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ABSTRACT 
Online detection of video clips that present previously unseen 
events in a video stream is still an open challenge to date. For this 
online new event detection (ONED) task, existing studies mainly 
focus on optimizing the detection accuracy instead of the detection 
efficiency. As a result, it is difficult for existing systems to detect 
new events in real time, especially for large-scale video collections 
such as the video content available on the Web. In this paper, we 
propose several scalable techniques to improve the video processing 
speed of a baseline ONED system by orders of magnitude without 
sacrificing much detection accuracy. First, we use text features 
alone to filter out most of the non-new-event clips and to skip those 
expensive but unnecessary steps including image feature extraction 
and image similarity computation. Second, we use a combination of 
indexing and compression methods to speed up text processing. We 
implemented a prototype of our optimized ONED system on top of 
IBM’s System S. The effectiveness of our techniques is evaluated 
on the standard TRECVID 2005 benchmark, which demonstrates 
that our techniques can achieve a 480-fold speedup with detection 
accuracy degraded less than 5%. 

 

Categories and Subject Descriptors  
H.5.1 [Multimedia Information Systems]: video, H.3.3 
[Information Search and Retrieval]: information filtering, H.3.4 
[Systems and Software]: performance evaluation (efficiency and 
effectiveness) 
 

General Terms 
Algorithms, Experimentation, Performance 
 

Keywords 
Online new event detection, large-scale video streaming, real-time 
filtering, efficiency 

 

1. INTRODUCTION 
For streaming video, new event detection (NED) is the task of 

capturing the first video clips that present previously unseen events. 
This task has practical applications in a number of domains such as 
intelligence gathering, financial market analysis, and news analysis, 
where useful information is always buried in a large amount of data 
that grows rapidly with time. Since these applications are often 
time-critical and require fast turn-around, it is highly desirable to 
develop an online new event detection (ONED) system in practice. 
For instance, the US government is building a massive computer 

system that can monitor television broadcasts for anti-terrorism 
purposes [8, 17], and ONED is one of the most essential 
components for this system. Moreover, with the rapidly-increasing 
popularity of user generated content in multimedia sharing Web 
sites such as YouTube [32], ONED will provide a useful 
information filtering and retrieval platform for general users to 
automatically follow interesting stories or to discover new events 
from one or more large video sources. 

 

 
 

 
Figure 1. Events in a video stream. Different shapes correspond 

to different events. Filled shapes represent the clips that need to 

be captured. 

 
About a decade ago, ONED on document streams started to gain 

more and more interest in the text processing community [2, 3, 4, 7, 
14, 16, 18, 19, 22, 25, 29, 30]. As an extension of its text 
counterpart, ONED on video streams has also attracted a growing 
attention in the video processing community by leveraging both text 
and visual information [10, 11, 15, 28, 31]. The basic idea of video 
ONED systems is to compare a new clip with all the clips that 
arrived in the past. If their similarity values based on text and visual 
features are all below a certain threshold, the new clip will be 
predicted as presenting a new event. Previous work [11] has shown 
that additional image information plays an important role in 
identifying the relevant video clips and achieving better topic 
tracking results. However, to our best knowledge, all these efforts 
on video ONED mainly focus on optimizing the detection accuracy 
instead of the detection efficiency. Actually, these methods yield a 
quadratic time complexity with respect to the number of clips. Thus, 
they are not efficient enough to detect new video events in a real-
time environment, especially for large-scale video collections. For 
example, in the intelligence gathering system being developed by 
the US government [8, 17], tens of thousands of television channels 
are required to be monitored simultaneously. For YouTube [32], 
hundreds of thousands of video clips are uploaded every day. In this 
case, it is very difficult for existing ONED systems to handle such 
an aggregated and extremely high-bandwidth video stream in real 
time.  

In this paper, we propose several techniques to address the 
aforementioned efficiency problem and improve the video 
processing rate of an ONED system by orders of magnitude without 
sacrificing much detection accuracy. Since the computation on 
image features is rather time-consuming, we maximize the 
efficiency of our ONED system by delaying the processing of 
image features as much as possible. More specifically, we propose 
the following three optimization steps. First, we use text features 
alone to filter out most of the non-new-event clips, so that the 
expensive image feature extraction step of these clips is waived. 
Then, when comparing the new clip with an old clip, we first 
compute their text similarity and skip the costly image similarity 
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computation if their texts are sufficiently dissimilar. Finally, we use 
a combination of indexing and compression methods to speed up 
text processing. During image similarity computation, we also 
remove the anchor images to improve the detection accuracy of the 
ONED system. 

We implemented a prototype of our proposed ONED system on 
top of IBM’s System S. As described in Wu et al. [13], System S is 
a stream processing middleware that provides an application 
execution environment for processing elements (or applications) 
developed by users to filter and analyze data streams. Our 
evaluation on the standard TRECVID 2005 benchmark [26] shows 
that our techniques can improve the video processing rate by two 
orders of magnitude (reducing the processing time for the entire 
video collection from two hours to 15 seconds) without sacrificing 
much detection accuracy. 

The rest of this paper is organized as follows. Section 2 
introduces a baseline system. Section 3 analyzes the overall 
dissimilarity value computation formula of a clip pair. Section 4 
presents our techniques for improving efficiency. Section 5 
investigates the performance of our techniques. We conclude in 
Section 6. 

 

2. A BASELINE ONED SYSTEM 
Before discussing the proposed techniques in detail, we first 

describe our baseline ONED system in this section. This baseline 
system combines the two most influential information sources 
suggested in the state-of-the-art ONED system reported in Hsu and 
Chang [11], including TF-IDF text features and binary image 
duplicate features. Our improvements presented in the rest of this 
paper are built on this baseline system. 

 

2.1 System Architecture 
Figure 2 shows the architecture of the baseline ONED system, 

where video streams can come from one or more multi-lingual 
video channels. These streams are then partitioned into shots. Each 
shot is about several (e.g., three) seconds long and defined as a 
single continuous camera operation without an editor's cut, fade, or 
dissolve. For each shot, the feature extraction module both extracts 
image features from its keyframe, and obtains the English text 
features by using automatic speech recognition followed by 
machine translation, so that the original video clips in different 
languages become comparable. Then the ONED component uses 
the text and image features to identify the new-event shots that 
present previously unseen events, and sends these shots to a 
consumer, who can be either a person or a computer program that 
does deeper analysis. (Note that, although we use video shots as the 
basic NED unit in this work, our following analysis is not relying on 
this choice and thus they are universally applicable to other units 
such as news story and so on.) 

 

 
 
 
 
 
 
Figure 2. The baseline online new event detection system. 

 
 
 

2.2 Image and Text Features 
The baseline system uses the traditional tf⋅idf term weights as the 

text features [23]. Since each shot S is too short to contain enough 
text for computing meaningful text similarity (see Section 2.3), we 
extend the text of S with both the texts of the previous m=5 shots 
and the texts of the next m shots [11]. (All these shots come from 
the same channel.) Following the convention of information 
retrieval [23], we define a term as a unique word and vocabulary as 
the set of all the unique words. For each term t in the vocabulary 
and a shot S in a shot set E, the baseline system uses the following 
formulas to compute the term weight:  
(f1) term frequency (tf) weight )1ln( += tfwtf

, 

(f2) inverse document frequency (idf) weight 

 )]5.0/()1ln[( ++= dfNwidf
, 

(f3) term (tf⋅idf) weight 
idftft www ×= . 

where tf is term t’s frequency (i.e., number of occurrences) in the 
text of S, N is the total number of shots in E, and df is the number of 
shots in E whose texts contain t. 

In practice, there are many different ways to extract image 
features that are (almost equally) suitable for detecting near-
duplicate images. Our current baseline system uses the color 
moment feature described in Campbell et al. [6], where the 

localized color statistics are extracted from a 3×3 grid of the 
keyframe image, and the first three moments for each grid in Lab 
color space are used to construct the n=81 image features fi 
( ni ≤≤1 ) of S [6]. 

The IBM TALES (Translingual Automatic Language 
Exploitation) system [12, 20] can use computer clusters to 
perform both image and text feature extraction on video streams 
from thousands of channels simultaneously with a delay of about 

four minutes − almost in real time. Therefore, in the rest of this 
paper, we focus on the ONED components that existing systems 
cannot complete in real time. 

 

2.3 Dissimilarity Value Computation 
To detect new-event shots in a video ONED system, we need to 

compute the dissimilarity between two shots S1 and S2 using their 
text and image features. The smaller the dissimilarity is, the more 
likely S1 and S2 are to present the same event. We show the 
dissimilarity computation method as follows. First, the text 
dissimilarity value is obtained using (f4) and (f5):  
(f4) normalized text dot product value 
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(f5) text dissimilarity value  

2121 ,, _1_ SSSS dotprodtextdissimtext −= , 

where 
jtw ,
 (j=1, 2) is the term weight for Sj. Notation t∈Sj means 

that term t appears in the text of Sj. As mentioned in Braun and 
Kaneshiro [5], formulas (f1), (f2), (f3), (f4), and (f5) achieved the 
best detection accuracy in the latest TDT5 competition [25] for 
ONED on document streams. Next, we obtain the image 
dissimilarity value using (f6) and (f7) [11]: 

(f6) normalized image dissimilarity value 
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(f7) binarized image dissimilarity value  

21 ,__ SSdissimimagebin }_{
2,1 imageSS TdissimimageI

>
= , 

where 
jif ,
 (j=1, 2) is the image feature for Sj, Timage is a threshold 

for binarizing the image dissimilarity, and I is the indicator function. 
That is, the binarized image dissimilarity is 1 if the normalized 
image dissimilarity is larger than Timage, otherwise it is 0. Finally, 
the overall dissimilarity value of S1 and S2 is obtained as a linear 
combination of the text dissimilarity value and the binarized image 
dissimilarity value according to (f8): 

(f8) 
2121 ,, __ SSSS dissimtextdissimoverall =  

21 ,__ SSimage dissimimagebinw ×+ , 

where wimage is the linear weight for the visual modality. As 
mentioned in Hsu and Chang [11], such a linear fusion model is 
one of the most effective approaches to fuse visual and text 
modalities in video ONED systems.  

 

2.4 Detailed Processing Steps 
In this section, we present the details of the baseline system. We 

follow the typical pre-processing operations in information retrieval 
for the text of each shot, i.e., (1) stemming is performed using the 
standard Porter stemmer [21], and (2) stopwords are removed by 
using the standard SMART stopword list [24]. Note that, the shot 
set E keeps changing as new shots continue to arrive in a video 
streaming environment. As mentioned in Braun and Kaneshiro [5], 
for ONED purpose, the computation of the tf and idf weights can be 
based on a static shot set E' that has characteristics similar to E. For 
a term that does not exist in the text of E', its df is assumed as one. 
Compared to the method that incrementally updates the statistics N 
and df, this static method has a much lower overhead, while the 
detection accuracy remains roughly the same [5]. 

When a shot S arrives, S is first pre-processed and its features are 
saved in memory. Then S is compared with all the old shots that 
arrived in the past except for the L=50 shots that just arrived from 
the same channel before S, as those L shots are likely to be in the 
same news story segment as S. If all the overall dissimilarity values 
between S and the old shots are above a threshold T, S is predicted 
to be a new-event shot. Otherwise if the overall dissimilarity value 
between S and an old shot Sold is below T, S is predicted to present 
the same event as Sold. 

 

2.5 Advantages of Using both Text and Image 

Features 
The experiments presented by Hsu and Chang [11] have shown 

that although text features are the most effective component in 
detecting new events, visual near-duplicates can still consistently 
enhance the detection accuracy of the text baseline. To be more 
specific, using both text and image features can improve the 
detection accuracy of the text baseline by up to 25%. This can be 
explained by the fact that similar images in two shots often 
provide evidence that they present the same event, even if their 
associated speech transcript may not be sufficiently similar due to 
paraphrasing or speech recognition/translation errors [10].  
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Keyframe images of the two shots in the first 

example, which is about a Korean violinist’s performance in 

Toronto. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Keyframe images of the two shots in the second 

example, which is about Chinese president Jintao Hu’s visit of 

Argentina. 
 

To illustrate this issue, we provide two examples in Figure 3 
and Figure 4. Both examples come from the TRECVID 2005 

 

 

 

 

(a) Keyframe image of the first shot, which was 
broadcasted at 12am on Nov. 18, 2004. 

(b) Keyframe image of the second shot, which was 
broadcasted at 7pm on Nov. 18, 2004. 

(a) Keyframe image of the first shot, which was broadcasted 
at 7pm on Nov. 17, 2004. 

(b) Keyframe image of the second shot, which was 
broadcasted at 12am on Nov. 19, 2004. 



 

video collection [26], each of which contains two shots that 
present the same event but were broadcasted at different times. 
The first example is about a Korean violinist’s performance in 
Toronto. The second example is about Chinese president Jintao 
Hu’s visit to Argentina. In both examples, when we use the 
default parameter settings in the baseline system, text features by 
themselves cannot correctly detect that these two shots are 
presenting the same event. (The threshold for the normalized text 
dot product value is Twimage −+1  when only text features are 

used, as described in Section 3.) However, by considering the 
additional evidence from image features, the system can produce 
the correct predictions.  
 

3. ANALYSIS OF THE OVERALL 

DISSIMILARITY FORMULA 
To provide more insight on the overall dissimilarity value, we 

rewrite the original dissimilarity formula (f8) into an equivalent 
form that treats text and image features asymmetrically. We further 
analyze this alternative form to show how the NED process can be 
more efficient. To begin, we substitute the formulas (f5) and (f7) 
into (f8) and rewrite the overall dissimilarity of S1 and S2 to be 
(f9) 

2121 ,, _1_ SSSS dotprodtextdissimoverall −=  

}_{
2,1 imageSS Tdissimimageimage Iw

>
×+ . 

We analyze (f9) by considering two possible cases, while either 
case has two sub-cases: 
(1)  When the keyframes of S1 and S2 are near-duplicate images, 

i.e., 
imageSS Tdissimimage ≤

21 ,_ , we have 

2121 ,, _1_ SSSS dotprodtextdissimoverall −= . Thus, we can 

predict that  
(i)  Sub-case 1: S1 and S2 present the same event if 

21 ,_1 SSdotprodtextT <− , and  

(ii)  Sub-case 2: S1 and S2 present different events if 

21 ,_1 SSdotprodtextT ≥− . 

(2)  When the keyframes of S1 and S2 are not near-duplicate images, 
i.e., 

imageSS Tdissimimage >
21 ,_ , we have 

imageSSSS wdotprodtextdissimoverall +−=
2121 ,, _1_ . Thus, we 

can predict that  
(i) Sub-case 3: S1 and S2 present the same event if 

21 ,_1 SSimage dotprodtextTw <−+ , and  

(ii) Sub-case 4: S1 and S2 present different events if 

21 ,_1 SSimage dotprodtextTw ≥−+ . 

Figure 5 illustrates the above four sub-cases. 
 

 
 
 

                              T−1      Twimage −+1  

 
Figure 5. Graphical illustration of the above four sub-cases. 

 
For any two shots S1 and S2, it seems that we must use both their 

text/image features and check all of the above four sub-cases to 
determine whether they present the same event. However, this turns 
to be overkill in many cases. By treating text and image 

asymmetrically, we can greatly simplify the NED operation by 
rewriting the above four sub-cases into the following equivalent 
three cases (see Figure 5), among which only Case 2 has two sub-
cases: 
(1) Case 1: 

21 ,_1 SSdotprodtextT ≥− . In this case, we predict that 

S1 and S2 present different events, irrespective of the 
normalized image dissimilarity 

21 ,_ SSdissimimage . 

(2) Case 2: TwdotprodtextT imageSS −+≤<− 1_1
21 ,

. In this 

case, there are two sub-cases: 
(i)   Sub-case 1: If 

imageSS Tdissimimage ≤
21 ,_ , we predict 

that S1 and S2 present the same event. 
(ii) Sub-case 2: If 

imageSS Tdissimimage >
21 ,_ , we predict 

that S1 and S2 present different events. 
(3) Case 3: 

21 ,_1 SSimage dotprodtextTw <−+ . In this case, we 

predict that S1 and S2 present the same event, irrespective of 
the normalized image dissimilarity 

21 ,_ SSdissimimage . 

In the above cases, both Case 1 and Case 3 only require the text 
features of shots S1 and S2. Hence, for ONED purpose, text features 
and image features can be treated asymmetrically, i.e., we can use 
text features as a pre-filter to filter out most of the unnecessary 
operations on image features. This can bring a huge benefit to the 
detection efficiency, because the text similarities of most shot pairs 
are low [18], and hence Case 1 is the most frequently occurring case. 
On the other hand, it is undesirable to process image features before 
text features because using image features alone cannot determine 
whether S1 and S2 present the same event [11].  

 

4. TECHNIQUES FOR IMPROVING 

EFFICIENCY 
In this section, we describe our techniques for improving the 

efficiency of the ONED system based on the analysis of Section 3. 
We first give a high-level overview of our optimized ONED 
system, and then elaborate on the individual techniques.  

 

4.1 Architecture of the Optimized System 
 
 
 
 
 
 

 
 
 
 
 

Figure 6. Our optimized online new event detection system. 
 

Figure 6 shows the architecture of our optimized ONED system. 
Video streams from one or more channels are divided into shots. 
For each shot S, the text features are extracted by using speech 
recognition as well as machine translation techniques. The text 
features are used to identify and remove the non-news shots. The 
remaining news shots are fed to the ONED component, where 
new-event shots are identified and sent to the consumer. During 
the ONED process, we extract the image features of S only when 
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it is necessary to determine whether the keyframe of S is an 
anchor image and to compute the image similarities between S 
and the old shots. Figure 7 shows the high-level description of the 
algorithm used in the ONED component. The details of this 
algorithm are explained in Sections 4.3-4.6. 
 

Image_feature_extraction_flag=FALSE; /* whether image 
features have been extracted for the new shot S */ 

First_story_shot_flag=TRUE; // whether S is a new-event 
shot 

Use the pre-filtering method described in Section 4.6 to 
identify the old shots that need to be compared with S. For 
each such old shot Sold { 

Compute 
oldSSdotprodtext ,_ ; 

If (
oldSSdotprodtextT ,_1 ≥− ) /* Case 1*/ 

Predict that S and Sold present different events; 
Else if (

oldSSimage dotprodtextTw ,_1 <−+ ) { // Case 3 

Predict that S and Sold present the same event; 
First_story_shot_flag=FALSE; 
Exit the for loop; 

} 
Else if ( TwdotprodtextT imageSS old

−+≤<− 1_1 ,
) { // Case 2 

If (!Image_feature_extraction_flag) { 
Extract image features for S; 
Determine whether S is an anchor shot; 
Image_feature_extraction_flag=TRUE; 

} 
If ((S is an anchor shot) || (Sold is an anchor shot))  

1_ , += imageSS Tdissimimage
old

; /* treat the keyframes 

of S and Sold to be dissimilar */ 
Else compute 

oldSSdissimimage ,_ ; 

If (
imageSS Tdissimimage

old
≤,_ ) { /* Sub-case 1 */ 

Predict that S and Sold present the same event; 
First_story_shot_flag=FALSE; 
Exit the for loop; 

} 
Else if (

imageSS Tdissimimage
old

>,_ ) /* Sub-case 2 */  

Predict that S and Sold present different events; 
} /* end of Case 2 */ 

} /* end of the for loop */  
If (First_story_shot_flag) { 

If (!Image_feature_extraction_flag) { 
Extract image features for S; 
Determine whether S is an anchor shot; 

} 
Save S’s information in memory; 
Send S to the consumer of the ONED system;  

} 

 

Figure 7. High-level description of the algorithm used in the 

online new event detection component. 

 

4.2 Detecting and Removing Non-News Shots 
In broadcast videos, non-news video segments (e.g., commercials, 

TV shows) are usually mixed with news stories. For ONED purpose, 
non-news shots should not be treated as new-event shots, even if no 
similar shots have appeared before. Removing these shots can not 

only reduce the number of shots that need to be processed by the 
ONED component, but also improve the efficiency and the 
detection accuracy of the ONED system.  

To this end, a simple method is to manually specify the regular 
time periods when news videos are broadcasted. However, such a 
method is not scalable to tens of thousands of channels, as is the 
typical case that an ONED system needs to handle [8, 17]. 
Moreover, our purpose here is to remove all the non-news shots 
rather than commercials only [1, 9, 10]. As an alternative, we apply 
a simple text-based method to remove the non-news shots. Its basic 
idea is that non-news shots (e.g., commercials) often have larger 
background noise than news shots, which makes it difficult for the 
speech recognizer to recognize the text in the non-news video. Also, 
in news shots the anchor person tends to talk at a faster pace than 
non-news shots (e.g., TV shows). Based on these two properties, we 
predict that a shot S is not news if the recognized text of S contains 
fewer than J distinct terms where J is a predetermined constant. Our 
experiments in Section 5.1 show that a reasonable choice for J is 
usually between 50 and 80. Although this method is rather simple, it 
is highly accurate and has a low overhead that helps to improve the 
efficiency of the ONED system. Also, the expensive image feature 
extraction step is no longer needed for the dropped non-news shots.  
 

4.3 Delaying the Processing of Image Features 
As mentioned in Section 3, it is desirable to delay the processing 

of image features as much as possible. As shown in Figure 6 and 
Figure 7, when processing a new shot S, we first extract its text 
features but not its image features. When comparing S with an old 
shot Sold, we first compute their normalized text dot product instead 
of their image dissimilarity. If 

oldSSdotprodtextT ,_1 ≥−  (Case 1 

of Section 3), we predict that S and Sold present different events. If 

oldSSimage dotprodtextTw ,_1 <−+  (Case 3), we predict that S 

and Sold present the same event. In both Case 1 and Case 3, we skip 
the costly but unnecessary image dissimilarity computation step. 
Only in Case 2 (when TwdotprodtextT imageSS old

−+≤<− 1_1 ,
), we 

need to compute the image dissimilarity. Since the text dot products 
of most pairs of shots are low [18], Case 2 usually occurs much less 
frequently than Case 1 and Case 3. Consequently, most image 
dissimilarity computations can be saved. 

Moreover, when we make the prediction that a new shot is not a 
new event, if all the compared old shots belong to either Case 1 or 
Case 3, we can skip the expensive image feature extraction step. In 
other words, we only need to extract image features for a new shot S 
when either we predict that S is a new-event shot or we have 

TwdotprodtextT imageSS old
−+≤<− 1_1 ,

 for some Sold. In practice, 

in the presence of a large number of channels, most shots will be 
presenting existing events due to the repeated mention of the same 
event both across different channels and within the same channel 
[25, 18]. Also, Case 1 and Case 3 occur much more frequently than 
Case 2. Thus, we can skip the expensive image feature extraction 
step for a large fraction of the shots. 

 

4.4 Detecting Anchor Images 
In news videos, news stories are typically broadcasted by 

anchor persons. Figure 8 shows an image example of an anchor 
person from the CNN news. Two news shots from the same 
channel often have keyframes with the same anchor person, but 
present different events. However, in this case, the similar 
keyframes should not be treated as a hint that these two shots 



 

present the same event. To take this factor into account, we use 
the method described in Campbell et al. [6] to detect which 
keyframes are anchor images based on Support Vector Machines 
and low-level color correlogram features. When comparing two 
shots, we set the binarized image dissimilarity to be 1 if the 
keyframe of either shot is an anchor image. That is to say, we treat 
their keyframes to be dissimilar if either of them is an anchor shot. 
This can reduce the effect of the false evidence of anchor shots on 
the detection accuracy of the ONED system. 
 

 
 
 

 
 
 
 
 
 
 

 
Figure 8. A keyframe image example of an anchor person. 

 

4.5 Reducing the Amount of Saved 

Information 
Typically, the discussion of an event only lasts for a finite 

amount of time in news videos, and a new shot is unlikely to present 
the same event as a shot that is fairly old. Hence, we only keep in 
memory the information of those old shots that are within a sliding 
window of the last W days. Here W is a predetermined constant. The 
information kept for a shot S includes both its text features and its 
image features (see Section 4.6 for details) but not its video images, 
as only these features are needed for comparing S with future shots. 
Once an old shot expires from the sliding window, its information is 
thrown away immediately. 

Typically, an event is presented by a large number of shots. Only 
one of these shots is the new-event shot. All the shots that present 
the same event tend to be similar to each other. Therefore, it is 
overkill to compare a new shot with all the old shots that present the 
same event. Instead, we only keep the information of the new-event 
shots. When a new shot S arrives, S is compared with the old new-
event shots. If S is predicted to be a new-event shot that presents a 
new event, S’s information is saved in memory. Otherwise S is 
discarded. 

All the terms in the text of a shot can be sorted in descending 
order of their term weights. In general, those terms with larger 
weights are more important for NED. Hence, for each saved shot, 
we keep only the top-K terms with the largest weights rather than all 
the terms. Here K is a predetermined constant. Only the top-K terms 
are used to compute the text dot product. 

 

4.6 Pre-filtering 
To reduce the overhead of computing dissimilarity values, a pre-

filtering technique is developed by using a low-overhead method to 
quickly filter out most of the shots that present different events from 
the new shot. In this way, we can substantially reduce the number of 
dissimilarity values that need to be computed. Consider two shots S1 
and S2. If S1 and S2 present the same event, the top terms of their 
texts tend to have some overlap. That is, some term(s) is likely to 
appear in the top terms of both S1’s text and S2’s text. Thus, these 

top terms can be used to quickly filter out unnecessary 
computations. More specifically, we have a predetermined constant 

M (M≤K). Before computing the text dot product of S1 and S2, we 
first check whether the top-M terms of S1 and S2 intersect. If so, we 
continue to compute the text dot product of S1 and S2. Otherwise, 
we predict that S1 and S2 present different events and do not 
compute their text dot product.  

We build indices to avoid unnecessary processing of the shots 
that have been pre-filtered out. Each term in the vocabulary has a 
term id. Each shot has a shot id corresponding to its arrival time. 
Two indices are kept for all the saved shots: a forward index and an 
inverted index. The forward index has an entry for each saved shot. 
These entries are sorted in descending order of shots’ arrival time. 
This allows us to quickly identify and drop the information of those 
shots that have expired from the sliding window of the last W days 
(see Section 4.5). For each saved shot, the corresponding entry 
keeps both the image features and the top-K terms associated with 
their term weights. These terms are sorted in ascending order of 
their term ids. Consequently, the text dot product of two shots can 
be computed through an efficient “merge” of their term lists. 

For each saved shot, only its top-M terms are tracked by the 
inverted index. The inverted index has an entry for each term in the 
vocabulary. The entry for term t is a posting (linked) list of the shot 
ids of all the shots whose top-M terms contain t. These shot ids are 
sorted in descending order so that merging posting lists can be done 
efficiently. When a new shot S arrives, we only scan the M posting 
lists that correspond to S’s top-M terms. These M posting lists are 
merged together to find the shot ids of the candidate shots that may 
present the same event as S. This is the pre-filtering technique 
described above. Then for each such candidate shot Sc, the forward 
index is used to compute the text dot product and the image 
dissimilarity (if needed) of S and Sc. This computation is performed 
at the same time that candidate shot ids are generated. In this way, if 
the overall dissimilarity value of S and an old shot is smaller than 
the threshold T, S is predicted to be a non-new-event shot and the 
processing for S stops immediately. Otherwise if S is predicted to be 
a new-event shot, S’s information can be easily added into the 
inverted index, as S’s shot id is larger than the shot ids of the saved 
shots. 
 

5. PERFORMANCE EVALUATION 
We implemented a prototype of our optimized ONED system on 

top of IBM’s System S [13]. Our implementation uses two 
processing elements (PEs) that consume and produce streams of 
data through input and output ports, respectively. One PE produces 
the video stream and sends it to another PE that implements ONED.  

To evaluate the performance of the proposed system, we use 
the largest available video retrieval benchmark, TRECVID 2005 
[26]. This benchmark includes 171 hours of videos from six 
channels in three languages (Arabic, English, and Chinese). The 
time span is from October 30 to December 1, 2004. Our 
measurements were performed on two computers, each with one 
1.6GHz processor, 1GB main memory, one 75GB disk, and running 
Linux. 

The default parameters in our ONED system are as follows: 
T=0.9 (the threshold for the overall dissimilarity value), wimage=0.1 
(the weight for the visual modality), Timage=0.2 (the threshold value 
for image dissimilarity), J=70 (the threshold of the number of 
distinct terms for determining whether a shot is news), W=29 (the 
sliding window size in days), K=250 (the number of top terms kept 
in each saved shot), and M=10 (the number of top terms used for 
pre-filtering purpose).  

 



 

For ONED on text document streams, Luo et al. [18] has shown 
that those techniques proposed in Sections 4.5 and 4.6 can 
significantly improve the processing rate of the ONED system 
without sacrificing much detection accuracy. In our experiments 
on the TRECVID 2005 collection, we also found that the output 
results of the ONED system differ by only 5% when those 
techniques are used and when they are not used. This also 
confirms that those techniques do not have much impact on the 
detection accuracy of the ONED system. Moreover, Luo et al. [18] 
showed that the default values of the parameters W, K, and M are 
reasonable in detecting new events for news streams. Therefore, 
in this section, we focus on evaluating the techniques described in 
Sections 4.2~4.4 by varying the values of the parameters T, Wimage, 
Timage, and J. Among these four parameters, T, Wimage, and Timage 
are also needed in the baseline system. 

At present, there is no publicly available benchmark for video 
ONED with official annotation. It is difficult to label the ground 
truth for ONED on the TRECVID 2005 video collection by 
ourselves, as the labeling procedure used by the organizations 
responsible for creating benchmarks typically involves two steps 
[27]: (1) running multiple different systems on the video set to 
generate the candidate results; (2) hiring professional analysts to 
make the judgment. Nevertheless, this issue should not become a 
problem in the evaluation because we mainly focus on improving 
the detection efficiency. Moreover, our technique of delaying the 
processing of image features (Section 4.3) does not affect the 
detection accuracy of the ONED system. It is also easy to see that 
our techniques of removing non-news shots (Section 4.2) and 
handling anchor images (Section 4.4) can improve the detection 
accuracy of the ONED system, as it is widely known that similar 
techniques can improve the accuracy of video retrieval [6]. 
Therefore, in our experiments, we focus on the processing speed 
of the ONED system rather than on the detection accuracy.  

 

5.1 Justification for Some of the Default 

Parameters 
In this section, we provide some justification for the default 

parameters T=0.9, wimage=0.1, and Timage=0.2. Our experiments in 
Section 5.2 show that the effectiveness of our techniques is 
insensitive to these exact values within a fairly large range. 

We first consider the default parameter of Timage=0.2. We 
manually verify that by choosing this parameter and using the n=81 
color moments described in Section 2.2 as image features, the 
following two conditions are satisfied. First, for any two shots S1 
and S2, if their keyframe images are judged to be similar according 
to formula (f7) in Section 2.3, these images are indeed similar and 
provide clue that S1 and S2 present the same event, as shown in 
Figure 4 and Figure 5. This ensures that Timage is not too large. 
Second, we have a sufficient number of reasonably similar 
keyframe image pairs among all the shots. Note that if Timage is too 
small, we are basically only allowing identical images to be judged 
as similar images and hence the image features have almost no 
effect in the overall dissimilarity value computation formula (f8), 
which is undesirable [11]. In our experiments, we find that within 
the range [0.15, 0.25], the exact value of Timage does not have much 
impact on the performance of the ONED system.  

Next, we discuss the other two default parameters T=0.9 and 
wimage=0.1. Consider a special case where the keyframe images of 
the shots are all dissimilar to each other. In this situation, we are 
going back to the traditional case of ONED on document streams 
[18], where image features are unavailable and we can only use text 

features. Then according to formula (f9) in Section 3, for any two 

shots, 
imagewT +−1  is the threshold value for using their 

normalized text dot product value to determine whether they present 
the same event. As has been shown in Braun and Kaneshiro [5] for 
ONED on document streams, the optimal threshold value for the 
text dot product value is around 0.2. Thus, we should have 

2.01 =+− imagewT  in our video ONED system. If we let the image 

contribution wimage be half of that threshold value, we have 

1.01 ==− imagewT . That is, T=0.9 and wimage=0.1. 

 

5.2 Results and Sensitivity Analysis 
In this section, we report the efficiency of the proposed 

algorithm and carry out a series of sensitivity analysis to evaluate 
the impact of parameters on the performance of the ONED system. 
The TRECVID 2005 collection was originally used as the 
benchmark for video retrieval rather than ONED. We found that 
its size is too small to evaluate ONED systems appropriately and 
results in certain undesirable effects. So we make the following 
adjustments to compensate for these undesirable effects. 

First, when we measure the system throughput and the total 
video set processing time, we do not include the time spent on 
extracting text and image features. Instead, we measure the 
feature extraction time separately. This is because the time spent 
on extracting text and image features is proportional to the 
number of shots processed, while the time spent on the ONED 
component is quadratic with respect to the number of shots 
processed, which is much more expensive in a typical ONED 
situation where tens of thousands of channels are handled 
simultaneously [8, 17]. 

Second, due to the small size of the TRECVID 2005 video set, 
few shots there have the chance of getting repeated. Consequently, 
most news shots there (a rough estimate is about 65%) are predicted 
as new-event shots. However, in a large scale ONED environment, 
we would expect most news shots to be non-new-event ones. For 
example, TDT5 [25] is the standard benchmark for ONED on text 
document streams. It has one hundred times more (voice) text than 
the TRECVID 2005 video set, and a rough estimate is that about 
85% of all the documents in that benchmark are non-new-event 
documents [18]. To compensate this effect, we only consider non-
new-event shots when measuring the percentage of news shots 
whose image feature extraction steps are saved. If this percentage is 
large, we would expect the corresponding percentage for all the 
news shots (i.e., both new-event shots and non-new-event shots) to 
be large in a typical video ONED scenario. 

Our main results are as follows. Using the proposed techniques 
for improving efficiency, it takes 15 seconds to process all the 
shots in the TRECVID 2005 video set. In contrast, the baseline 
system described in Section 2 uses 7,203 seconds (two hours) to 
process the same shots. Compared to the baseline, our techniques 
improve the efficiency by two orders of magnitude (480 times). In 
the following experiments, we varied the value of each parameter 
while keeping the other parameters fixed in order to analyze the 
sensitivity of their value settings. 
 

Table 1. Speed up ratio gained by our techniques. 

processing time of baseline system 7203 seconds 

processing time of optimized system  15 seconds 

speed up ratio 480 times 

 



 

Figure 9. Precision vs. J . 
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Figure 10. Recall vs. J . 
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Figure 11. Percentage of 

identified non-news shots vs. J . 
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Figure 12. System throughput vs. J . 
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Figure 13. Percentage of saved image 

dissimilarity computations vs. T . 
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J (the threshold of the number of distinct terms for determining 

whether a shot is news) 
The first experiment concerns J, the threshold of the number of 

distinct terms for determining whether a shot is news. We varied J 
from 40 to 100. To test the identification accuracy of our method 
described in Section 4.2, we randomly selected one hour’s video 
sequence in the entire TRECVID 2005 video set and manually 
labeled the non-news shots and the news shots. (We also tested a 
few other video sequences in the TRECVID 2005 video set and the 
results are similar.) Figures 9 and 10 show the impact of J on both 
the precision and recall of identifying non-news shots and news 
shots. When J is too large or too small, either the precision or the 
recall drops significantly. A good value for J is between 50 and 80, 
where we can obtain both good precision and good recall. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 11 shows the impact of J on the percentage of identified 
non-news shots in the entire TRECVID 2005 video set. Figure 12 
shows the impact of J on the throughput of our ONED system. The 
larger the J, the more shots are identified and dropped as non-news 
shots and hence the higher the processing rate of the ONED system. 
In the default case that J=70, 75% of all the shots are identified and 
dropped as non-news shots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
T (threshold for the overall dissimilarity value) 

 The second experiment concerns T, the threshold for the overall 
dissimilarity value. We varied T from 0.85 to 0.95. As mentioned in 
Section 4.3, delaying the processing of image features can save 
many unnecessary image dissimilarity computations. Figure 13 
shows the impact of T on the percentage of saved image 
dissimilarity computations. Most shot pairs present different events 
and have small normalized text dot product values. That is, most 
shot comparisons fall into Case 1 of Section 3, where 

oldSSdotprodtextT ,_1 ≥− . The larger the T, the fewer shot pairs 

fall into Case 1. Thus, the percentage of saved image dissimilarity 
computations decreases as T increases. In the default case that 
T=0.9 and J=70, 77% of all the image dissimilarity computations 
are saved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

wimage (weight for the visual modality) 
 The third experiment concerns wimage, the weight for the visual 

modality. We varied wimage from 0.05 to 0.15. As mentioned in 
Section 4.3, delaying the processing of image features can waive the 
expensive image feature extraction step for a large number of shots. 



 

Figure 15. System throughput vs. T image . 
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Figure 14. Percentage of non-new-event news 

shots whose image feature extraction steps are 

saved vs. w image . 
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Figure 14 shows the impact of wimage on the percentage of non-new-
event news shots whose image feature extraction steps are saved. 
The larger the wimage, the fewer shot pairs fall into Case 3 of Section 

3 (
oldSSimage dotprodtextTw ,_1 <−+ ), and the fewer image 

feature extraction steps can be saved. Consequently, the percentage 
of non-new-event news shots whose image feature extraction steps 
are saved decreases as wimage increases. In the default case that 
wimage=0.1 and J=70, 45% of all the image feature extraction steps 
are saved for the non-new-event news shots.  

 
On our computer, for each 3-second shot, it takes about 2 

seconds to extract the text features by performing speech 
recognition followed by machine translation, and it takes another 
2 seconds to extract the image features. Hence, in the case that 
75% of all the shots are dropped as non-news shots, 85% of all the 
news shots are identified as non-new-event shots, and 45% of the 
image feature extraction steps are skipped for these non-new-

event shots, we can save about 85% (75%+25%×85%×45%) of all 
the image feature extraction steps, or equivalently 40% of the total 
overhead on text and image feature extraction for all the shots. 

 

Timage (threshold value for image dissimilarity) 
The fourth experiment concerns Timage, the threshold value for 

image dissimilarity. We varied Timage from 0.1 to 0.3. Figure 15 
shows the impact of Timage on the throughput of our ONED system. 
For each keyframe image of a shot, very few (if any) keyframe 
images of the other shots are similar to it. As long as Timage is within 

a reasonable range, these images can pass the image similarity 
filtering condition 

imageSS Tdissimimage ≤
21 ,_  almost irrespective 

of the concrete value of Timage. Consequently, Timage has almost no 
effect on the throughput of our ONED system.  
 

6. CONCLUSION 
This paper proposes several techniques for improving the 

efficiency of online new event detection on video streams so that 
video ONED becomes real-time. We implemented a prototype of 
our framework on top of a stream processing middleware. Our 
experiments with the standard TRECVID 2005 benchmark show 
that the proposed techniques can improve the video processing rate 
by two orders of magnitude without sacrificing much detection 
accuracy (less than 5%). Also, the effectiveness of our techniques is 
insensitive to the choice of the exact parameter values. 
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