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Abstract. With the increasing popularity of operational data warehousing, the 
ability to load data quickly and continuously into an RDBMS is becoming more 
and more important. However, in the presence of materialized join views, 
loading data concurrently into multiple base relations of the same materialized 
join view can cause a severe deadlock problem. To solve this problem, we 
propose reordering the data to be loaded so that at any time, for any 
materialized join view, data is only loaded into one of its base relations. Also, 
for load transactions on the relations that contain “aggregate” attributes, we 
propose using pre-aggregation to reduce the number of SQL statements in the 
load transactions. The advantages of our methods are demonstrated through 
experiments with a commercial parallel RDBMS. 

1   Introduction 

Today’s business market is becoming more and more versatile and competitive. To 
become and remain successful, an enterprise has to make real-time decisions about its 
day-to-day operations in response to the fast changes happening all the time in the 
world [6]. As a result, enterprises are starting to use operational data warehouses to 
provide fresher data and faster queries [4]. In an operational data warehouse, the 
stored information is updated in real time or close to it. Also, materialized views are 
used to speed query processing. This poses some technical challenges. In this paper, 
we consider a challenge that arises in the context of continuous data loading in the 
presence of materialized views. 
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Fig. 1. Operational data warehouse architecture 
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Figure 1 shows the architecture of a typical operational data warehouse [4] (Wal-
Mart’s data warehouse uses this architecture [22]). Clients store new data into 
operational data stores in real time, where an operational data store is an OLTP 
database, a message queue [3], or anything else that is suitable for an OLTP 
workload. The purpose of these operational data stores is to acknowledge the clients’ 
input immediately while ensuring the durability of this data. As quickly as feasible, 
this new data is transferred by continuous load utilities from operational data stores 
into a centralized operational data warehouse, where it is typically managed by an 
RDBMS. Then clients can query this operational data warehouse, which is the only 
place that global information is available. 

Note: The continuous load utilities are not used for arbitrary applications. Rather, they 
are used to synchronize the centralized operational data warehouse with the 
operational data stores. As a result, the state-of-the-art commercial continuous load 
utilities (e.g., Oracle [16], Teradata [20]) have certain characteristics that are not valid 
in some applications. We will describe these characteristics in Section 2.1 below.  

For performance reasons, existing continuous load utilities often load data into the 
RDBMS through multiple concurrent sessions. In the presence of materialized join 
views, a deadlock problem can occur during immediate materialized join view 
maintenance. This is because a materialized join view JV links together multiple base 
relations. When a base relation used in the definition of JV is updated, in order to 
maintain JV, all other base relations in its definition must be read. Hence, transactions 
updating different base relations in the definition of JV can deadlock due to their lock 
requests on these base relations. 

A simple solution to the above deadlock problem is to do materialized join view 
maintenance in a deferred manner rather than immediately. That is, an update is 
inserted into the base relation as soon as possible; but the materialized join views that 
refer to that base relation only see the update at some later time, when the 
materialized join views are updated in a batch operation. Unfortunately, this makes 
the materialized join views at least temporarily inconsistent with the base relations. 
The resulting semantic uncertainty may not be acceptable to all applications. This 
observation has been made elsewhere. For example, [11] emphasizes that consistency 
is important for materialized views that are used to make real-time decisions. As 
another example, in the TPC-R benchmark, maintaining materialized views 
immediately with transactional consistency is a mandatory requirement [18], 
presumably as a reflection of some real world application demands. As a third 
example, as argued in [11], materialized views are like indexes. Since indexes are 
always maintained immediately, immediate materialized view maintenance should 
also be desirable in many cases. 

The reader might wonder whether using a multi-version concurrency control 
method can solve the above deadlock problem. In general, a multi-version 
concurrency control method can avoid conflicts between a pure read transaction and a 
write transaction (or a transaction that does both reads and writes) [2, 11]. However, 
in our case, the immediate materialized join view maintenance transactions do both 
reads and writes. As a result, a multi-version concurrency control method cannot 
avoid the conflicts between these transactions [2, 11]. In fact, [11] proposed a multi-
version concurrency control method to avoid conflicts between pure read transactions 
on materialized join views and immediate materialized join view maintenance 
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transactions. For this reason, in this paper, we do not discuss pure read transactions on 
materialized join views.  

To solve the deadlock problem without sacrificing consistency between the 
materialized join views and the base relations, we propose reordering the data to be 
loaded so that at any time, for any materialized join view JV, data is only loaded into 
one of its base relations. (As we describe in Section 2.3, in the context of continuous 
load operations, standard partitioning techniques can be used to guarantee that there 
are no deadlocks among transactions updating the same base relation. Also, as we 
describe in Sections 2.1 and 2.3, reordering is allowed in the state-of-the-art 
continuous load utilities.)  

Reordering transactions may cause slight delays in the processing of load 
transactions that have been moved later in the load schedule. On balance, these delays 
will be offset by the corresponding transactions that were moved earlier in the 
schedule to take the place of these delayed transactions. For some applications, this 
reordering is preferable to the inconsistencies that result from deferred materialized 
view maintenance. These are the target applications for our reordering technique. 

Reordering transactions is not a new idea. For example, [15] proposed reordering 
queries to improve the buffer pool hit ratio. Also, in practice, some data warehouse 
users reorder transactions themselves in their applications to avoid contention among 
the transactions [5]. However, to our knowledge the published literature has not 
considered an automatic, general purpose transaction reordering method that attempts 
to reduce deadlocks in continuous data loading applications. 

In addition to reordering transactions, we propose a second method to improve the 
efficiency of continuous data loading. For relations with attributes representing 
aggregate information (e.g., quantity, amount), we use pre-aggregation to reduce the 
number of SQL statements in the load transactions. In our experiments, we observed 
that pre-aggregation can greatly increase the continuous data loading speed. 

Of course, the techniques proposed in this paper do not solve all the problems 
encountered in continuous data loading in the presence of materialized views. Other 
problems exist, e.g., concurrency control conflicts on materialized views [11, 12], 
excessive resource usage during materialized view maintenance [13]. However, we 
believe our techniques form one part of the solution that is required for continuous 
data loading in the presence of materialized views. 

The rest of this paper is organized as follows. In Section 2, we provide some 
background for continuous data loading. In Section 3, we explore the deadlock 
problem with existing continuous load utilities in the presence of materialized join 
views, and show how this problem can be avoided using the reordering method. In 
Section 4, we explore the use of pre-aggregation to reduce the number of SQL 
statements in the load transactions. Section 5 investigates the performance of our 
method through an evaluation in a commercial parallel RDBMS. We conclude in 
Section 6. 

2   Continuous Data Loading 

Since loading data into a database is a general requirement of database applications, 
most commercial RDBMS vendors provide load utilities, each of which have 
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(somewhat) different functionality. Some are continuous load utilities, while others only 
support batch bulk load. The functionality of certain load utilities can be implemented 
by applications. However, since a large number of applications need such functionality, 
RDBMS vendors typically provide this functionality as a package for application 
developers to use directly. In the rest of this paper, we do not differentiate between the 
load utilities provided by the RDBMS vendors and the applications written by the 
application developers that provide data loading functionality. We refer to both of them 
as load utilities, and our discussion holds for both. 

In this section, we describe how existing continuous load utilities typically work 
(minor differences in implementation details will not influence our general discussion).  

2.1   Workload Specification 

Figure 2 shows a typical architecture for loading data continuously into an RDBMS 
[19, 20]. Data comes from multiple data sources (files, OLTP databases, message 
queues, pipes, etc.) in the form of modification operations (insert, delete, or update). 
Then a continuous load utility loads the data into the RDBMS using update 
transactions. Each update transaction contains one or more modification operations.  
 

RDBMS 

continuous load utility 

data 

source 

data 

source 

data 

source  

Fig. 2. Continuous data loading architecture 

As is the case in data stream applications, the system has no control over the order in 
which modification operations arrive [1]. To decide which transformations are valid on 
the stream of load transactions, we discuss the semantics of continuous data loading. 
The state-of-the-art two popular commercial continuous load utilities (Oracle [16], 
Teradata [20]) make the following assumptions for continuous data loading:  

(a) The RDBMS is running with standard ACID properties for transactions. The 
continuous load utility looks to the RDBMS like a series of transactions, each 
containing a single modification operation (insert, delete, or update) on a single 
relation. Hence, load transactions submitted by continuous load utilities will not 
cause inconsistency for transactions submitted by other applications. 

(b) The RDBMS neither imposes nor assumes any particular order for these load 
transactions − indeed, their order is determined by the (potentially multiple) 
external systems "feeding" the load process. Hence, the load process is free to 
arbitrarily reorder these transactions.  

(c) The RDBMS has no requirement on whether multiple modification operations 
can or cannot commit/abort together. Hence, for efficiency purposes, the load 
process is free to arbitrarily group these single-modification-operation 
transactions.  
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In this paper, we make the same assumptions. Hence, in our techniques, we can do 
reordering and grouping arbitrarily. 

The alert reader may notice that arbitrary reordering can cause certain anomalies. 
For example, such an anomaly arises if the deletion of a tuple t is moved before the 
updating of tuple t. In practice, some applications tolerate such anomalies [5]. In other 
cases, the application ensures that the order in which modification operations arrive at 
the continuous load utility will not allow such anomalies [5]. For example, before the 
continuous load utility acknowledges the completion of updating tuple t, the operation 
of deleting tuple t is not submitted to the continuous load utility. In either case, the 
continuous load utility does not need to worry about these anomalies. 

In this paper, we make the further assumption that some locking mechanism is 
used to provide concurrency control. More specifically, we assume that: 

(a) The system uses strict two-phase locking. 
(b) The system uses tuple-level locks. The extension to multiple-granularity locking 

[9] is straightforward.  

To increase concurrency, a continuous load utility typically opens multiple 
sessions to the RDBMS (at any time, each session can have at most one running 
transaction [10, page 320]). These sessions are usually maintained for a long time so 
that they do not need to be re-established for each use. For efficiency, within a 
transaction, all the SQL statements corresponding to modification operations are 
usually pre-compiled into a stored procedure whose execution plan is stored in the 
RDBMS. This not only reduces the network overhead (transmitting a stored 
procedure requires a much smaller message than transmitting multiple SQL 
statements) but also eliminates the overhead of repeatedly parsing and optimizing 
SQL statements. 

2.2   Grouping Modification Operations 

Continuous load utilities usually combine multiple modification operations into a 
single transaction rather than applying each modification operation in a separate 
transaction [19, 20]. This is because of the per transaction overhead. Using a large 
transaction can amortize this overhead over multiple modification operations. In the 
rest of this paper, we refer to the number of modification operations that are combined 
into a single transaction as the grouping factor. 

2.3   The Partitioning Method 

As mentioned in Section 2.1, to increase concurrency, a continuous load utility 
typically opens multiple sessions to the RDBMS. In this section, we review the 
standard approach used to avoid deadlock in continuous load operations in the 
absence of materialized views.  

Suppose the continuous load utility opens 2≥k  sessions Si ( ki ≤≤1 ) to the 
RDBMS. If we randomly distribute the modification operations among the k sessions, 
transactions from different sessions can easily deadlock on X lock requests on the 
base relations. This is because these transactions may modify the same tuples 
concurrently [20]. A simple solution to this deadlock problem is to partition  
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(e.g., hash on some attribute) the tuples among different sessions so that modification 
operations on the same tuple are always sent through the same session [20]. In this 
way, the deadlock condition (transactions from different sessions modify the same 
tuple) no longer exists and deadlocks will not occur. (Note: the partitioning method 
may change the order that the tuples arrive at the RDBMS. However, as mentioned in 
Section 2.1, such reordering is allowed in existing continuous load utilities.) 

3   The Reordering Method 

In this section, we consider the general case in which materialized views are 
maintained in the RDBMS, and show that in this case the partitioning method of 
Section 2.3 is not sufficient to avoid deadlocks. We focus on an important class of 
materialized views called join views. In an extended relational algebra, by a join view 

JV, we mean either an ordinary join view π(σ(R1⋈R2⋈…⋈Rh)) or an aggregate join 

view γ(π(σ(R1⋈R2⋈…⋈Rh))), where γ is an aggregate operator. SQL allows the 
aggregate operators COUNT, SUM, AVG, MIN, and MAX. However, because MIN 
and MAX cannot be maintained incrementally (the problem is deletes [8]), we restrict 
our attention to the three aggregate operators that make the most sense for 
materialized aggregates: COUNT, SUM, and AVG.  

3.1   Impact of Immediate Materialized View Maintenance 

In continuous data loading, we allow data to be loaded into multiple base relations 
concurrently. This is necessary if we want to keep the data in the RDBMS as up-to-
date as possible. However, if a join view is defined on multiple base relations, 
deadlocks are likely to occur. This is because a join view JV links different base 
relations. When a base relation of JV is updated, to maintain JV, all the other base 
relations in the definition of JV are read. That is, the introduction of the join view 
changes the update transactions into update-read transactions. These reads can 
conflict with concurrent writes to the other base relations of JV. For example, 
consider the following two base relations: A(a, c) and B(d, e). Suppose a join view 

JV=A⋈B is defined on A and B, where the join condition is A.c=B.d. Consider the 
following two modification operations: 

(1) O1: Modify a tuple t1 in base relation A whose c=v. 
(2) O2: Modify a tuple t2 in base relation B whose d=v. 

These modification operations require the following tuple-level locks on base 
relations A and B: 

O1:  (L11) A tuple-level X lock on A for tuple t1. 
(L12) Several tuple-level S locks on B for all the tuples in B whose d=v 

(for join view maintenance purpose). 
O2:  (L21) A tuple-level X lock on B for tuple t2. 

(L22) Several tuple-level S locks on A for all the tuples in A whose c=v. 
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Suppose operation O1 is executed by transaction T1 through session S1, while 
operation O2 is executed by transaction T2 through session S2. If transactions T1 and T2 
request the locks in the order 

Step 1: T1 requests L11. Step 2: T2 requests L21. 
Step 3: T1 requests L12. Step 4: T2 requests L22. 

a deadlock occurs. This is because L11 (L22) contains a tuple-level X (S) lock on A for 
tuple t1. Also, L21 (L12) contains a tuple-level X (S) lock on B for tuple t2.  

Allowing dirty reads is a standard technique to improve the concurrency of read-
only queries. Since materialized join view maintenance has at its heart a join query, it 
is natural to wonder if dirty reads can be used here. Unfortunately, in the context of 
materialized view maintenance, allowing dirty reads is problematic. This is because 
using dirty reads to maintain join views makes the results of these dirty reads 
permanent in the join views [21]. Thus, although dirty reads would avoid the deadlock 
problem, they cannot be used. 

It is also natural to question whether some extension of the partitioning method 
described in Section 2.3 can be used to avoid deadlocks in the presence of 
materialized join views. In certain cases, the answer is yes. For example, suppose we 
use the same partitioning function to partition the tuples of A and B among different 
sessions according to the join attributes A.c and B.d, respectively. Then for immediate 
materialized view maintenance, the deadlock problem will not occur. This is because 
in this case, “conflicting” transactions are always submitted through the same session. 
Also, at any time, one session can have at most one running transaction [10, page 
320]. Unfortunately, in practice, such an appropriate partitioning method is not 
always possible: 

(1) In continuous data loading, modification operations on a base relation R usually 
specify some (e.g., the primary key) but not all attribute values of R [20]. We can 
only partition the tuples of base relation R among different sessions according to 
(some of) those attributes whose values are specified by the modification 
operations on R.  This is because we use the same attributes to partition the 
modification operations on base relation R among different sessions. Suppose 
that base relation R is a base relation of a join view. Also, suppose the join 
attribute of R is not one of those attributes whose values are specified by the 
modification operations on R. Then we cannot partition the tuples of base relation 
R among different sessions according to the join attribute of R. 

(2) If multiple join views with different join attributes are defined on the same base 
relation R, then it is impossible to partition the tuples of base relation R among 
different sessions according to these join attributes simultaneously.  

(3) If within the same join view (e.g., JV=A⋈R⋈B), a base relation R is joined with 
multiple other base relations (e.g., A and B) on different join attributes, then it is 
impossible to partition the tuples of base relation R among different sessions 
according to these join attributes simultaneously. 

3.2   Solution with Reordering 

The deadlock problem occurs because we allow data to be concurrently loaded into 
multiple base relations of the same join view. Hence, a natural question is if this were 
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not allowed, would the deadlock problem still occur? Luckily, the answer is “no” if 
we set the following rules: 

(1) Rule 1: At any time, for any join view JV, data can only be loaded into one base 
relation of JV.  

(2) Rule 2: Modification operations (insert, delete, update) on the same base relation 
use the partitioning method discussed in Section 2.3. 

(3) Rule 3: The system uses a high concurrency locking protocol (e.g., the V locking 
protocol [12], or the locking protocol in [11]) on join views so that lock conflicts 
on the join views can be avoided. 

The reason is as follows. 

(1) Using rules 1 and 2, all deadlocks resulting from lock conflicts on the base 
relations are avoided.  

(2) Using rule 3, all deadlocks resulting from lock conflicts on the join views can be 
avoided (e.g., in the V locking protocol [12], V locks are compatible with 
themselves; in the locking protocol in [11], E locks are compatible with 
themselves). 

Since all possible deadlock conditions are eliminated, deadlocks no longer occur. 
We now consider how to implement rules 1-3. It is easy to enforce rules 2 and 3. 

To enforce rule 1, we can use the following reordering method to reorder the 
modification operations. Recall in Section 2.1, the semantics of the workload allows 
us to reorder modification operations arbitrarily. Consider a database with d base 
relations R1, R2, …, and Rd and e join views JV1, JV2, …, and JVe. We keep an array J 
that contains d elements Ji ( di ≤≤1 ). For each i ( di ≤≤1 ), Ji records the number of 
transactions that modify base relation Ri and are currently being executed. Each Ji 
( di ≤≤1 ) is initialized to zero. For each m ( km ≤≤1 ), we maintain a queue Qm 
recording transactions waiting to be run through session Sm. Each Qm ( km ≤≤1 ) is 
initialized to empty. During grouping (see Section 2.2), we only combine 
modification operations on the same base relation into a single transaction.  

If base relations Ri and Rj ( dji ≤≤ ,1 , ji ≠ ) are base relations of the same join 

view, we say that Ri and Rj conflict with each other. Two transactions modifying 
conflicting base relations are said to conflict with each other. We call transaction T a 
“desirable transaction” if it does not conflict with any currently running transaction. 
Consider a particular base relation Ri ( di ≤≤1 ). Suppose 

1s
R , 

2sR , …, and 
wsR  

( 0≥w ) are all the other base relations that conflict with base relation Ri. At any time, 
if either w=0 or all the 0=

usJ  ( wu ≤≤1 ), then a transaction T modifying base 

relation Ri ( di ≤≤1 ) is a desirable transaction. 
We schedule transactions as follows: 

(1) Action 1: For each session Sm ( km ≤≤1 ), as discussed in Section 2.2, whenever 
the continuous load utility has collected n modification operations on a base 
relation Ri ( di ≤≤1 ), we combine these operations into a single transaction T and 
insert transaction T to the end of Qm. Here, n is the pre-defined grouping factor 
that is specified by the user who sets up the continuous load utility. If session Sm 
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is free, we try to schedule a transaction to the RDBMS for execution through 
session Sm. 

(2) Action 2: When some transaction T modifying base relation Ri ( di ≤≤1 ) finishes 
execution and frees session Sm ( km ≤≤1 ), we do the following: 
(a) We decrement Ji by one. 
(b) If Qm is not empty, we schedule a transaction to the RDBMS for execution 

through session Sm. 
(c) Suppose Ji is decremented to zero (so that some waiting transaction possibly 

becomes desirable). For each g ( kg ≤≤1 , mg ≠ ), if session Sg is free and Qg 

is not empty, we try to schedule a transaction to the RDBMS for execution 
through session Sg. 

(3) Action 3: Whenever we try to schedule a transaction to the RDBMS for 
execution through session Sm ( km ≤≤1 ), we do the following: 
(a) We search Qm sequentially until either a desirable transaction T is found or 

all the transactions in Qm have been scanned, whichever comes first.  
(b) In the case that a desirable transaction T modifying base relation Ri 

( di ≤≤1 ) is found, we increment Ji by one and send transaction T to the 
RDBMS for execution. 

The above discussion does not address starvation. There are several starvation 
prevention techniques that can be integrated into the transaction reordering method. 
We list one of them as follows. The idea is to use a special header transaction to 
prevent the first transaction in any Qg from starvation ( kg ≤≤1 ). We keep a pointer r 

whose value is always between 0 and k. r is initialized to 0. If every Qm ( km ≤≤1 ) is 
empty, r=0. At any time, if r=0 and a transaction is inserted into some Qm ( km ≤≤1 ), 
we set r=m. If r=m ( km ≤≤1 ) and the first transaction of Qm leaves Qm for execution, 
r is incremented by one (if m=k, we set r=1). If Qr is empty, we keep incrementing r 
until either Qr is not empty or we discover that every Qm ( km ≤≤1 ) is empty. In the 
later case, we set r=0. We make use of a pre-defined timestamp TS determined by 
application requirements. If pointer r has stayed at some v ( kv ≤≤1 ) longer than TS, 
the first transaction of Qv becomes the header transaction. Whenever we are searching 
for a desirable transaction in some Qm ( km ≤≤1 ) and we find transaction T, if the 
header transaction exists, we ensure that either T is the header transaction or T does 
not conflict with the header transaction. Otherwise transaction T is still not desirable 
and we continue the search.  

4   The Pre-aggregation Method 

A large number of data warehouses have relations with certain attributes representing 
aggregate information (e.g., quantity or amount). In many cases, updates to these 
relations increment or decrement the aggregate attribute values [7]. As discussed in 
Section 2.2, when we load data continuously into these relations, we combine 
multiple modification operations into a single load transaction. This creates an 
opportunity for optimization: by pre-aggregation, we can reduce the number of SQL 
statements in the load transactions on these relations. 
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For example, consider a relation R in the database whose R.b attribute represents 
aggregate information. Suppose the following two modification operations O1 and O2 
are combined into a single load transaction T: 

(1) O1: update R set R.b=R.b+b1 where R.a=v; 
(2) O2: update R set R.b=R.b+b2 where R.a=v; 

If we let b3=b1+b2, then transaction T can be transformed into an equivalent 
transaction T′ that contains only a single SQL statement: 

update R set R.b=R.b+b3 where R.a=v; 

Compared to transaction T, transaction T′ saves one SQL statement. Hence, 
transaction T′ is more efficient. The reason is that executing a SQL statement is much 
more expensive than aggregating the two values b1 and b2 into a single value b3. 

4.1   Algorithm Description 

We call the above method the pre-aggregation method. The general pre-aggregation 
method works in the following way. Consider a base relation R with one or multiple 
“aggregate” attributes. Assume that in the grouping method discussed in Section 2.2, 
all modification operations combined in a single transaction are on the same base 
relation. For each load transaction on relation R, we do the following operations: 

(1) Find all the modification operations that increment/decrement the “aggregate” 
attribute values. Move these modification operations to the beginning of the 
transaction (i.e., ahead of all the other modification operations). Suppose each 
such modification operation can be represented as a pair <a, b>, where a denotes 
the tuple (set of tuples) to be modified, and b denotes the amount that will be 
added to (or subtracted from) the “aggregate” attribute value(s) of the tuple(s). 

(2) Sort these modification operations so that modification operations on the same 
tuple (set of tuples) are adjacent to each other. 

(3) Among these modification operations, combine multiple adjacent modification 
operations <a, b1>, <a, b2>, …, and <a, bm> on the same tuple (set of tuples) into 
a single modification operation <a, c>, where c=b1+b2+…+bm. In the extreme 
case that c=0, the single modification operation <a, c> can be omitted. 

The above procedure can be easily extended to handle the UPSERT/MERGE SQL 
statement [17]. 

The pre-aggregation method has the following advantages: 

(1) The processing load of the database engine is reduced. 
(2) The transaction execution/response time is reduced. This may further improve 

database concurrency, as the period that transactions hold locks is reduced. 

These advantages come from the fact that pre-aggregation outside of the database 
engine followed by executing fewer SQL statements inside the database engine is 
more efficient than executing all the SQL statements inside the database engine. 
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5   Performance Evaluation 

In this section, we describe experiments that were performed on the commercial IBM 
DB2 parallel RDBMS. Our measurements were performed with the database client 
application and server running on an Intel x86 Family 6 Model 5 Stepping 3 
workstation with four 400MHz processors, 1GB main memory, six 8GB disks, and 
running the Microsoft Windows 2000 operating system. We allocated a processor and 
a disk for each data server, so there were at most four data servers on each 
workstation.  

5.1   Experiment Description 

The relations used for the tests model a real world scenario. Customers interact with a 
retailer via phone/web to make a purchase. The purchase involves browsing available 
merchandise items and possibly selecting an item to purchase. The following events 
occur: 

(1) Customer indicates desire for a specific item and event is recorded in the demand 
relation. 

(2) The inventory relation is checked for item availability. 
(3) If the desired item is on hand, a customer order is placed and the inventory 

relation is updated; otherwise a vendor order is placed. 

The schemas of the demand and inventory relations are listed as follows: 

demand (partkey, date, quantity, custkey, comment), 
inventory (partkey, date, quantity, extended_cost, extended_price). 

The underscore indicates the partitioning attributes. For each relation, we built an 
index on the partitioning attribute(s). In our tests, each inventory tuple matches 4 demand 
tuples on the attributes partkey and date. Also, different demand tuples have different 
custkey values. In practice, there can be a large number of different parts. However, for 
any given day, most transactions only focus on a small portion of them (the “active” 
parts). In our testing, we assume that s parts are active today. We only consider today’s 
transactions that are related to these active parts. We believe that our conclusion would 
remain much the same if all transactions related to both active and inactive parts were 
considered. This is because in this case, the number of deadlocks caused by the 
transactions that are related to the active parts would remain much the same. 

Table 1. Test data set 

 number of tuples total size 
demand 8M 910MB 

inventory 2M 77MB 

Suppose that the demand and inventory relations are frequently queried for sales 
forecasting, lost sales analysis, and assortment planning applications, so a join view 
onhand_demand is built as the join result of demand and inventory on the join 
attributes partkey and date: 
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    create join view onhand_demand as select d.partkey, d.date, d.quantity, d.custkey, 
i.quantity 

    from demand d, inventory i where d.partkey=i.partkey and d.date=i.date partitioned on 
d.custkey; 

There are two kinds of modification operations that we used for testing, both of 
which are related to today’s activities: 

(1) O1: Insert one tuple (with today’s date) into the demand relation. This new tuple 
matches 1 inventory tuple on the attributes partkey and date. 

(2) O2: Update one tuple in the inventory relation with a specific partkey value and 
today’s date. 

We created an auxiliary relation for the demand relation that is partitioned on the 
(partkey, date) attributes to change expensive all-node join operations for join view 
maintenance to cheap single-node join operations [13].  

We evaluated the performance of the reordering method and the naive method in 
the following way: 

(1) We tested the largest available hardware configuration with four data server 
nodes. 

(2) We executed a stream of modification operations. A fraction p of these 
modification operations are O1. The other 1-p of the modification operations are 
O2. Each O1 inserts a tuple into the demand relation with a random partkey value. 
Each O2 updates a tuple in the inventory relation with a random partkey value.  

(3) In both the reordering method and the naive method, we only combine 
modification operations on the same base relation into a single transaction. Each 
transaction has the same grouping factor n. 

(4) In the naive method, if a transaction deadlocked and aborted, we automatically 
re-executed it until it committed. 

(5) We performed a concurrency test. We fixed p=50% and the number of active 
parts s=10,000. In both the reordering method and the naive method, we tested 
four cases: k=2, k=4, k=8, and k=16, where k is the number of sessions. In each 
case, we let the grouping factor n vary from 1 to 128. 

5.2   Concurrency Test Results 

The throughput (number of modification operations per second) is an important 
performance metric of the continuous load utility. For the naive method, to see how 
deadlocks influence its performance, we investigated the relationship between the 
throughput and the deadlock probability.  

By definition, when the deadlock probability becomes close to 1, almost every 
transaction will deadlock. Deadlock has the following negative influences on 
throughout: 

(1) Deadlock detection/resolution is a time-consuming process. During this period, 
the deadlocked transactions cannot make any progress. 

(2) The deadlocked transactions will be aborted and re-executed. During re-
execution, these transactions may deadlock again. This wastes system resources.  
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Hence, once the system starts to deadlock, the deadlock problem tends to become worse 
and worse. Eventually, the throughput of the naive method deteriorates significantly.  

We show the throughput of the naive method in Figure 3. For a given number of 
sessions k, when the grouping factor n is small, the throughput of the naive method 
keeps increasing with n. This is because executing a large transaction is more efficient 
than executing a large number of small transactions, as discussed in Section 2.2. (In our 
testing, the performance advantages of having a large grouping factor n are not very 
large. This is mainly due to the fact that due to software restrictions, we could only run 
the database client application and server on the same computer. In this case, the 
overhead per transaction is fairly low. Amortizing such a small overhead with a large n 
cannot bring much benefit.) When n becomes large enough, if the naive method does 
not run into the deadlock problem, the throughput of the naive method approaches a 
constant, where the system resources become fully utilized. The larger k:  

(1) the higher concurrency in the RDBMS and the larger the constant.  
(2) the easier it becomes to achieve full utilization of system resources and the 

smaller n is needed for the throughput to achieve that constant. 

When n becomes too large, the naive method runs into the deadlock problem. The 
larger k, the smaller n is needed for the naive method to run into the deadlock 
problem. Once the deadlock problem occurs, the throughput of the naive method 
deteriorates significantly. Actually, it decreases as n increases. This is because the 
larger n, the more transactions are aborted and re-executed due to deadlock. 
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Fig. 3. Throughput of the naive method 
(concurrency test) 

Fig. 4. Throughput of the reordering method 
(concurrency test) 

For a given n, before the deadlock problem occurs, the throughput of the naive method 
increases with k. This is because the larger k, the higher concurrency in the RDBMS. 
However, when n is large enough (e.g., n=128) and the naive method runs into the 
deadlock problem, due to the extreme overhead of repeated transaction abortion and re-
execution, the throughput of the naive method may decrease as k increases.  

We show the throughput of the reordering method in Figure 4. The general trend of 
the throughput of the reordering method is similar to that of the naive method (before 
the deadlock problem occurs). That is, the throughput of the reordering method 
increases with both n and k. For a given k, as n becomes large, the throughput of the 
reordering method approaches a constant. However, the reordering method never 
deadlocks. For a given k, the throughput of the reordering method keeps approaching 
that constant no matter how large n is. Once the naive method runs into the deadlock 
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problem, the reordering method exhibits great performance advantages over the naive 
method, as the throughput of the naive method in this case deteriorates significantly.  

In both the k=8 case and the k=16 case, when n becomes large enough, the 
throughput of the reordering method approaches (almost) the same constant. This is 
because in these two cases, all data server nodes (e.g., disk I/Os) become fully utilized. 
In our testing, if we had a larger hardware configuration with more data server nodes, 
the constant for the k=16 case would be larger than that for the k=8 case.  

We show the ratio of the throughput of the reordering method to that of the naive 
method in Figure 5. Before the naive method runs into the deadlock problem, the 
throughput of the reordering method is smaller than that of the naive method. This is 

because the reordering method has 
some overhead in performing 
reordering and synchronization (i.e., 
switching from executing one type of 
transactions (say, transactions update-
ing the inventory relation) to 
executing another type of transactions 
(say, transactions updating the 
demand relation)). However, such 
overhead is not significant. In our 
tests, the throughput of the reordering 
method is never lower than 96% of 
that of the naive method. 

When the naive method runs into the deadlock problem, the throughput of the 
reordering method does not drop while the throughput of the naive method is 
significantly worse. In this case, the ratio of the throughput of the reordering method 
to that of the naive method is greater than 1. For example, when n=32, for any k, this 
ratio is at least 1.3. When n=64, for any k, this ratio is at least 1.6. In the extreme case 
when k=16 and n=128, this ratio is 4.9. In general, when the naive method runs into 
the deadlock problem, this ratio increases with both k and n. This is because the larger 
k or n, the easier the transactions deadlock in the naive method. The extreme overhead 
of repeated transaction abortion and re-execution exceeds the benefit of the higher 
concurrency (efficiency) brought by a larger k (n). However, there are two exceptions. 
When n=16 or n=32, the ratio curve for k=16 is below the ratio curve for k=8. This is 
because in these two cases, for the reordering method, all data server nodes (e.g., disk 
I/Os) become fully utilized and the throughput is almost independent of both k and n.  
By comparison, in the naive method, as there are not enough transaction aborts, the 
throughput for the k=16 case is higher than that for the k=8 case. 

Due to space constraints, we put the performance study of the pre-aggregation 
method into the full version of this paper [14]. 

6   Conclusion 

This paper proposes two techniques to improve the efficiency of existing continuous 
load utilities: 
 

Fig. 5. Throughput improvement gained by the 
reordering method (concurrency test) 
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(1) In the presence of join views in an RDBMS, we reorder the data load operations 
to avoid deadlocks.  

(2) We use pre-aggregation to reduce the number of SQL statements in the load 
transactions. 

Our experiments with a commercial system are promising, showing that these two 
techniques can significantly improve throughput for certain workloads.  
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