
Locking Protocols for
Materialized Aggregate Join Views
Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael W. Watzke

Abstract—The maintenance of materialized aggregate join views is a well-studied problem. However, to date the published literature

has largely ignored the issue of concurrency control. Clearly, immediate materialized view maintenance with transactional consistency,

if enforced by generic concurrency control mechanisms, can result in low levels of concurrency and high rates of deadlock. While this

problem is superficially amenable to well-known techniques, such as fine-granularity locking and special lock modes for updates that

are associative and commutative, we show that these previous high concurrency locking techniques do not fully solve the problem, but

a combination of a “value-based” latch pool and these previous high concurrency locking techniques can solve the problem.

Index Terms—Concurrency, relational databases, transaction processing.

�

1 INTRODUCTION

ALTHOUGH materialized view maintenance has been
well-studied in the research literature [7], with rare

exceptions, to date that published literature has ignored
concurrency control. In fact, if we use generic concurrency
control mechanisms, immediate materialized aggregate join
view maintenance becomes extremely problematic—the
addition of a materialized aggregate join view can introduce
many lock conflicts and/or deadlocks that did not arise in
the absence of this materialized view. As an example of this
effect, consider a scenario in which there are two base
relations: the lineitem relation and the partsupp relation, with
the schemas lineitem (orderkey, partkey) and partsupp (partkey,
suppkey). Suppose that, in transaction T1, some customer
buys items p11 and p12 in order o1, which will cause the
tuples ðo1; p11Þ and ðo1; p12Þ to be inserted into the lineitem
relation. Also, suppose that, concurrently, in transaction T2

another customer buys items p21 and p22 in order o2. This
will cause the tuples ðo2; p21Þ and ðo2; p22Þ to be inserted into
the lineitem relation. Suppose that parts p11 and p21 come
from supplier s1, while parts p12 and p22 come from supplier
s2. Then, there are no lock conflicts nor is there any
potential for deadlock between T1 and T2, since the tuples
inserted by them are distinct.

Suppose now that we create a materialized aggregate

join view suppcount to provide quick access to the number

of parts ordered from each supplier, defined as follows:

create aggregate join view suppcount

as select p.suppkey, count(*)

from lineitem l, partsupp p

where l.partkey=p.partkey

group by p.suppkey;

Now, both transactions T1 and T2 must update the
materialized view suppcount. Since both T1 and T2 update
the same pair of tuples in suppcount (the tuples for suppliers
s1 and s2), there are now potential lock conflicts. To make
things worse, suppose that T1 and T2 request their exclusive
locks on suppcount in the following order:

1. T1 requests a lock for the tuple whose suppkey ¼ s1.
2. T2 requests a lock for the tuple whose suppkey ¼ s2.
3. T1 requests a lock for the tuple whose suppkey ¼ s2.
4. T2 requests a lock for the tuple whose suppkey ¼ s1.

Then, a deadlock will occur.

The danger of this sort of deadlock is not necessarily
remote. Suppose there are R suppliers, m concurrent
transactions, and that each transaction represents a custo-
mer buying items randomly from r different suppliers.
Then, according to [8, pp. 428-429], if mr � R, the
probability that any particular transaction deadlocks is
approximately ðm� 1Þðr� 1Þ4=ð4R2Þ. (If we do not have
mr � R, then the probability of deadlock is essentially one.)
For reasonable values of R, m, and r, this probability of
deadlock is unacceptably high. For example, if R ¼ 3; 000,
m ¼ 8, and r ¼ 32, the deadlock probability is approxi-
mately 18 percent. Merely doubling m to 16 raises this
probability to 38 percent.

In view of this, one alternative is to simply avoid
updating the materialized view within the transactions.
Instead, we batch these updates to the materialized view
and apply them later in separate transactions. This “works”;
unfortunately, it requires that the system give up on
serializability and/or recency (it is possible to provide a

796 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

. G. Luo is with the IBM T.J. Watson Research Center, Hawthorne, NY
10532. E-mail: luog@us.ibm.com.

. J.F. Naughton is with the Department of Computer Sciences, University of
Wisconsin-Madison, Madison, WI 53705. E-mail: naughton@cs.wisc.edu.

. C.J. Ellmann is with the Division of Information Technology, University of
Wisconsin-Madision, Madison, WI 53705. E-mail: ellmann@wisc.edu.

. M.W. Watke is with NCR, Madison, WI 53719.
E-mail: michael.watzke@ncr.com.

Manuscript received 22 Apr. 2004; revised 24 Aug. 2004; accepted 17 Jan.
2005; published online 20 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0116-0404.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

theory of serializability in the presence of deferred updates
if readers of the materialized view are allowed to read old
versions of the view [9]). Giving up on serializability and/
or recency for materialized views may ultimately turn out
to be the best approach for any number of reasons, but,
before giving up altogether, it is worth investigating
techniques that guarantee immediate update propagation
with serializability semantics yet still give reasonable
performance. Providing such guarantees is desirable in
certain cases. (Such guarantees are required in the TPC-R
benchmark [14], presumably as a reflection of some real-
world application demands.) In this paper, we explore
techniques that can guarantee serializability without incur-
ring high rates of deadlock and lock contention.

Our focus is materialized aggregate join views. In an
extended relational algebra, a general instance of such a
view can be expressed as

AJV ¼ �ð�ð�ðR1 ffl R2 ffl . . . ffl RnÞÞÞ;

where � is the aggregate operator. SQL allows the aggregate
operators COUNT , SUM, AVG, MIN , and MAX. How-
ever, because MIN and MAX cannot be maintained
incrementally (the problem is deletes/updates—e.g., when
the MIN=MAX value is deleted, we need to compute the
newMIN=MAX value using all the values in the aggregate
group [4]), we restrict our attention to the three incremen-
tally updateable aggregate operators: COUNT , SUM, and
AVG. Note that:

1. In practice, AVG is computed using COUNT and
SUM as AVG ¼ SUM=COUNT (COUNT and SUM
are distributive, while AVG is algebraic [5]). In the
rest of the paper, we only discuss COUNT and
SUM, while our locking techniques for COUNT and
SUM also apply to AVG.

2. By letting n ¼ 1 in the definition of AJV , we include
aggregate views over single relations.

A useful observation is that, for COUNT and SUM, the
updates to the materialized aggregate join views are
associative and commutative, so it really does not matter
in which order they are processed. In our running example,
the state of suppcount after applying the updates of T1 and
T2 is independent of the order in which they are applied.
This line of reasoning leads one to consider locking
mechanisms that increase concurrency for associative and
commutative operations.

Many special locking modes that support increased
concurrency through the special treatment of “hot spot”
aggregates in base relations [3], [13], [16] or by exploiting
update semantics [2], [15] have been proposed. An early
and particularly relevant example of locks that exploit
update semantics was proposed by Korth [10]. The basic
idea is to identify classes of update transactions so that,
within each class, the updates are associative and commu-
tative. For example, if a set of transactions update a record
by adding various amounts to the same field in the record,
they can be run in any order and the final state of the record
will be the same, so they can be run concurrently. To ensure
serializability, other transactions that read or write the
record must conflict with these addition transactions. This
insight is captured in Korth’s P locking protocol, in which
addition transactions get P locks on the records they update

through addition, while all other data accesses are protected
by standard S and X locks. P locks do not conflict with each
other while they do conflict with S and X locks.

Borrowing this insight, we propose a V locking protocol
(“V” for “View.”) In it, transactions that cause updates to
materialized aggregate join views with associative and
commutative aggregates get standard S and X locks on base
relations, but get V locks on the materialized view. V locks
conflict with S and X locks but not with each other. At this
level of discussion, V locks appear virtually identical to the
special locks (e.g., P locks) in [10].

Unfortunately, purely using V locks cannot fully solve
the materialized aggregate join view update problem.
Rather, we could end up with what we call “split group
duplicates”—multiple tuples in the aggregate join view for
the same group, as shown in Section 2 below. To solve the
split group duplicate problem, we augment V locks with a
“value-based” latch pool. (We will explain what “value-
based” means in the next paragraph.) With this pool of
latches, the semantics of materialized aggregate join views
can be guaranteed—at any time, for any aggregate group,
either zero or one tuple corresponding to this group exists
in a materialized aggregate join view. Also, the probability
of lock conflicts and deadlocks is greatly reduced, because
latches are only held for a short period and V locks do not
conflict with each other. Hence, the combination of V locks
and the latch pool solves the materialized aggregate join
view update problem. Note: In a preliminary version of this
work [12], we used W locks to solve the split group
duplicate problem. The latch pool solution is better than the
W lock solution, as acquiring a latch is much cheaper than
acquiring a lock [8].

Traditionally, latches are used to protect the physical
integrity of certain data structures (e.g., the data structures
in a page [8]). In our case, no physical data structure would
be corrupted if the latch pool were not used. The latch pool
is used to protect the logical integrity of aggregate
operations rather than the physical integrity of the database.
This is why, in the previous paragraph, we use the term
“value-based” latch pool.

Other interesting properties of the V locking protocol
exist because transactions getting V locks on materialized
aggregate join views must get S and X locks on the base
relations mentioned in their definition. The most interesting
such property is that V locks can be used to support “direct
propagate” updates to materialized views. Also, by con-
sidering the implications of the granularity of V locks and
the interaction between base relation locks and accesses to
the materialized view, we show that one can define a
variant of the V locking protocol, the “no-lock” locking
protocol, in which transactions do not set any long-term
locks on the materialized view. Based on similar reasoning,
we show that the V locking protocol also applies to
materialized nonaggregate join views and can yield higher
concurrency than the traditional X locking protocol in
certain cases.

The rest of the paper is organized as follows: In Section 2,
we explore the split group duplicate problem that arises
with a naive use of V locks and show how this problem can
be avoided through the addition of a latch pool. In Section 3,
we explore the way V locks can be used to support both
direct propagate updates and materialized nonaggregate
join view maintenance. We also extend V locks to define a
“no-lock” locking protocol. In Section 4, we prove the
correctness of the V locking protocol. In Section 5, we

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 797

investigate the performance of the V locking protocol
through a simulation study in a commercial RDBMS. We
conclude in Section 6.

2 THE SPLIT GROUP DUPLICATE PROBLEM

As mentioned in the Introduction, we cannot simply use
V locks on aggregate join views. This is because, for the
V lock to work correctly, updates must be classified a priori
into those that update a field in an existing tuple and those
that create a new tuple or delete an existing tuple, which
cannot be done in the view update scenario. For example,
consider a materialized aggregate join view AJV . The
associative and commutative update operations on AJV are
of the following two forms:

1. Suppose we insert a tuple into some base relation of
AJV and generate a new join result tuple t. The
steps to integrate the join result tuple t into the
aggregate join view AJV are as follows:

If the aggregate group of tuple t exists in AJV

Update the aggregate group in AJV ;

Else
Insert a new aggregate group into AJV for tuple

t;

2. Suppose we delete a tuple from some base relation
of the aggregate join view AJV . We compute the
corresponding join result tuples. For each such join
result tuple t, we execute the following steps to
remove t from the aggregate join view:

Find the aggregate group of tuple t in AJV ;

Update the aggregate group in AJV ;

If all join result tuples have been removed from the

aggregate group

Delete the aggregate group from AJV ;

Hence, a transaction cannot know at the outset whether
it will cause an update of an existing materialized view
tuple, the insertion of a new tuple, or the deletion of an
existing tuple. This is different from the case in [10], where
updates are classified a priori into those that update a field
in an existing tuple and those that create a new tuple or
delete an existing tuple. If we use X locks for the
materialized view updates, we are back to our original
problem of high lock conflict and deadlock rates. If we
naively use our V locks for these updates, as we will show
in Section 2.1, we may run into the split group duplicate
problem and the semantics of the aggregate join view may
be violated. (The split group duplicate problem is mainly
due to the self-compatibility of V locks. Previous ap-
proaches for handling “hot spot” aggregates [2], [3], [13],
[15], [16] all use some kind of self-compatible lock modes.
Hence, due to a similar reason, they cannot be applied to
materialized aggregate join views.)

2.1 An Example of Split Groups

In this section, we explore an example of the split group
duplicate problem in the case that the aggregate join
view AJV is stored in a hash file implemented as described

by Gray and Reuter [8]. (The case that the view is stored in a
heap file is almost identical.) Furthermore, suppose that we
are using key-value locking. Suppose the schema of the
aggregate join view AJV is ða; sumðbÞÞ, where attribute a is
both the value locking attribute for the view and the hash
key for the hash file. Suppose, originally, the aggregate join
view AJV contains the tuple (20, 2) and several other
tuples, but that there is no tuple whose attribute a ¼ 1.

Consider the following three transactions, T , T 0, and T 00.
Transaction T inserts a new tuple into a base relation R and
this generates the join result tuple (1, 1), which needs to be
integrated into AJV . Transaction T 0 inserts another new
tuple into the same base relation R and generates the join
result tuple (1, 2). Transaction T 00 deletes a third tuple from
base relation R, which requires the tuple (20, 2) to be
deleted from AJV . After executing these three transactions,
the tuple (20, 2) should be deleted from AJV while the
tuple (1, 3) should appear in AJV .

Now, suppose that 20 and 1 have the same hash value so
that the tuples (20, 2) and (1, 3) are stored in the same
bucket B of the hash file. Also, suppose that, initially, there
are four pages in bucket B: one bucket page P1 and three
overflow pages P2, P3, and P4, as illustrated in Fig. 1.
Furthermore, let pages P1, P2, and P3 be full, while there are
several open slots in page P4.

To integrate a join result tuple t1 into the aggregate join
view AJV , a transaction T performs the following steps [8]:

1. Get an X value lock for t1:a on AJV . This lock is held
until T commits/aborts.

2. Apply the hash function to t1:a to find the
corresponding hash table bucket B.

3. Crab all the pages in bucket B to see whether a
tuple t2 whose attribute a ¼ t1:a already exists.
(“Crabbing” [8] means first getting an X latch on
the next page, then releasing the X latch on the
current page.)

4. If t2 exists in some page P in bucket B, stop the
crabbing and integrate the join result tuple t1 into
tuple t2. The X latch on page P is released only after
the integration is finished.

5. If tuple t2 does not exist, crab the pages in bucket B
again to find a page P that has enough free space.
Insert a new tuple into page P for the join result
tuple t1.

Note that the above description is simplified compared to
that in [8]. In general, as described in [8, p. 850], to request
an X latch on a page, we first issue a bufferfix request
without holding the latch. After the page is fixed in the
buffer pool, we issue the latch request. This is to avoid
performing I/O while holding a latch [8, p. 849].

798 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

Fig. 1. Hash file of the aggregate join view AJV .

Suppose now that we use V value locks instead of X value
locks in this example and that the three transactions T , T 0,
and T 00 are executed in the following sequence:

1. T gets a V value lock for attribute a ¼ 1, applies the
hash function to find the corresponding hash table
bucket B, then crabs all the pages in B to see
whether a tuple t2 whose attribute a ¼ 1 already
exists in the hash file. After crabbing, it finds that no
such tuple t2 exists.

2. Next, transaction T 0 gets a V value lock for attribute
a ¼ 1, applies the hash function to attribute a ¼ 1 to
find the corresponding hash table bucket B, and
crabs all the pages in bucket B to see whether a tuple
t2 whose attribute a ¼ 1 already exists in the hash
file. After crabbing, it finds that no such tuple t2
exists.

3. Next, transaction T crabs the pages in bucket B
again, finding that only page P4 has enough free
space. It then inserts a new tuple (1, 1) into page P4

for the join result tuple (1, 1), commits, and releases
the V value lock for attribute a ¼ 1, as illustrated in
Fig. 2.

4. Then, transaction T 00 gets a V value lock for attribute
a ¼ 20, finds that tuple (20, 2) is contained in page
P2, and deletes it (creating an open slot in page P2),
as illustrated in Fig. 3. Then, T 00 commits, and
releases the V value lock for attribute a ¼ 20.

5. Finally, transaction T 0 crabs the pages in bucket B
again, and finds that page P2 has an open slot. It
inserts a new tuple (1, 2) into page P2 for the join
result tuple (1, 2), commits, and releases the V value
lock for attribute a ¼ 1, as illustrated in Fig. 4.

Now, the aggregate join view AJV contains two tuples,
(1, 1) and (1, 2), whereas it should have only the single tuple
(1, 3). This is why we call it the “split group duplicate”
problem—the group for “1” has been split into two tuples.

One might think that, during crabbing, holding an X latch
on the entire bucket B could solve the split group duplicate
problem. However, there may be multiple pages in the
bucket B and some of them may not be in the buffer pool.
Normally, under all circumstances, one tries to avoid
performing I/O while holding a latch [8, p. 849]. Hence,
holding an X latch on the entire bucket for the duration of
the operation could cause a substantial performance hit.

2.2 Preventing Split Groups with Latches

2.2.1 The Latch Pool

To enable the use of V locks while avoiding split group
duplicates, we introduce a latch pool for aggregate join
views. The latches in the latch pool guarantee that for each

aggregate group, at any time, at most one tuple correspond-
ing to this group exists in the aggregate join view.

For efficiency we preallocate a latch pool that contains
N > 1 X (exclusive) latches. We use a hash function H that
maps key values into integers between 1 and N . We use
requesting/releasing a latch on key value v to mean
requesting/releasing the HðvÞth latch in the latch pool.

We ensure that the following properties always hold for
this latch pool:

1. During the period that a transaction holds a latch in
the latch pool, this transaction does not request
another latch in the latch pool.

2. To request a latch in the latch pool, a transaction
must first release all the other latches in the RDBMS
(including those latches that are not in the latch pool)
that it currently holds.

3. During the period that a transaction holds a latch in
the latch pool, this transaction does not request any
lock.

Properties 1 and 2 guarantee that there are no deadlocks
between latches. Property 3 guarantees that there are no
deadlocks between latches and locks. These properties are
necessary since, in an RDBMS, latches are not considered in
deadlock detection.

We define a false latch conflict as one that arises due to
hash conflicts (i.e., Hðv1Þ ¼ Hðv2Þ and v1 6¼ v2). The value of
N only influences the efficiency of the V locking proto-
col—the larger the number N , the smaller the probability of
having false latch conflicts. It does not affect the correctness
of the V locking protocol. In practice, if we use a good hash
function [8] and the number N is substantially larger than
the number of concurrently running transactions in the
RDBMS, the probability of having false latch conflicts
should be small. For example, consider the example in the
Introduction with m concurrent transactions. Suppose H is
a perfectly randomized hash function and that a transaction
spends f percent of its execution on holding a latch in the
latch pool. Note that f percent is a small fraction, as a latch
is only held for a short period. Then, following a reasoning
similar to that in [8, pp. 428-429], we can show that, when a

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 799

Fig. 2. Hash file of the aggregate join view AJV—after inserting

tuple (1, 1).

Fig. 3. Hash file of the aggregate join view AJV—after deleting

tuple (20, 2).

Fig. 4. Hash file of the aggregate join view AJV—after inserting

tuple (1, 2).

transaction requests a latch in the latch pool, the probability

that it runs into false latch conflict � ðm� 1Þ � f%=N .
While holding a latch in the latch pool, we allow I/Os to

be performed. This violates the rule according to which

latches are usually used [8, p. 849]. We think this is

acceptable because, in our case, each latch in the latch pool

is of a fine granularity: Each latch protects only one (in the

absence of hash conflicts) or multiple aggregate groups (in

the presence of hash conflicts) in the aggregate join view

rather than one or multiple pages.

2.2.2 The V Locking Protocol

In the V locking protocol for materialized aggregate join

views, we have three kinds of elementary locks: S, X, and V.

The compatibilities among these locks are listed in Table 1,

while the lock conversion lattice is shown in Fig. 5.
In the V locking protocol for materialized aggregate join

views, S locks are used for reads, V locks are used for

associative and commutative aggregate update writes,

while X locks are used for transactions that do both reads

and writes. These locks can be of any granularity and, like

traditional S and X locks, can be physical locks (e.g., tuple,

page, or table locks) or value locks.
For fine granularity locks, we define the corresponding

coarser granularity intention locks [6] as follows: We define

an IV lock corresponding to a V lock. The IV lock is similar

to the traditional IX lock except that it is compatible with

the V lock. For a fine granularity X (S) lock, we use the

traditional IX (IS) locks. One can think that IX = IS+IV and X

= S+V, as X locks are used for transactions that do both

reads and writes, while S/V locks are used for transactions

that do reads/writes. We introduce the SIV lock (S + IV)

that is similar to the traditional SIX lock, i.e., the SIV lock is

only compatible with the IS lock. Note that SIX = S + IX = S

+ (IS + IV) = (S + IS) + IV=S + IV = SIV, so we do not

introduce the SIX lock, as it is the same as the SIV lock.

Similarly, we introduce the VIS lock (V + IS) that is only

compatible with the IV lock. Note that VIX = V + IX = V +

(IS + IV) = (V + IV) + IS = V + IS = VIS, so we do not

introduce the VIX lock, as it is the same as the VIS lock. All

these intention locks are used in the same way as that in [6].
The compatibilities among the coarse granularity locks

are listed in Table 2, while the lock conversion lattice is

shown in Fig. 6. Since the use of intention locks is well

understood, we do not discuss intention locks further in the
rest of this paper.

2.2.3 Using Latches in the Latch Pool

Transactions use the latches in the latch pool in the
following way:

1. To integrate a new join result tuple t into an
aggregate join view AJV (e.g., due to insertion into
some base relation of AJV), we first put a V lock on
AJV that will be held until the transaction commits/
aborts. Immediately before we start the tuple
integration, we request a latch on the group by
attribute value of tuple t. After integrating tuple t
into the aggregate join view AJV , we release the
latch.

2. To remove a join result tuple from the aggregate
join view AJV (e.g., due to deletion from some
base relation of AJV), we only need to put a V lock
on AJV that will be held until the transaction
commits/aborts.

In this way, during aggregate join view maintenance, high
concurrency is allowed by the fact that V locks are
compatible with themselves. Note that, when using V locks,
multiple transactions may concurrently update the same
tuple in the aggregate join view. Hence, logical undo is
required on the aggregate join view AJV if the transaction
updating AJV aborts.

The split group duplicate problem cannot occur because
of our use of latches. The reason is as follows: By
enumerating all possible cases, we see that the split group
duplicate problem will only occur under the following
conditions:

1. Two transactions integrate two new join result tuples
into the aggregate join view AJV simultaneously.

2. These two join result tuples belong to the same
aggregate group.

800 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

TABLE 1
Compatibilities among the Elementary Locks

Fig. 5. The lock conversion lattice of the elementary locks.

TABLE 2
Compatibilities among the Coarse Granularity Locks

Fig. 6. The lock conversion lattice of the coarse granularity locks.

3. No tuple corresponding to that aggregate group
currently exists in the aggregate join view AJV .

Using the latch in the latch pool, one transaction, say T ,
must do the update to the aggregate join view AJV first (by
inserting a new tuple t with the corresponding group by
attribute value into AJV). During the period that transac-
tion T holds the latch on the group by attribute value of t,
no other transaction can integrate another join result tuple
that has the same group by attribute value as tuple t into the
aggregate join view AJV . Then, when a subsequent
transaction T 0 updates the view, it will see the existing
tuple t. Hence, transaction T 0 will aggregate its join result
tuple that has the same group by attribute value as tuple t

into tuple t (rather than inserting a new tuple into AJV).
We refer the reader to Section 4 for the correctness proof of
the V locking protocol.

3 OTHER USES AND EXTENSIONS OF V LOCKS

In this section, we briefly discuss three other interesting
aspects of using V locks for materialized view maintenance.
In Section 3.1, we discuss the possibility of supporting
direct propagate updates. In Section 3.2, we show how
V locks illustrate the possibility of a locking protocol for
materialized views that supports serializability without
requiring any long-term locks whatsoever on the views. In
Section 3.3, we describe how to apply the V locking protocol
to nonaggregate join views.

3.1 Direct Propagate Updates

In the preceding sections of this paper, we have assumed
that materialized aggregate join views are maintained by
first computing the join of the newly updated (inserted,
deleted) tuples with the other base relations, then aggregat-
ing these join result tuples into the aggregate join view. In
this section, we will refer to this approach as the “indirect
approach” to updating the materialized view. However, in
certain situations, it is possible to propagate updates on
base relations directly to the materialized view without
computing any join. As we know of at least one commercial
system (Teradata) that supports such direct propagate
updates, in this section, we investigate how they can be
handled in our framework.

Direct propagate updates are perhaps most useful in the
case of (nonaggregate) join views, so we consider join views
in the following discussion. However, the same discussion
holds for direct propagate updates to aggregate join views.
Our focus in this paper is not to explore the merits of direct
propagate updates or when they apply; rather, it is to see
how they can be accommodated by the V locking protocol.
We begin with an example. Suppose we have two base
relations, Aða; b; cÞ and Bðd; e; fÞ. Consider the following
join view:

create join view JV as

select A:a, A:b, B:e, B:f from A, B where A:c ¼ B:d;

Next, consider a transaction T that executes the following
SQL statement:

delete from A where A:a ¼ 1;

To maintain the join view, transaction T only needs to
execute the following:

delete from JV where JV :a ¼ 1;

This is a “direct propagate” update, since transaction T
does not compute a join to maintain the view. Similarly,
suppose that a transaction T 0 executes the following SQL
statement:

update B set B:e ¼ 4 where B:f ¼ 3;

To maintain JV , T 0 can also do a direct propagate update
with the following operation:

update JV set JV :e ¼ 4 where JV :f ¼ 3;

If these transactions naively use V locks on the materialized
view, there is apparently a problem: Since two V locks do
not conflict, T and T 0 can execute concurrently. This is not
correct, since there is a write-write conflict between T and
T 0 on any tuple in JV with a ¼ 1 and f ¼ 3. This could lead
to a nonserializable schedule.

One way to prevent this would be to require all direct
propagate updates to get X locks on the materialized view
tuples that they update while indirect updates still use
V locks. While this is correct, it is also possible to use V locks
for the direct updates if we require that transactions that
update base relations in materialized view definitions get
X locks on the tuples in the base relations they update and
S locks on the corresponding tuples in the other base
relations mentioned in the view definition. Note that:

1. These are exactly the locks the transactions would
acquire if they were using indirect materialized view
updates instead of direct propagate updates.

2. For indirect materialized view updates, the X and
S locks on the base relations may cause deadlocks
among transactions that update different base rela-
tions. However, S-X deadlocks on the base relations
are usually not as severe as X-X deadlocks on the
aggregate join view, as base relations often contain
many more tuples than the aggregate join view.
Moreover, the V locking protocol at least removes the
X-X deadlocks on the aggregate join view.

Informally, this approach with V locks works because
updates to materialized views (even direct propagate
updates) are not arbitrary; rather, they must be preceded
by updates to base relations. So, if two transactions using
V locks would conflict in the join view on some tuple t, they
must conflict on one or more of the base relations updated
by the transactions and locks at that level will resolve the
conflict.

In our running example, T and T 0 would conflict on base
relation A and/or on base relation B. Note that these locks
could be tuple-level, or table-level, or anything in between,
depending on the specifics of the implementation. A formal
complete correctness proof of this approach can be done
easily by making minor changes to the proof in Section 4.

Unlike the situation for indirect updates to materialized
aggregate join views, for direct propagate updates, the
V lock will not result in increased concurrency over X locks.
Our point here is to show that we do not need special
locking techniques to handle direct propagate updates: The

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 801

transactions obtain locks as if they were doing updates
indirectly (X locks on the tuples of the base relations they
update, S locks on the tuples of the base relations with
which they join, and V locks on the tuples of the
materialized view). Then, the transactions can use either
update approach (direct or indirect) and still be guaranteed
of serializability.

3.2 Granularity and the No-Lock Locking Protocol

Unless otherwise specified, throughout the discussion in
this paper we have been purposely vague about the
granularity of locking. This is because the locks that we
discuss and propose in this paper can be implemented at
any granularity; the appropriate granularity is a question of
efficiency, not of correctness. However, V locks have some
interesting properties with respect to granularity and
concurrency which we explore in this section.

In general, finer granularity locking results in higher
concurrency. This is not true of V locks if we consider only
transactions that update the materialized views. The reason
is that V locks do not conflict with one another so that a
single table-level V lock on a materialized view is the same,
with respect to concurrency of update transactions, as many
tuple-level V locks on the materialized view.

This is not to say that a single table-level V lock per
materialized view is a good idea; indeed, a single table-level
V lock will block all readers of the materialized view (since
it looks like an X lock to any transaction other than an
updater also getting a V lock). Finer granularity V locks will
let readers of the materialized view proceed concurrently
with updaters. In a sense, a single V lock on the view merely
signals “this materialized view is being updated”; read
transactions “notice” this signal when they try to place
S locks on the view.

This intuition can be generalized to produce a protocol
for materialized views that requires no long-term locks at
all on the materialized views. In this protocol, the function
provided by the V lock on the materialized view (letting
readers know that the view is being updated) is imple-
mented by X locks on the base relations. The observation
that limited locking is possible when data access patterns
are constrained was exploited in a different context (locking
protocols for hierarchical database systems) in [17].

In the no-lock locking protocol, like the V locking
protocol, updaters of the materialized view must get
X locks on the tuples in the base relations they update
and S locks on the tuples in the other base relations
mentioned in the view. To interact appropriately with
updaters, readers of the materialized view are required to
get table-level S locks on all the base relations mentioned in
the view. If the materialized view is being updated, there
must be a table-level X (IX or SIX) lock on one of the base
relations involved, so the reader will block on this lock.
Updaters of the materialized view need not get V locks on
the materialized view (since only they would be obtaining
locks on the view and they do not conflict with each other),
although they do require the latches in the latch pool to
avoid the split group duplicate problem.

It seems unlikely that, in a practical situation, this no-
lock locking protocol would yield higher performance than
the V locking protocol as, in the no-lock locking protocol,
readers and updaters of the materialized view cannot run
concurrently. However, we present the no-lock locking

protocol here as an interesting application of how the
semantics of materialized view updates can be exploited to
reduce locking on the materialized view while still
guaranteeing serializability.

3.3 Applying the V Locking Protocol
to Nonaggregate Join Views

Besides aggregate join views, the V locking protocol also
applies to (nonaggregate) join views of the form

JV ¼ �ð�ðR1 ffl R2 ffl . . . ffl RnÞÞ:

In fact, for join views, only V locks are necessary. The latch
pool is no longer needed. This is due to the following
reasons:

1. As discussed in Section 3.1, updates to materialized
views must be preceded by updates to base
relations. So, if two transactions using V locks would
conflict in the join view on some tuple t, they must
conflict on one or more of the base relations updated
by the transactions and locks at that level will
resolve the conflict.

2. The split group duplicate problem does not exist on
join views.

We refer the reader to Section 4 for a formal complete
correctness proof of this approach.

In a practical situation, if a join view contains a large
number of duplicate tuples (e.g., due to projection), then the
V locking protocol can yield higher performance than the
traditional X locking protocol. This is because a join view
with a large number of duplicate tuples behaves much like
an aggregate join view with a few tuples, as duplicate tuples
are hard to differentiate [11]. This effect is clearer from the
correctness proof in Section 4.2.

4 CORRECTNESS OF THE V LOCKING PROTOCOL

In this section, we prove the correctness of the V locking
protocol. The intuition for this proof is that, if two
transactions updating the base relations of a join view JV

have no lock conflict with each other on the base relations of
JV , they must generate different join result tuples.
Additionally, the addition operation for the SUM and
COUNT aggregate operators is both associative and
commutative.

We begin by reviewing our assumptions. We assume
that an aggregate join view AJV is maintained in the
following way: First, compute the join result tuple(s)
resulting from the update(s) to the base relation(s) of
AJV , then integrate these join result tuple(s) into AJV .
During aggregate join view maintenance, we put appro-
priate locks on all the base relations of the aggregate join
view (i.e., X locks on the tuples in the base relations
updated and S locks on the tuples in the other base relations
mentioned in the view definition). We use strict two-phase
locking. We assume that the locking mechanism used by the
database system on the base relations ensures serializability
in the absence of aggregate join views. Unless otherwise
specified, all the locks are long-term locks that are held until
transaction commits. Transactions updating the aggregate
join view obtain V locks and latches in the latch pool as

802 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

described in the V locking protocol. We make the same
assumptions for nonaggregate join views.

We first prove serializability in Section 4.1 for the simple
case where projection does not appear in the join view
definition, while we consider projection in Section 4.2. In
Section 4.3, we prove serializability for the case with
aggregate join views

AJV ¼ �ð�ð�ðR1 ffl . . . ffl Ri ffl . . . ffl RnÞÞÞ;

where � is either COUNT or SUM.

4.1 Proof for Join Views without Projection

To show that the V locking protocol guarantees serial-
izability, we only need to prove that, for a join view
JV ¼ �ðR1 ffl . . . ffl Ri ffl . . . ffl RnÞ, the following asser-
tions hold (the strict two-phase locking protocol guarantees
these four assertions for the base relations) [1], [8]:

1. Assertion 1. Transaction T ’s writes to join view JV
are neither read nor written by other transactions
until transaction T completes.

2. Assertion 2. Transaction T does not overwrite dirty
data of other transactions in join view JV .

3. Assertion 3. Transaction T does not read dirty data
from other transactions in join view JV .

4. Assertion 4. For any data in join view JV that is read
by transaction T , other transactions do not write it
before transaction T completes.

That is, we need to prove that no read-write, write-read, or
write-write conflicts exist. In our proof, we assume that
there are no duplicate tuples in the base relations. (At the
cost of some additional complexity, the proof can be
extended to handle the case where base relations contain
duplicate tuples.)

The proof for the absence of read-write or write-read
conflicts is trivial, as V and X locks are not compatible with
S locks. In the following, we prove the absence of write-
write conflicts. Consider the join result tuple t1 ffl . . . ffl ti ffl
. . . ffl tn in the join view JV , where tuple ti 2 Rið1 � i � nÞ.
To update this join result tuple in the join view JV ,
transaction T has to update some tuple in some base
relation. Suppose transaction T updates tuple ti in base
relation Ri for some 1 � i � n. Then, transaction T needs to
use an X lock to protect tuple ti 2 Ri. Also, for join view
maintenance, transaction T needs to use S locks to protect all
the other tuples tj 2 Rj ð1 � j � n; j 6¼ iÞ. Then, according to
the two-phase locking protocol, before transaction T finishes
execution, no other transaction can update any tuple
tk 2 Rk ð1 � k � nÞ. That is, no other transaction can update
the same join result tuple t1 ffl . . . ffl ti ffl . . . ffl tn in the join
view JV until transaction T finishes execution. For a similar
reason, transaction T does not overwrite dirty data of other
transactions in the join view JV . tu

4.2 Proof for Join Views with Duplicate-Preserving
Projection

Now, we prove the correctness of the V locking protocol for
the general case where

JV ¼ �ð�ðR1 ffl . . . ffl Ri ffl . . . ffl RnÞÞ:

We assume that join view JV allows duplicate tuples. If no
duplicate tuples are allowed in JV , we assume that each
tuple in JV has a dupcnt attribute recording the number of
copies of that tuple [11]; otherwise, JV cannot be
incrementally maintained efficiently. For example, suppose
we do not maintain the dupcnt attribute in JV . We delete a
tuple from a base relation Ri ð1 � i � nÞ of JV and this
tuple (when joined with other base relations) produces
tuple t in JV . Then, we cannot decide whether we should
delete tuple t from JV or not, as there may be other tuples
in base relation Ri that (when joined with other base
relations) also produce tuple t in JV . If we maintain the
dupcnt attribute in the join view JV , then JV becomes an
aggregate join view. The proof for the aggregate join view
case is shown in Section 4.3 below. Hence, in the following,
we only consider join views that allow duplicate tuples.

For a join view JV with projection, multiple tuples in JV
may have the same value due to projection. In this case, the
V locking protocol allows multiple transactions to update
the same tuple in the join view JV concurrently. Hence, the
proof in Section 4.1 no longer works.

We use an example to illustrate the point. Suppose the
schema of base relation A is ða; cÞ, the schema of base
relation B is ðd; eÞ. The join view JV is defined as follows:

create join view JV as
select A:a, B:e from A, B where A:c ¼ B:d;

Suppose base relation A, base relation B, and the join
view JV originally look as shown in Fig. 7.

Consider the following two transactions. Transaction T1

updates tuple tB1 in base relation B from (4, 1) to (4, 2). To
maintain the join view JV , we compute the old and new
join result tuples (1, 4, 4, 1) and (1, 4, 4, 2). Then, we update
tuple tJV 1 in the join view JV from (1, 1) to (1, 2), as
illustrated in Fig. 8.

Now, a second transaction T2 updates tuple tB2 in base
relation B from (5, 2) to (5, 3). To maintain the join view JV ,
we compute the old and new join result tuples (1, 5, 5, 2)
and (1, 5, 5, 3). Then, we need to update one tuple in the join

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 803

Fig. 7. Original status of base relation A, base relation B, and join

view JV .

Fig. 8. Status of base relation A, base relation B, and join view JV—

after updating tuple tB1.

Fig. 9. Status of base relation A, base relation B, and join view JV—

after updating tuple tB2.

view JV from (1, 2) to (1, 3). Since all the tuples in the join
view JV have value (1, 2) at present, it makes no difference
which tuple we select to update. Suppose we select tuple
tJV 1 in the join view JV for update, as illustrated in Fig. 9.

Note that transactions T1 and T2 update the same tuple
tJV 1 in the join view JV . At this point, if we abort
transaction T1, we cannot change tuple tJV 1 in the join view
JV back to the value (1, 1), as the current value of tuple tJV 1

is (1, 3) rather than (1, 2). However, we can pick up any
other tuple (such as tJV 2) in the join view JV that has value
(1, 2) and change its value back to (1, 1). That is, our
V locking protocol requires logical undo (instead of
physical undo) on the join view if the transaction holding
the V lock aborts. During logical undo, no additional lock is
needed. This is because V locks can “conceptually” be
regarded as value locks. The value of the other tuple (such
as tJV 2), (1, 2), has been locked before.

In the following, we give an “indirect” proof of the
correctness of the V locking protocol using the serializability
result in Section 4.1. Our intuition is that, although multiple
tuples in the join view JV may have the same value due to
projection, they originally come from different join result
tuples before projection. Hence, we can show serializability
by “going back” to the original join result tuples.

Consider an arbitrary database DB containing multiple
base relations and join views. Suppose that there is another
database DB0 that is a “copy” of DB. The only difference
between DB and DB0 is that, for each join view with
projection JV ¼ �ð�ðR1 ffl . . . ffl Ri ffl . . . ffl RnÞÞ in DB, we
replace it by a join view without projection JV 0 ¼ �ðR1 ffl
. . . ffl Ri ffl . . . ffl RnÞ in DB0. Hence, JV ¼ �ðJV 0Þ. Each
tuple t in the join view JV corresponds to one tuple t0 in JV 0

(by projection).
Consider multiple transactions T1; T2; . . . , and Tg. To

prove serializability, we need to show that, in DB, any
allowed concurrent execution of these transactions is
equivalent to some serial execution of these transactions.
Suppose that multiple transactions T 0

1; T
0
2; . . . , and T 0

g exist in
DB0. Each transaction T 0

j ð1 � j � gÞ is a “copy” of transac-
tion Tj with the following differences:

1. Suppose, in DB, transaction Tj reads tuples � of JV .
In DB0, we let transaction T 0

j read the tuples �0 in
JV 0 that correspond to � in JV .

2. Suppose, in DB, transaction Tj updates JV by �.

According to the join view maintenance algorithm,

transaction Tj needs to first compute the correspond-

ing join result tuples�0 that produce�, then integrate
�0 into JV . In DB0, we let transaction T 0

j update JV 0

by �0. That is, we always keep JV ¼ �ðJV 0Þ.
Hence, except for the projection on the join views:

1. For every j ð1 � j � gÞ, transactions T 0
j and Tj read

and write the “same” tuples.
2. At any time, DB0 is always a “copy” of DB.

For any allowed concurrent execution CE of transactions

T1; T2; . . . , and Tg in DB, we consider the corresponding

(and also allowed) concurrent execution CE0 of transac-

tions T 0
1; T

0
2; . . . , and T 0

g in DB0. By the reasoning in Section

4.1, we know that, in DB0, such concurrent execution CE0

of transactions T 0
1; T

0
2; . . . , and T 0

g is equivalent to some

serial execution of the same transactions. Suppose one such

serial execution is transactions T 0
k1
; T 0

k2
; . . . ; and T 0

kg
, where

fk1; k2; . . . ; kgg is a permutation of f1; 2; . . . ; gg. Then, it is
easy to see that, in DB, the concurrent execution CE of

transactions T1; T2; . . . , and Tg is equivalent to the serial

execution of transactions Tk1 ; Tk2 ; . . . , and Tkg . tu

4.3 Proof for Aggregate Join Views

We can also prove the correctness (serializability) of the
V locking protocol for aggregate join views. Such a proof is
similar to the proof in Section 4.2, so we only point out the
differences between these two proofs and omit the details:

1. For any aggregate join view AJV ¼ �ð�ð�ðR1 ffl
. . . ffl Ri ffl . . . ffl RnÞÞÞ in DB, we replace it by a
join view JV 0 ¼ �ðR1 ffl . . . ffl Ri ffl . . . ffl RnÞ in
DB0. Each tuple in the aggregate join view AJV
corresponds to one or multiple tuples in JV 0 (by
projection and aggregation). At any time, we
always keep AJV ¼ �ð�ðJV 0ÞÞ, utilizing the fact
that the addition operation for the SUM and
COUNT aggregate operators is both associative
and commutative.

2. In the presence of updates that cause the insertion or
deletion of tuples in the aggregate join view, the
latches in the latch pool guarantee that the “race”
conditions that can cause the split group duplicate
problem cannot occur. For each aggregate group, at
any time at most one tuple corresponding to this
group exists in the aggregate join view AJV . tu

5 PERFORMANCE OF THE V LOCKING PROTOCOL

In this section, we investigate the performance of the
V locking protocol through a simulation study in IBM’s DB2
Version 7.2. We focus on the throughput of a targeted class
of transactions (i.e., transactions that update a base relation
of an aggregate join view). Our measurements were
performed with the database client application and server
running on an Intel x86 Family 6 Model 5 Stepping 3
workstation with four 400MHz processors, 1GB main
memory, six 8GB disks, and running the Microsoft
Windows 2000 operating system. We allocated a processor
and a disk for each data server node, so there were four
data server nodes on the workstation.

5.1 Benchmark Description

We used the two relations lineitem and partsupp and the
aggregate join view suppcount that are mentioned in the
introduction for the tests. The schemas of the lineitem and
partsupp relations are listed as follows:

lineitem (orderkey, partkey, price, discount, tax, order-

date, comment)

partsupp (partkey, suppkey, supplycost, comment)

The underscore indicates the partitioning attributes. Table 3
shows the sizes of the lineitem and partsupp relations. The
aggregate join view suppcount is partitioned on the suppkey
attribute. For each relation, we built an index on the
partitioning attribute. In our tests, different partsupp tuples
have different partkey values. There are R different suppkeys,

804 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

each corresponding to the same number of tuples in the

partsupp relation.
We used the following kind of transaction for testing:

. T. Insert r tuples that have a specific orderkey value
into the lineitem relation. Each of these r tuples has a
different and random partkey value and matches a
partsupp tuple on the partkey attribute.

We evaluated the performance of our V lock method and
the traditional X lock method in the following way:

1. We used the default setting of DB2, where the buffer
pool size is 250 pages on each data server node. (We
also tested larger buffer pool sizes. The results were
similar and, thus, are omitted.)

2. We ran x Ts. Each of these x Ts has a different
orderkey value. x is an arbitrarily large number. Its
specific value does not matter, as we only focused on
throughput.

3. In the X lock method, if a transaction deadlocked
and aborted, we automatically re-executed it until it
committed.

4. We used the tuple throughput (number of tuples
inserted successfully per second) as the performance
metric. It is easy to see that the transaction
throughput = the tuple throughput/r. In the rest of
Section 5, we use throughput to refer to the tuple
throughput.

5. We performed a concurrency test. We fixed
R ¼ 3; 000. In both the V lock method and the
X lock method, we tested four cases: m ¼ 2, m ¼ 4,
m ¼ 8, and m ¼ 16, where m is the number of
concurrent transactions. In each case, we let r vary
from 1 to 64. (We also performed a number of
aggregate groups test that varies R. The results of
this test did not provide more insight, so we omit
them here.)

6. We could not implement our V locking protocol in
the database software, as we did not have access to
the source code. Since the essence of the V locking
protocol is that V locks do not conflict with each
other, we used the following method to evaluate the
performance of the V lock method. We created
m copies of the aggregate join view suppcount. At
any time, each of the m concurrent transactions dealt
with a different copy of suppcount. In an actual
implementation of the V locking protocol, we would
encounter the following issues:

a. Conflicts of short-term X page latches and
conflicts of the latches in the latch pool during
concurrent updates to the aggregate join view
suppcount.

b. Hardware cache invalidation in an SMP envir-
onment during concurrent updates to the
aggregate join view suppcount.

As a result, our performance numbers are not exact
performance predictions, which will depend upon
the actual implementation details of the V locking
protocol. Rather, our experiments are intended to
illustrate trends of when the V lock method tends to
do better than the X lock method.

5.2 Concurrency Test Results

We discuss the deadlock probability and throughput testing
results from the concurrency test in Sections 5.2.1 and 5.2.2,
respectively.

5.2.1 Deadlock Probability

As mentioned in the introduction, for the X lock method, we
can use the formula ðm� 1Þðr� 1Þ4=ð4R2Þ to roughly
estimate the probability that any particular transaction
deadlocks. We show the deadlock probability of the X lock
method computed by the formula in Fig. 10. (Note: All
figures in Sections 5.2.1 and 5.2.2 use logarithmic scale for
the x-axis.)

For the X lock method, the deadlock probability increases
linearly with bothm and the fourth power of r. When bothm
and r are small, this deadlock probability is small. However,
when either m or r becomes large, this deadlock probability
approaches 1 quickly. For example, consider the case with
m ¼ 16. When r ¼ 16, this deadlock probability is only
2 percent. However, when r ¼ 32, this deadlock probability
becomes 38 percent. The larger r, the smaller m is needed to
make this deadlock probability become close to 1.

We show the deadlock probability of the X lock method
measured in our tests in Fig. 11. Figs. 10 and 11 roughly
match. This indicates that our formula gives a fairly good

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 805

TABLE 3
Test Data Set

Fig. 10. Predicted deadlock probability of the X lock method

(concurrency test).

Fig. 11. Measured deadlock probability of the X lock method

(concurrency test).

rough estimate of the deadlock probability of the X lock
method.

To see how deadlocks influence performance, we
investigated the relationship between the throughput and
the deadlock probability. By definition, when the deadlock
probability becomes close to 1, almost every transaction will
deadlock. Deadlock has the following negative influences
on throughout:

1. Deadlock detection/resolution is a time-consuming
process. During this period, the deadlocked transac-
tions cannot make any progress.

2. The deadlocked transactions will be aborted and re-
executed. During re-execution, these transactions
may deadlock again. This wastes system resources.

Hence, once the system starts to deadlock, the deadlock
problem tends to become worse and worse. Eventually, the
throughput of the X lock method deteriorates significantly.

5.2.2 Throughput

We show the throughput of the X lock method in Fig. 12.
(The throughput numbers in Figs. 12 and 13 are scaled by
the same constant factor.) For a given m, when r is small,
the throughput of the X lock method keeps increasing with
r. This is because executing a large transaction is much
more efficient than executing a large number of small
transactions. When r becomes large enough (e.g., r ¼ 32),
the X lock method causes a large number of deadlocks. That
is, the X lock method runs into a severe deadlock problem.
The larger m, the smaller r is needed for the X lock method
to run into the deadlock problem. Once the deadlock
problem occurs, the throughput of the X lock method
deteriorates significantly. Actually, it decreases as r
increases. This is because the larger r, the more transactions
are aborted and re-executed due to deadlock.

For a given r, before the deadlock problem occurs, the
throughput of the X lock method increases with m. This is
because the larger m is, the higher concurrency in the
RDBMS. However, when r is large enough (e.g., r ¼ 32) and
the X lock method runs into the deadlock problem, due to
the extreme overhead of repeated transaction abortion and
re-execution, the throughput of the X lock method decreases
as m increases.

We show the throughput of the V lock method in Fig. 13.
The general trend of the throughput of the V lock method is
similar to that of the X lock method (before the deadlock
problem occurs). That is, the throughput of the V lock
method increases with both m and r. However, the V lock
method never deadlocks. For a given m, the throughput of

the V lock method keeps increasing with r (until all system
resources become fully utilized). Once the X lock method
runs into the deadlock problem, the V lock method exhibits
great performance advantages over the X lock method.

We show the ratio of the throughput of the V lock
method to that of the X lock method in Fig. 14. (Note that
Fig. 14 uses logarithmic scale for both the x-axis and the
y-axis.) Before the X lock method runs into the deadlock
problem, the throughput of the V lock method is the same
as that of the X lock method. However, when the X lock
method runs into the deadlock problem, the throughput of
the V lock method does not drop while the throughput of
the X lock method is significantly worse. In this case, the
ratio of the throughput of the V lock method to that of the
X lock method is greater than 1. For example, when r ¼ 32,
for any m, this ratio is at least 1.3. When r ¼ 64, for any m,
this ratio is at least 3. In general, when the X lock method
runs into the deadlock problem, this ratio increases with
bothm and r. This is because the largerm or r, the easier the
transactions deadlock in the X lock method. The extreme
overhead of repeated transaction abortion and re-execution
exceeds the benefit of the higher concurrency (efficiency)
brought by a larger m ðrÞ.

Note:

1. Our tests do not address the performance impact
of N—the number of X latches in the latch pool.
In general, we cannot control the number of
aggregate groups in an aggregate join view,
which is usually small due to aggregation.
However, we can control the number N , which
can be relatively large since each latch only
occupies a few bytes [8]. As mentioned in
Section 2.2.1, we would expect the performance

806 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

Fig. 12. Throughput of the X lock method (concurrency test). Fig. 13. Throughput of the V lock method (concurrency test).

Fig. 14. Throughput improvement gained by the V lock method

(concurrency test).

impact of N to be relatively small compared to
the performance impact of lock conflicts.

2. In general, locks are long-term and not released until
transaction commit time; latches are short-term and
will be released quickly [8]. Hence, in the case that
all updates are concentrated on a single tuple in the
aggregate join view, we would still expect the V lock
method to perform better than the X lock method.
However, without an actual implementation of the V
locking protocol, it is difficult to measure precisely
the benefit of the V lock method over the X lock
method in this case.

6 CONCLUSION

The V locking protocol is designed to support concurrent,
immediate updates of materialized aggregate join views
without engendering the high lock conflict rates and high
deadlock rates that could result if two-phase locking with S
and X lock modes were used. This protocol borrows from
the theory of concurrency control for associative and
commutative updates, with the addition of a latch pool to
deal with insertion anomalies that result from some special
properties of materialized view updates. Perhaps surpris-
ingly, due to the interaction between locks on base relations
and locks on the materialized view, this locking protocol,
designed for concurrent update of aggregates, also supports
direct propagate updates and materialized nonaggregate
join view maintenance.

An extended version of this paper that contains the
B-tree index locking protocol is available at http://
www.cs.wisc.edu/~gangluo/latch_final_full.pdf.

ACKNOWLEDGMENT

The authors would like to thank C. Mohan, Henry F. Korth,
David B. Lomet, and the anonymous reviewers for useful
discussions. This work was supported by the NCR
Corporation and also by US National Science Foundation
grants CDA-9623632 and ITR 0086002.

REFERENCES

[1] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[2] B.R. Badrinath and K. Ramamritham, “Semantics-Based Concur-
rency Control: Beyond Commutativity,” ACM Trans. Database
Systems, vol. 17, no. 1, pp. 163-199, 1992.

[3] D. Gawlick and D. Kinkade, “Varieties of Concurrency Control in
IMS/VS Fast Path,” IEEE Database Eng. Bull., vol. 8, no. 2, pp. 3-10,
1985.

[4] J. Gehrke, F. Korn, and D. Srivastava, “On Computing Correlated
Aggregates over Continual Data Streams,” Proc. SIGMOD, pp. 13-
24, 2001.

[5] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total,” Proc. Int’l Conf. Data Eng., pp. 152-159, 1996.

[6] J. Gray, R.A. Lorie, G.R. Putzolu, and I.L. Traiger, “Granularity of
Locks and Degrees of Consistency in a Shared Data Base,” Proc.
IFIP Working Conf. Modeling in Data Base Management Systems,
pp. 365-394, 1976.

[7] A. Gupta and I.S. Mumick, Materialized Views: Techniques,
Implementations, and Applications. MIT Press, 1999.

[8] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[9] A. Kawaguchi, D.F. Lieuwen, I.S. Mumick, D. Quass, and K.A.
Ross, “Concurrency Control Theory for Deferred Materialized
Views,” Proc. Int’l Conf. Database Theory, pp. 306-320, 1997.

[10] H.F. Korth, “Locking Primitives in a Database System,” J. ACM,
vol. 30, no. 1, pp. 55-79, 1983.

[11] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom,
“Performance Issues in Incremental Warehouse Maintenance,”
Proc. Very Large Data Bases Conf., pp. 461-472, 2000.

[12] G. Luo, J.F. Naughton, C.J. Ellmann, and M.W. Watzke, “Locking
Protocols for Materialized Aggregate Join Views,” Proc. Very Large
Data Bases Conf., pp. 596-607, 2003.

[13] P.E. O’Neil, “The Escrow Transactional Method,” ACM Trans.
Database Systems, vol. 11, no. 4, pp. 405-430, 1986.

[14] M. Poess and C. Floyd, “New TPC Benchmarks for Decision
Support and Web Commerce,” SIGMOD Record, vol. 29, no. 4,
pp. 64-71, 2000.

[15] R.F. Resende, D. Agrawal, and A.E. Abbadi, “Semantic Locking in
Object-Oriented Database Systems,” Proc. Conf. Object-Oriented
Programming Systems, Languages, and Applications, pp. 388-402,
1994.

[16] A. Reuter, “Concurrency on High-Traffic Data Elements,” Proc.
ACM Symp. Principles of Database Systems, pp. 83-92, 1982.

[17] A. Silberschatz and Z.M. Kedem, “Consistency in Hierarchical
Database Systems,” J. ACM, vol. 27, no. 1, pp. 72-80, 1980.

Gang Luo received the BSc degree from
Shanghai Jiaotong University, People’s Re-
public of China, in 1994, and the PhD degree
from the University of Wisconsin-Madison in
2004. He is currently a research staff
member at the IBM T.J. Watson Research
Center. He has broad interests in various
parts of relational database systems. Re-
cently, he has been working on using HCI
techniques to improve both the user-friendli-

ness and the performance of relational database systems.

Jeffrey F. Naughton received the bachelor’s
degree in mathematics from the University of
Wisconsin-Madison and the PhD degree in
computer science from Stanford University. He
served as a faculty member in the Computer
Science Department at Princeton University
before moving to the University of Wisconsin-
Madison, where he is currently a professor of
computer science. His research has focused on
improving the performance and functionality of

database management systems. He has published more than 100 tech-
nical papers and received the US National Science Foundation’s
Presidential Young Investigator award in 1991 and was named an
ACM fellow in 2002.

Curt J. Ellmann received the master’s
degree in computer science from the Uni-
versity of Wisconsin-Madison. He works for
the Division of Information Technology at the
University of Wisconsin-Madison. His current
focus is on “open source” software projects
that the university is involved with. Prior to
that, he was a manager for the optimizer
group for the Teradata Database system, and
the site manager for the Teradata software

development lab in Madison, Wisconsin.

Michael W. Watzke received the bachelor’s
degree in electrical engineering and computer
science from the University of Wisconsin-
Madison. He has worked in the database
software and information technology consulting
fields for 18 years. He is currently working for
NCR/Teradata as a database architect focus-
ing on the areas of application integration and
performance.

LUO ET AL.: LOCKING PROTOCOLS FOR MATERIALIZED AGGREGATE JOIN VIEWS 807

