior work (e.g., κ1 based on Rank-N-Contrast Zha et al. (2024)),
and empirical observations. Hyperparameters were tuned for the highest C-index on the
validation set, with early stopping (patience 5) to prevent overfitting.

B.4. Optimization

We used AdamW Loshchilov and Hutter (2019) to optimize TrajSurv. For the NCDE
module, we used the torchcde package with torchdiffeq backend. We trained TrajSurv for
100 epochs, with early stopping based on the C-index on the validation set, with patience
5. TrajSurv’s training and evaluation were performed on a single NVIDIA Tesla T4 or RTX
2080 Ti GPU.

B.5. Comparison Methods Implementation

All baseline models underwent hyperparameter tuning using grid search on the validation
set. For CoxPH, RSF, and Boosting, we used the implementations in the scikit-survival
library Pölsterl (2020). For RDSM, we used the auton-survival package Nagpal et al. (2022).
DDH and SLODE were implemented using the authors’ original publicly available code.

Figure S1: Calibration plot comparing TrajSurv with RSF, SOFA, and RDSM at (A) 25%
quartile, (B) median, and (C) 75% quartile follow-up time.
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Figure S2: Dominant phenotypes in different regions of latent space. Different colors rep-
resent different dominant phenotypes, and the transparency of the color corresponds to the
average severity (SOFA component) of the dominant phenotypes.

Table S2: Hyperparameter Tuning Ranges. Bold values indicate the final selected hyper-
parameters.

Hyperparameter Range

α [0.75,1.0, 1.25]
κ1 [1,2]
κ2 [10,30, 50]
δ [10,20]
dz [32,64]

Appendix C. More Background Information

C.1. Neural Controlled Differential Equations

Neural controlled differential equations (NCDEs) extend neural ordinary differential equa-
tions (NODEs) to handle incoming data in an irregularly sampled time series setting.
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Figure S3: Feature importance of all clinical features.

NCDEs leverage the mathematical framework of controlled differential equations (CDEs)
to provide continuous-time modeling that dynamically adapts to data observations. A key
advantage of NCDEs is their ability to utilize adjoint backpropagation for efficient training.
The training of NCDEs has an overall memory footprint of O(L + H), where L = tn − t0
and H is the memory footprint of the vector field. This contrasts previous work on NODEs
for time series, which requires O(LH) memory. Kidger et al. (2020)

C.2. Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique used to measure the similarity between two
time series of different lengths or varying speed. Previous work has also extended DTW to
series of latent states, called dynamic state warping Gong and Chen (2017), which is similar
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Figure S4: Heatmap of the cosine similarities between clinical features from the average
vector field.

to our latent trajectory clustering. The core of DTW involves constructing a cost matrix
where each cell (i, j) represents the distance between points in the two time series, and then
finding the optimal warping path through this matrix. The accumulated cost matrix D is
built using the following recursive formula:

D(i, j) = cost(i, j) + min[D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)],

where cost(i, j) is the distance between the i-th and j-th points of the two respective time
series. The final DTW distance is the value of D(n,m), where n and m are the lengths of
the two time series.
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In our latent trajectory clustering, the time series in DTW are the hourly extracted
latent states from the continuous latent trajectories and the cost is the L2 distance between
latent states.
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