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Abstract. Recently, progress indicators have been proposed for SQL queries in 
RDBMSs. All previously proposed progress indicators consider each query in 
isolation, ignoring the impact simultaneously running queries have on each 
other’s performance. In this paper, we explore a multi-query progress indicator, 
which explicitly considers concurrently running queries and even queries 
predicted to arrive in the future when producing its estimates. We demonstrate 
that multi-query progress indicators can provide more accurate estimates than 
single-query progress indicators. Moreover, we extend the use of progress 
indicators beyond being a GUI tool and show how to apply multi-query progress 
indicators to workload management. We report on an initial implementation of a 
multi-query progress indicator in PostgreSQL and experiments with its use both 
for estimating remaining query execution time and for workload management. 

1   Introduction 

Recently, [4, 6, 11, 12] proposed progress indicators (PIs) for SQL queries in 
RDBMSs. For a SQL query, a PI keeps track of the work completed and continuously 
estimates the remaining query execution time. [4, 6, 11, 12] proposed a set of 
techniques to implement single-query PIs. By single-query, we mean that in 
estimating the progress of a SQL query Q, these estimators only consider the current 
load and the progress of query Q itself, ignoring the effect of concurrently running 
queries and future queries. The main contributions of this paper are the first proposal 
of a multi-query PI, the exploration of its performance as compared to single-query 
PIs, and an application of the multi-query PI to problems arising in workload 
management. 

Clearly there are cases where a single-query PI gives bad estimates. For example, if 
one query is substantially impeding the progress of another, but the first query is 
about to finish, a single-query PI will grossly overestimate the remaining execution 
time of the second query. Avoiding such behavior was our original motivation for 
developing multi-query PIs.  

When estimating the remaining execution time for a query Q, a multi-query PI 
considers Q, other concurrently running queries, and, if available, predictions about 
new queries that can be expected to arrive while Q is running. As multi-query PIs 
consider more information than single-query PIs, they can provide more accurate 
estimates. A reasonable concern is whether we are depending on accurate predictions 
of the future. The answer is no – our multi-query PIs continuously monitor the system 
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and adjust their predictions as time progresses. The closer the predictions about future 
queries are to reality, the better the initial estimates – but eventually the PIs will detect 
and correct their estimates even in situations in which their initial estimates were 
based on highly inaccurate information about the future. 

In the published literature, SQL PIs have been proposed as a graphical user interface 
(GUI) tool [6, 11]. In this paper, we also present a new motivation for considering 
multi-query PIs: workload management. We formulate several workload management 
problems and show how to solve them by using information provided by multi-query 
PIs. Traditionally, workload management is static in that once workload management 
decisions are made, they are not changed. In this paper, we exploit multi-query PIs to 
facilitate more dynamic workload management. PIs are used to continuously monitor 
the system status. If the system status differs significantly from what was predicted, the 
original workload management decisions are revised accordingly. That is, our 
workload management methods are adaptive, hence they are consistent with the 
industry trend of autonomic computing [8] and automatic administration [13]. 

The rest of the paper is organized as follows. Section 2 describes our multi-query 
PI. Section 3 discusses three workload management problems, and describes our 
solution to each workload management problem by using the information provided by 
our multi-query PIs. Section 4 discusses some practical considerations for building 
multi-query PIs. Section 5 presents results from an initial implementation of our 
techniques in PostgreSQL. We discuss related work in Section 6 and conclude in 
Section 7. 

2   Multi-query Progress Indicator 

In this section, we describe our multi-query PI. The single-query PIs in [11, 12] (the 
PIs described in [4, 6] predict only percentage of completion, not remaining query 
execution time) work roughly as follows. For a query Q, the PI initially takes the 
optimizer’s estimated cost for Q measured in some unit we call U’s. The choice of U 
can be somewhat arbitrary, so for concreteness we let U represent the amount of work 
required to process one page of bytes. At any time during Q’s execution, based on the 
statistics collected so far, the PI refines the estimated remaining query cost c. The PI 
also continuously monitors the current query execution speed s, and the remaining 
query execution time is estimated as t=c/s.  

Although monitoring the current query’s execution speed means that the single-
query PI implicitly considers the impact of other queries running in the system (since 
the measured speed will be slower if other queries are running), the single-query PI 
does not explicitly consider other queries in that it has no idea how long they will run. 
In the following, we show how to build a multi-query PI that explicitly considers 
other queries. The main idea in multi-query PIs is that they should predict future 
execution speeds by considering the expected remaining execution time for 
concurrently running queries, and, if statistics are available, they should even attempt 
to predict the impact of queries that might arrive while the current query is running. 
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2.1   Initial Simplifying Assumptions 

We first describe some simplifying assumptions that enable a framework for 
describing and analyzing multi-query PIs. This framework is useful even when they 
only roughly approximate true system behavior. Section 4 gives our rationale for 
these assumptions and discusses how our PI is affected when they are relaxed. 

Assumption 1: The RDBMS processes work units at a constant rate C (work units 
per second) that is independent of the number of running queries.  

Assumption 2: The PI has perfect knowledge about the remaining cost ci of each 
running query Qi. 

Assumption 3: Queries execute at speed proportional to the weights associated with 
their priorities. In more detail, suppose n queries Q1, Q2, …, and Qn are running in the 
RDBMS concurrently. Qi (1≤i≤n) has priority pi. The corresponding weight for 
priority pi is wi. Then each Qi (1≤i≤n) is executed at speed WwCs ii /×= , where 

∑
=

=
n

j
jwW

1

. 

2.2   Multi-query Progress Estimation 

We first consider the simple case where no new queries arrive while the current 
queries are executing. Although this is an artificial case, it is useful in providing 
insight for the more general case we discuss in Section 2.4. Also, as we will see, this 
case turns out to be important in its own right in the context of workload management. 

Suppose n queries Q1, Q2, …, and Qn are running in the RDBMS, where Qi (1≤i≤n) 
has priority pi and weight wi. The current time is time 0. To estimate the remaining 
query execution time, the n queries Q1, Q2, …, and Qn are first sorted in the ascending 
order of ci/si. That is, after sorting, we have 

nn scscsc /// 2211 ≤≤≤ L  (or equivalently,  

nn wcwcwc /// 2211 ≤≤≤ L   (1) 

This order will be useful in the discussion below. 
The execution of the n queries is divided into n stages. At the end of each stage, a 

query finishes execution. Stage i (1≤i≤n) lasts for time ti. We call this the standard 
case in the remainder of this paper. 

Q1

Q4

Q2

Q3

t1 t2 t3 t4

stage 1 stage 2 stage 3 stage 4 

 

Fig. 1. Sample execution of n=4 queries 

 
To give the reader a feeling of 

how the n queries will behave, 
Figure 1 shows a sample execution 
of n=4 queries. All these queries 
have the same priority. At the end 
of stage i (1≤i≤n), query Qi 
finishes execution. During each 
stage i, the  amount of work 
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completed for Qj (i≤j≤n) is re-presented as a rectangle, where the height of the rectangle 
represents the execution speed of Qj. 

Now we describe our algorithm in detail. We first discuss stage 1. Recall that 

nn scscsc /// 2211 ≤≤≤ L . Hence,  among all the n queries Q1, Q2, …, and Qn, Q1 will 

be the first one to finish, and it will finish at time 
111 / sct = .  

During stage 1, for each i (2≤i≤n), the amount of work completed for query Qi is 

111
)1( / scstsa iii ×=×= 11 / wwc i×= . Hence, at the end of stage 1, the remaining cost of Qi 

(2≤i≤n) is 
11

)1()1( / wwccacc iiiii ×−=−= . 

Now we discuss stage 2. During this stage, there are n-1 queries running: Q2, Q3, …, 
and Qn. Each Qi (2≤i≤n) executes at speed )1()1( /WwCs ii ×= , where 

1
2

)1( wWwW
n

j
j −==∑

=

. 

For each i (2≤i≤n), 
1

)1(
1

)1()1()1( /)/(/)/(/ wWCcCWwcsc iiii ×−×= . According to (1), 

nn wcwcwc /// 3322 ≤≤≤ L . Hence, )1()1()1(
3

)1(
3

)1(
2

)1(
2 /// nn scscsc ≤≤≤ L . That is, among the queries 

Q2, Q3, …, Qn, Q2 will finish first, and it will take time t2, where )1(
2

)1(
22 / sct = . 

During stage 2, for each i (3≤i≤n), the amount of work completed for query Qi is 
)1(

2
)1(

2
)1(

2
)1()2( / scstsa iii ×=×=  

2
)1(

2 / wwc i×= . Hence, at the end of stage 2, the remaining cost 

of Qi (3≤i≤n) is 
2

)1(
2

)1()2()1()2( / wwccacc iiiii ×−=−= 2121211 /)/(/ wwwwccwwcc iii ××−−×−=  

22 / wwcc ii ×−= . 

This procedure is repeated for all the n stages to compute all the ti’s (1≤i≤n). By 
induction, we find that Q1, Q2, …, and Qn will finish in the order Q1, Q2, …, and Qn. 
That is, at the end of each stage i, Qi finishes execution. At time 0, the remaining 
execution time of Qi is ∑

=

=
i

j
ji tr

1

. 

The time complexity of the above algorithm is )ln( nnO × , and the space 
complexity is O(n). (The derivation details are omitted due to space constraints.) 

2.3   Non-empty Query Admission Queues 

An RDBMS typically contains a query admission queue. If the RDBMS is 
overloaded, newly arrived queries will be put into the query admission queue rather 
than starting execution immediately. Since queries already in the query admission 
queue are also “known” queries, a multi-query PI can extend its visibility into the 
future by examining this queue. An example of this is given in our experimental 
evaluation in Section 5. 

2.4   Considering Future Queries 

The above discussion assumed that no new queries arrive while the queries currently 
in the RDBMS are running. In general, new queries will keep arriving, hence they 
will influence the load on the RDBMS, and a PI must somehow account for these 
queries. These queries are different from those in the admission queue – they have not 
yet arrived and predictions about them necessarily involve speculation. 
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If nothing at all is known about the future, then one guess about future loads is as 
good as another, and there is no point in trying to do any forecasting. However, in 
practice we think it is rare that absolutely nothing can be predicted about the future, 
and that rough approximate information is likely to be available. The goal of the PI 
then is to use such approximate information to improve its guesses about the future. 

In our approach, we assume that we know the average query priority p , the 

average cost c , and the average arrival rate λ. (The average inter-arrival time is then 
λ/1=t .) Of course such predictions are only approximate, and as will be shown in 

our experimental section, they need not be very accurate for the multi-query PI to 
outperform a single-query PI. In many applications, the overall load on the system 
over time is at least partially predictable, and these numbers can be obtained from past 
statistics. Then we proceed in a way similar to that in Section 2.2. The only difference 
is that every t  seconds, we predict that a new query with priority p  and cost c  will 

arrive at the RDBMS, and it is considered in the PI’s estimates.  

3   Workload Management 

Workload management for RDBMS has been extensively studied (e.g., [3, 7, 14, 19, 
23]), and major commercial RDBMSs come with workload management tools [8, 10, 
13, 15]. However, due to a lack of information about the progress of queries running 
in the RDBMS, these tools cannot always make intelligent decisions. 

For example, consider the following scheduled maintenance problem. Suppose at 
time 0, we need to schedule maintenance (e.g., we need to install some new software, 
or add several new data server nodes to a parallel RDBMS), and that the maintenance 
is scheduled to begin at time t. A common practice is to perform two operations [22]: 

O1: Starting from time 0, no new queries are allowed to enter the RDBMS. 
O2: The existing queries are allowed to run until time t, when any queries that have 

not completed are aborted.  

The challenge is how to choose the maintenance time t so as to minimize the amount 
of lost work without over-delaying the maintenance. In general, workload 
management tools do not know which queries can finish by time t, so the DBA needs 
to guess an arbitrary time that he/she thinks is appropriate. However, if we can 
estimate query running times, then more intelligent decisions can be made. For 
example, operation O2 can then be replaced with the following two operations: 

O2′: Predict which queries cannot finish by time t and abort them at time 0. (Note: 
aborting queries will reduce the load on the RDBMS and hence change the 
estimate about which queries cannot finish by time t.) 

O3: Let other queries in the RDBMS keep running. Suppose at time t, some of these 
queries have not finished execution (this is possible if our estimation has errors). 
Then they are either aborted or allowed to run to completion – the appropriate 
action depends on both the application requirement and the estimate of how soon 
those queries are going to finish. 
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Compared to operation O2, operations O2′ and O3 have the following advantages. 
First, even for the same maintenance time t, by aborting some “hopeless” queries, 
more queries can finish. Second, the amount of lost work can be controlled by 
adjusting the maintenance time t. 

As a second example, suppose that for some reason, the DBA needs to speed up the 
execution of a target query Q. The DBA decides to do this by choosing one running 
query (the victim query) and blocking its execution. In this case, a common approach 
is to choose the victim query to be the heaviest resource consumer. However, if it 
happens that this victim query will finish quickly, then blocking the execution of this 
query will not speed up the execution of Q as much as blocking some other query that 
has a longer remaining execution time. If the remaining execution time of the running 
queries can be estimated, we can avoid choosing a victim query that is about to finish.  

From the above discussion, we can see that it is desirable to give the workload 
management tool more information about the remaining execution time of running 
queries, and to use this information to make more intelligent decisions.  

In this section, we discuss how to do this for three workload management 
problems. Variants of these workload management problems are frequently 
encountered in practice. Our goal is not to give an exhaustive account of all ways that 
PIs could be useful for workload management; rather, it is to demonstrate by example 
that the information provided by multi-query PIs can improve the quality of decisions 
made by workload management tools. 

In our discussion, for ease of description, we assume that the n queries Q1, Q2, …, 
and Qn are numbered so that 

nn scscsc /// 2211 ≤≤≤ L . Furthermore, we present our 

techniques for making workload management decisions based on the current system 
status (the n queries Q1, Q2, …, and Qn).  

3.1   Single-Query Speed Up Problem 

Suppose we want to speed up the execution of a target query Qi (1≤i≤n). A natural 
choice is to increase the priority of Qi. However, if Qi is already of highest priority, 
then we must either block one or more other queries, or lower the priority of one or 
more other queries. In this paper, the first alternative is considered. 

Assume that at time 0, we want to speed up the execution of query Qi by blocking 
h≥1 victim queries. Which h queries should be blocked? This is our single-query 
speed up problem. We first consider the simple case where h=1, and then discuss h≥1. 
Intuitively, the optimal victim query Qv should satisfy the following two conditions: 

C1: Qv should be the heaviest resource consumer. 
C2: If not blocked, Qv should run for the longest time (at least longer than Qi). 

In other words,  

C1: The weight of Qv, wv, should be the largest. 
C2: cv/sv, or v (since all queries are sorted in the ascending order of cj/sj), should be 

the largest.  
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It is not always possible to find a victim query that satisfies both conditions. 
Rather, the optimal victim query should be chosen based on a tradeoff between these 
two conditions. This tradeoff leads to a mathematical optimization problem. 

The sketch of our method is as follows. The n-1 queries Q1, Q2, …, Qi-1, Qi+1, Qi+2, 
…, and Qn are divided into two sets: S1={Q1, Q2, …, Qi-1} and S2={Qi+1, Qi+2, …, Qn}. 
In either set Sj (j=1, 2), the best candidate victim query 

jvQ  is picked. This is achieved 

by quantifying the “benefit” of speeding up the execution of the target query Qi that is 
gained by blocking the execution of the victim query. Then the optimal victim query 
Qv is the better one of 

1vQ  and 
2vQ . 

Our algorithm contains three steps. 
Step 1: The queries in set S2 are examined first. In this case, condition C2 does not 
matter, as each Qj (i+1≤j≤n) runs longer than Qi. To satisfy condition C1 as much as 
possible, a natural choice is to choose query 

2vQ  to be the query with the highest 

weight. That is, }1|max{
2

njiww jv ≤≤+= . 

Q1

1t

Q2

Q3

Q4

t4

stage 1 stage 2 stage 3 stage 4

2t 3t  

Fig. 2. Sample execution of n=4 queries 
(the execution of Q3 is blocked at time 0) 

We justify this choice formally. Suppose Qm 
(i+1≤m≤n) is chosen as the victim query. To 
compute the “benefit” of blocking Qm, the follow-
ing key technique is used. The entire period of 
executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1, 
…, and Qn is divided into n stages. During each 
stage j (1≤j≤n), except for Qm, the amount of 
work completed for Qk (1≤k≤ n, k ≠ m) remains 
the same as that in the standard case (recall that 
the standard case is defined in Section 2.2).  

It is easy to see that except for stage m, at the end of each stage j (1≤j≤n, j≠m), a 
query (Qj) finishes execution. Also, at stage j (1≤j≤i), compared to the standard case, 
the execution of each Qk (j≤k≤n, k≠m) is sped up by a factor of 

)/(∑∑
==

−
n

jp
mp

n

jp
p www

. As a 

result, the duration of stage j is shortened from tj to ∑∑
==

−×=′
n

jp
p

n

jp
mpjj wwwtt /)(

. In other 

words, the duration of stage j is shortened by ∑
=

×=′−=∆
n

jp
pmjjjj wwtttt / . 

Hence, the remaining execution time of query Qi is shortened by 

∑ ∑∑
= ==

×=∆=
i

j
m

n

jp
pj

i

j
jm wwttT

11

)/( . In order to maximize Tm, wm needs to be maximized.  

Step 2: Now the queries in set S1 are examined. Suppose Qm (1≤m≤i-1) is chosen as the 
victim query. To compute the “benefit” of blocking Qm, the technique of Step 1 is used 
again. The entire period of executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1, …, and Qn 
is divided into n stages. During each stage j (1≤j≤n), except for Qm, the amount of work 
completed for Qk (1≤k≤n, k≠m) remains the same as that in the standard case.  

The remaining execution time of query Qi is shortened by Tm=cm/C. This is 
because in the first i stages, by blocking the execution of Qm at time 0, cm’s work is 
saved. To maximize 

1vT , we should choose 
1vQ  such that }11|max{

1
−≤≤= imcc mv

. 
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Step 3: The optimal victim query Qv is the better one of 
1vQ  and 

2vQ . That is, 

},max{
21 vvv TTT = . 

From the above analysis, it can be seen that at time 0, by blocking a query Qm 
(1≤m≤n) whose remaining execution time is rm, no more than rm can be saved from 
the execution of other queries. This agrees with our assertion at the beginning of 
Section 3 that if the victim query will finish soon, blocking its execution will not help 
much. The time complexity of the above algorithm is )ln( nnO × , while the space 
complexity is O(n).  

We now consider the special case where all n queries Q1, Q2, …, and Qn have the 
same priority. In this case, the solution to the problem is greatly simplified: 

(1)  If i<n, the optimal victim query is any Qj (i+1≤j≤n).  
(2)  If i=n, the optimal victim query is Qn-1. 

The time complexity of this solution algorithm is O(n). This is because in this case, 
there is no need to either sort the n queries Q1, Q2, …, and Qn in ascending order of 
cj/sj or compute all the tj’s. Rather, given the target query Qi whose remaining cost is 
c, to find the optimal victim query, all the other queries need to be scanned (at most) 
once. If we find a query whose remaining cost is no less than c, we are done. 
Otherwise the query with the largest remaining cost is picked.  

Now we return to the general case of our single-query speed up problem, where 
h≥1. Suppose the h victim queries are chosen to be 

1gQ , 
2gQ , …, and 

hgQ , where 

}{}...,,2,1{}...,,,{ 21 inggg h −⊆ . Assume by blocking 
jgQ  (1≤j≤h) at time 0, the 

remaining execution time of Qi is shortened by 
jgT . Then from an analysis similar to 

that above, it can be shown that by blocking the h victim queries 
1gQ , 

2gQ , …, and 

hgQ  at time 0, the remaining execution time of Qi is shortened by ∑
=

h

j
g j

T
1

. 

Based on this observation, the following greedy method can be used to deal with the 
general case of our single-query speed up problem. First, the optimal victim query is 
chosen according to the algorithm presented previously. Then, among the remaining 
queries, the next optimal victim query is chosen. This procedure is repeated h times to 
get h victim queries. These h victim queries are the optimal h victim queries. 

3.2   Multiple-Query Speed Up Problem 

Suppose now that we want to block a single query to speed up the execution of the 
other n-1 queries. Which query should be blocked? This is the multiple-query speed 
up problem. 

Suppose Qm (1≤m≤n) is chosen as the victim query. From an analysis similar to 
that in Section 3.1, we know that for each j (1≤j≤m), compared to the standard case, 
the duration of stage j is shortened by ∑

=

×=∆
n

jp
pmjj wwtt / . Also, each stage j 

(m+1≤j≤n) is the same as that in the standard case. 
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At each stage j (1≤j≤m), n-j queries Qj, Qj+1, …, Qm-1, Qm+1, …, and Qn are 
running, and their total response time is improved by 

jtjn ∆×− )( . Hence, by blocking 

Qm at time 0, the total response time of all the other n-1 queries Q1, Q2, …, Qm-1, Qm+1, 
…, and Qn is improved by ∑

=

∆×−=
m

j
jm tjnR

1

)( ∑∑
==

××−=
n

jp
pm

m

j
j wwtjn /)(

1

. To maximize Rm, 

we should choose the optimal victim query Qv such that }1|max{ nmRR mv ≤≤= . The 

time complexity of the above algorithm is )ln( nnO × . Also, the space complexity of 

the above algorithm is O(n). 

3.3   Scheduled Maintenance Problem 

In this section, we discuss the problem mentioned at the beginning of Section 3: how 
can we choose the maintenance time t and the queries to abort so that the amount of 
lost work can be minimized without over-delaying the maintenance? In practice, the 
amount of lost work Lw can be defined in multiple ways. Due to space constraints, in 
this paper, only the following two cases are discussed: 

Case 1: Lw is the total amount of work that has been completed for the queries that 
will be aborted. 

Case 2: Lw is the total cost of the queries that will be aborted. In this case, it is 
more appropriate to call Lw the amount of unfinished work, since the aborted queries 
need to be rerun after the RDBMS is restarted.  

For each i (1≤i≤n), let ei denote the amount of work that has been completed for 
query Qi at time 0. We only describe the solution to Case 1. For Case 2, the solution is 
the same except that for each i (1≤i≤n), ei needs to be replaced with ei+ci. Recall that 
ci is the remaining cost of query Qi at time 0. 

In our discussion, we assume that the overhead of aborting queries is negligible 
compared to the query execution cost. This will be true in a primarily read-only 
environment. In general, aborting jobs may introduce non-negligible overhead. How 
to handle this case is left as an interesting area for future work. 

We define the system quiescent time to be the time when all the n queries Q1, Q2, 
…, and Qn (except for those queries that are aborted, if any) finish execution. The 
estimated system quiescent time is our estimation of the earliest time when  
the system maintenance can start. Suppose for each i (1≤i≤n), by aborting Qi at time 0, 
the system quiescent time is shortened by Vi. It is easy to see that Vi=ci/C. Also,  
by aborting h queries 

1gQ , 
2gQ , …, and 

hgQ  at time 0, where 1≤h≤n and 

}...,,2,1{}...,,,{ 21 nggg h ⊆ , the system quiescent time is shortened by ∑
=

h

j
g j

V
1

.  

Our goal is to maximize ∑
=

h

j
g j

V
1

while minimizing ∑
=

h

j
g j

e
1

. This is the standard 

knapsack problem [5]. Consequently, we use a greedy method to solve it. First the n 
queries Q1, Q2, …, and Qn are re-sorted in ascending order of ei/Vi (recall that we 
assume that originally, the n queries Q1, Q2, …, and Qn are sorted in ascending order 
of ci/si). After re-sorting, we have 

nn ffffff VeVeVe ///
2211

≤≤≤ L  (or equivalently, 
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nn ffffff cecece ///
2211

≤≤≤ L ), where }...,,,{ 21 nfff  is a permutation of }...,,2,1{ n . 

Then we keep aborting 
1f

Q , 
2f

Q , …, until the system quiescent time becomes 

satisfactory. 

4   Revisiting the Assumptions 

Sections 2 and 3 are based on the three assumptions in Section 2.1. Although we 
believe that these assumptions approximate reasonable system behavior, in practice, 
the system behavior will deviate from that predicted by these assumptions. Overall, 
the impact of relaxing these assumptions is that the multi-query PI now gives only 
approximate estimates, and for this reason the “advice” it gives for workload 
management becomes heuristic rather than provably optimal. As mentioned in the 
introduction, our method is adaptive and can make dynamic adjustments to ameliorate 
previous errors. This can mitigate the effect of imprecise estimates. We discuss this in 
more detail in the following subsections. 

4.1   Assumptions 1 and 2 

Assumption 1 says that for all the running queries, the RDBMS processes C units of 
work per second in total. When Assumption 1 is not valid, the PI may either 
underestimate the speedup that will occur when a query terminates (if, for example, 
the system was thrashing until that query finished), or overestimate the speedup that 
will occur when a query terminates (if, for example, a CPU-intensive query terminates 
and the other queries are all I/O-intensive). While this will hurt the accuracy of the 
multi-query PI, it is still likely to be superior to that of a single-query PI, which pays 
no attention whatsoever to other queries. 

Assumption 2 says that for each running query, the exact remaining cost is known. 
If these estimates turn out to be far off, the accuracy of the multi-query PI will again 
be harmed, although again it is likely to be better than that of a PI that completely 
ignores these other queries. These scenarios could be dealt with in a number of ways, 
including augmenting the PI to have a more accurate performance model (including 
better modeling of a lightly loaded system), being willing to tolerate inaccuracies in 
the PI’s estimates, or even revisiting the workload management decisions periodically 
if the inaccuracies of the model have resulted in suboptimal decisions. Which 
approach is best under which circumstances is an interesting question for future 
research. We suspect that because the PI adjusts its estimates “on the fly” as it 
discovers that they are inaccurate, it may not be worth the effort to improve the 
precision of these estimates – but this is still an open question and also scope for 
interesting future research. 

4.2   Assumption 3 

Assumption 3 says that each query’s execution speed is proportional to the weight 
associated with its priority. This assumption is mainly for concreteness, for to discuss 
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workload management problems in the context of queries with priorities, some policy 
needs to be specified for how priority affects execution speed. If a system implements 
a different approach to priorities, a priority model for the multi-query PI would need 
to be developed for that approach. Even if the system attempts to implement a policy 
where execution speed is proportional to priority, the true behavior may be different 
for a variety of reasons – one example is the details of query interactions (e.g., a high-
priority I/O-intensive query might not substantially block a low-priority CPU-
intensive query, or two queries compete for/share buffer pool pages and thus slow 
down/speed up each other’s execution). As was the case in Section 4.1, these factors 
will harm the accuracy of the multi-query PI, and ways to deal with this include 
building a more accurate model, tolerating errors, or periodically revising decisions.  

4.3   Other Practical Considerations 

The time complexity of most algorithms described in this paper is )ln( nnO × , where 
n is the number of queries in the RDBMS. This is a cause for some concern if n is 
large. However, in general, we would expect that the majority of queries are short 
(i.e., queries that can finish in a few seconds) and not really candidates for progress 
estimation or relevant individually for workload management. For this reason we 
think it is reasonable for the purposes of workload management and progress 
estimation to ignore these short queries and focus on long-running queries. Thus the 
effective n in the preceding formula is likely to be small and the computational cost 
will be small. 

5   Performance Evaluation 

In this section, we present results from a prototype implementation of our techniques 
in PostgreSQL Version 7.3.4 [17].  

5.1   Experiment Environment 

Our measurements were performed with the PostgreSQL client application and server 
running on a Dell Inspiron 8500 PC with one 2.2GHz processor, 512MB main 
memory, one 40GB disk, and running the Microsoft Windows XP operating system. 
The relations used for the experiments followed the schema of the standard TPC-R 
Benchmark relations [21]: 

lineitem (partkey, quantity, extendedprice, …), 
part_i (partkey, retailprice, …) (i≥1). 

Table 1. Test data set 

 number of tuples total size 
lineitem 24M 3.02GB 
part_i (i≥1) 10×Ni 1.4×Ni KB 
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In our experiments, each part_i relation (i≥1) contains 10×Ni tuples. (How the Ni’s 
are chosen is discussed later.) The partkey attribute values in the part_i relations are 
randomly distributed between the minimal partkey attribute value and the maximal 
partkey attribute value in the lineitem relation. In a given part_i relation, all the tuples 
have different partkey attribute values. On average, each part_i tuple matches with 30 
lineitem tuples on the attribute partkey. We built an index on the partkey attribute of 
the lineitem relation. 

The following queries were tested, which find parts that are on average selling for 
25% below suggested retail price: 

Query Qi (i≥1): select * from part_i p where p.retailprice×0.75> 
(select sum(l.extendedprice)/sum(l.quantity) from lineitem l where l.partkey=p.partkey); 

Each query is a nested query that contains a correlated sub-query. The query plan 
chosen by PostgreSQL for the correlated sub-query is an index-scan on the lineitem 
relation. We repeated our experiments with other kinds of queries. The results were 
similar and thus not presented here. 

Before we ran queries, we ran the PostgreSQL statistics collection program on all 
the relations. PostgreSQL does not support priorities for queries. Hence, all the 
queries Qi (i≥1) have the same priority. In all experiments, the outputs from each PI 
were stored into a separate file. 

5.2   Multi-query Progress Indicator 

Three experiments were performed to compare single-query PIs with multi-query PIs. 
In the first two experiments, we ensure that no new queries arrive at the RDBMS 
while the queries under consideration are running. In the third experiment, we explore 
the situation in which new queries keep arriving at the RDBMS.  

5.2.1. Multiple Concurrent Query (MCQ) Experiment  
In this experiment, ten queries were used: Qi (1≤i≤10). Their Ni’s followed a Zipfian 
distribution with parameter a=1.2. At time 0, each of these ten queries was at a 
random point of its execution. 

This experiment was performed multiple times. A typical run is examined here. 
In this run, among the n =10 queries Qi (1≤i≤10), we focus on a typical large query Q.  
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Fig. 3. Remaining query execut-
ion time estimated over time for 
Q (MCQ experiment) 

Fig. 4. Query execution speed 
monitored over time for Q 
(MCQ experiment) 

For this Q, Figure 3 
shows the remaining 
query execution time 
estimated by the PI 
over time. Figure 4 
shows the query execut-
ion speed monitored by 
the PI over time. In 
Figure 3, the actual re-
maining query execut-
ion time is represented 
by  the dashed line, the 
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single-query estimate is provided by the single-query PI, and the multi-query estimate 
is provided by the multi-query PI. 

From time 0 to the completion time of query Q, due to the completion of other 
concurrent queries, the execution speed of Q gradually increases by almost a factor of 
five. The multi-query PI is able to predict the change in the load on the RDBMS while 
the single-query PI cannot. As a result, the multi-query estimate is fairly close to the 
actual remaining query execution time, while the single-query estimate differs from 
the actual remaining query execution time by almost a factor of three at the beginning. 

5.2.2. Non-empty Admission Queue (NAQ) Experiment  
In this experiment, three queries were used: Q1, Q2, and Q3, with N1=50. N2=10. 
N3=20. The query admission policy was that at any time, at most two queries could 
run concurrently in the RDBMS. At time 0, Q1, Q2, and Q3 entered the RDBMS 
admission queue. Q1 and Q2 started execution first, with Q3 blocked until Q2 finishes.  

The purpose of this experiment is to show that when the admission queue is not 
empty, multi-query PIs that consider the admission queue can provide more accurate 
estimates than either single-query PIs or multi-query PIs that do not consider the 
admission queue. In effect, examining the admission queue lets the PI see farther into 
the future. 
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Fig. 5. Remaining query execution time esti-
mated over time for Q1 (NAQ experiment) 

For query Q1, Figure 5 shows the 
remaining query execution time 
estimated by the PIs over time. There, 
the actual remaining query execution 
time is represented by the dashed line. 
Two vertical dashed-dotted lines are 
used, one representing the start time of 
Q3, and another representing the finish 
time of Q3. 

The execution time of query Q1 is 
longer than the sum of the execution 
time of Q2 and the execution time of Q3.  

Before Q2 finishes, without considering Q3 that is waiting in the admission queue, 
neither the single-query PI nor the multi-query PI can accurately predict the load on 
the RDBMS after the completion of Q2. Hence, the multi-query estimate considering 
the admission queue is more precise than the other approaches.  

At the 97th second, query Q2 finishes and Q3 starts. The query admission queue 
becomes empty. The multi-query PI is able to predict that Q3 will finish before Q1 and 
then the execution speed of Q1 will increase, while the single-query PI incorrectly 
assumes that the execution speed of Q1 will remain the same during the execution of 
Q1. As a result, the multi-query estimate becomes more precise than the single-query 
estimate until Q3 finishes at the 291st second. 

5.2.3. Stream Concurrent Query (SCQ) Experiment  
In this experiment, at time 0, ten queries Qi (1≤i≤10) were running in the RDBMS and 
each of them was at a random point of its execution. New queries kept arriving at the 
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RDBMS according to a Poisson process with parameter λ. (The unit of λ is second-1.) 
For both Qi’s (1≤i≤10) and new queries, their Ni’s followed a Zipfian distribution with 
parameter a=2.2. (We also tested other values of a. The results are similar and thus 
omitted.) 

Consider any Qi (1≤i≤10). Suppose the actual remaining query execution time is 
tactual. At time 0, the multi-query PI estimates the remaining query execution time to 
be tmulti. The relative error of the multi-query estimate is defined as 

%100/|| ×− actualactualmulti ttt . The relative error of the single-query estimate is defined in 

a similar way.  
Among all Qi’s (1≤i≤10), the one with the largest remaining cost at time 0 will 

finish last and is thus called the last finishing query. The test was repeated one 
hundred times (one hundred runs). Unless otherwise specified, all the reported 
numbers are averaged over these one hundred runs.  
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Fig. 6. Relative error of estimated re-
maining execution time for the last 
finishing query (a=2.2) 

Fig. 7. Average relative error of esti-
mated remaining execution time for 
al l ten queries (a=2.2) 

We first 
discuss the 
case where 
the multi-
query PI 
knows the 
exact aver-
age arrival 
rate λ and 
the exact 
average cost  

c of future queries. For the last finishing query, Figure 6 shows the relative error of 
the estimated remaining execution time. For all Qi’s (1≤i≤10), Figure 7 shows the 
average relative error of the estimated remaining execution time. 

When producing estimates, the multi-query PI considers both concurrently running 
queries and future queries. In contrast, the single-query PI incorrectly assumes that the 
load will remain stable in the future. As a result, the relative error of the multi-query 
estimate is always smaller than that of the single-query estimate. 

When the system is stable, the relative error of the single-query estimate decreases 
as λ increases. This is because the larger the λ, the closer to reality the assumption 
made by the single-query PI. In contrast, the relative error of the multi-query estimate 
increases with λ, as the faster new queries arrive, the larger and the more random their 
influence on existing queries. Note that the stable system case is the most common 
case encountered in practice. In this case, the relative error of the multi-query estimate 
is much smaller than that of the single-query estimate. 

When λ>0.07, new queries come faster than the RDBMS can process them and 
thus the system becomes unstable. In this case, the influence of new queries on 
existing queries becomes fairly large and random. Hence, single-query and multi-
query estimates have roughly the same (large) relative error. 

Among all Qi’s (1≤i≤10), the last finishing query gets the largest and most random 
influence from new queries. Consequently, PIs provide the least precise estimate for 
the last finishing query. This leads to the effect that for both single-query and  
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multi-query estimates, the average relative error for the ten queries is smaller than the 
relative error for the last finishing query. 
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Fig. 8. Relative error of estimated 
remaining execution time for the last 
finishing query (a=2.2 , lambda=0.03 )  

Fig. 9. Average relative error of 
estimated remaining execution time for 
all ten queries (a=2.2 , lambda=0.03 ) 

Now we 
discuss the 
case where 
the multi-
query PI 
cannot esti-
mate λ, the 
average arri-
val rate of 
future queries, 
precisely. We 
include  this 
experiment 
to illustrate 

one example of the multi-query PI detecting when its estimates were wrong and then 
adapting and correcting its estimates. This is not the only way it does so; like single-
query PIs, multi-query PIs also react to incorrect cost estimates (due perhaps to bad 
cardinality estimates or an inaccurate hardware cost model) and incorrect assumptions 
about how concurrently executing queries affect the performance of a given query 
(even single-query PIs notice, e.g., that they have slowed down when another query 
starts, even though they do not know why, or how long the slowdown might last, or if 
a similar slowdown might occur again in the future from a yet-to-arrive query.) 
Because we have explored this sort of adaptivity in our prior work [11, 12], we do not 
explore it here. Instead, we focus on a kind of adaptivity unique to multi-query PIs, 
i.e., adapting to errors in expected query arrival rate. 

Let λ=0.03. The multi-query PI makes its estimate based on λ' while λ'≠λ. For the 
last finishing query, Figure 8 shows the relative error of the estimated remaining 
execution time. For all Qi’s (1≤i≤10), Figure 9 shows the average relative error of the 
estimated remaining execution time. 
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Fig. 10. Remaining query execution time 
estimated by multi -query PI over time 
(lambda=0.03) 

The bigger the difference between λ' and λ, 
the more inaccurate the multi-query estimate. 
However, unless λ' is more than five times 
larger than λ, the relative error of the multi-
query estimate is always smaller than that of 
the single-query estimate. This shows that, at 
least in these tests, even somewhat inaccurate 
information about the future is better than no 
information about the future. 

We pick a typical run among the one 
hundred runs. In this run, for the last finishing 
query, Figure 10 shows the remaining query 
execution time estimated by the multi-query 

PI over time. There, the actual remaining query execution time is represented by 
the dashed line. At the beginning, due to the incorrectly estimated arrival rate λ', the 
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multi-query estimate is quite different from the actual remaining query execution 
time. The bigger the difference between λ' and λ, the more inaccurate the multi-query 
estimate. However, the multi-query PI is adaptive and can correct its own errors. The 
closer to query completion time, the more precise the multi-query estimate is. 

In summary, as long as there is some reasonable (approximate) information about 
the future load, the multi-query PI can provide (often much) more accurate estimate of 
remaining query execution time than the single-query PI. This information need not 
be extremely accurate - the multi-query PI is adaptive and can correct its own errors 
over time. 

5.3   Workload Management  

Section 3 discussed three workload management problems. The experiment results for 
these three workload management problems were similar, since similar techniques 
were used for each problem. Accordingly, in this section, only the experiment results 
for Case 2 of the scheduled maintenance problem are presented, where the amount of 
unfinished work is defined as the total cost of all queries that will be aborted. 

5.3.1. Experiment Description  
We wanted to simulate a typical situation in practice, where the number of small 
queries submitted to the RDBMS is much larger than the number of large queries 
submitted to the RDBMS. To achieve this, a large number of queries Qi (i≥1) are 
used. We let all the Ni’s follow a Zipfian distribution with parameter a=2.2. (We also 
tested other values of a. The results were similar and thus are omitted.) Note that Ni 
“represents” the cost of Qi. Each Qi (i≥1) has the same probability to be submitted to 
the RDBMS. 

We evaluated the performance of our workload management techniques in the 
following way. At any time, n=10 queries 

jfQ  (fj≥1, 1≤j≤10) are running in the 

RDBMS. At the time that a query 
jfQ  finishes execution, a random k (k≥1) is picked 

and query Qk is submitted to the RDBMS for execution. Hence, for all the queries Qk 
submitted to the RDBMS, the Nk’s follow a Zipfian distribution with parameter a.  

A random time rt is chosen. At time rt, the RDBMS is inspected and decisions are 
made to prepare for system maintenance scheduled for t seconds later. By a simple 
mathematical derivation, it can be shown that for the n=10 queries 

jgQ  (gj≥1, 1≤j≤10) 

running at time rt, their 
jgN ’s follow a Zipfian distribution with parameter a-1. Due  

to space constraints, we only describe the main ideas in the derivation while  
omitting the details. For a particular Qk (k≥1), the probability that Qk is running  
at time rt is proportional to both the probability that Qk is submitted and the  
cost of Qk (larger queries will run longer and hence are easier to be “seen”). Thus, 

1/1)/1()( −=×∝= aa
g mmmmNyprobabilit

j

. 

We compare the following three methods: 

No PI method: No PI was used. Rather, we performed operations O1 and O2 
described in Section 3. 
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Single-query PI method: We used the single-query PI and performed operations O1, 
O2′, and O3. When operation O2′ was performed, the query with the largest estimated 
remaining cost was first aborted. Then if necessary, we further aborted the query with 
the second largest estimated remaining cost, and so on. 
Multi-query PI method: We used the multi-query PI and performed operations O1, 
O2′, and O3. When operation O2′ was performed, the algorithm described in Section 
3.3 was used. 

In all three methods, at the scheduled maintenance time rt+t, the queries that had 
not finished execution were aborted. The test was repeated ten times (ten runs). 
Unless otherwise specified, all the reported numbers are averaged over these ten runs.  

For the n=10 queries 
jgQ  (gj≥1, 1≤j≤10) running at time rt, the total work TW is 

defined to be their total cost. The unfinished work UW is defined to be the total cost 
of those queries that are aborted between time rt and the scheduled maintenance time 
rt+t. (Recall that unfinished queries are aborted at time rt+t.) Finally, tfinish is defined 
to be their remaining execution time under the no interruption condition. That is, 
under the condition that no new queries enter the RDBMS for execution and there is 
no scheduled maintenance so that none of the existing n=10 queries is aborted, all the 
existing n=10 queries can finish by time rt+tfinish. 
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Fig. 11. Unfinished work of the three methods 
(a=2.2) 

Figure 11 shows the unfinished work 
of the three methods. Note that the x-axis 
is t/tfinish. The y-axis is UW/TW. That is, 
both the x-axis and the y-axis have been 
“normalized,” as the specific values of 
tfinish and TW vary from one run to 
another. In the rest of Section 5.3, when 
we refer to the amount of unfinished 
work, we always mean UW/TW. 

Figure 11 also shows the theoretical 
limit that any method can achieve. This 
limit is computed using the exact informat- 

ion that comes from the actual run-to-completion execution of the n=10 queries. That 
is, based on this exact information, we compute the optimal set of queries that should 
be aborted at time rt so that all the other queries can finish by the scheduled 
maintenance time rt+t.  

If t=tfinish, then in both the no PI method and the multi-query PI method, all queries 
can run to completion and there is no unfinished work. However, in the single-query 
PI method, 67% of the total work TW is not finished. The reason is as follows. In 
general, as can be seen from the experiment results in Section 5.2.1, the single-query 
PI tends to significantly overestimate the remaining execution time of those queries 
whose remaining costs are large at time rt. Consequently, the single-query PI method 
thinks that a large portion of those queries cannot meet the scheduled maintenance 
time and aborts them unnecessarily at time rt.  

If t<tfinish, each of the three methods needs to abort queries. Among the three 
methods, the multi-query PI method has the least amount of unfinished work. 
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Compared to the no PI method, the multi-query PI method reduces the amount of 
unfinished work by 18%~44%. Compared to the single-query PI method, the multi-
query PI method reduces the amount of unfinished work by 15%~67%. The reason for 
this reduction of work is as follows. First, in this case the multi-query PI can estimate 
the remaining query execution time fairly precisely. As a result, the multi-query PI 
method can estimate which queries cannot finish in time and abort them early so that 
more queries can meet the scheduled maintenance time. Second, as explained above, 
the single-query PI method aborts a large number of queries unnecessarily. Finally, 
the no PI method does not abort any query until the scheduled maintenance time. As a 
result, before the scheduled maintenance time, queries compete with each other for 
resources and are executed relatively slowly. Hence, compared to the multi-query PI 
method, fewer queries can meet the scheduled maintenance time.  

In general, the no PI method has less unfinished work than the single-query PI 
method. However, when t is small (say, t=0.2×tfinish), the no PI method has a little bit 
more unfinished work than the single-query PI method. This is because in this case, at 
time rt, the single-query PI method aborts those queries whose remaining costs are 
large. Then other queries can run faster and finish by the scheduled maintenance time. 
In contrast, the no PI method does not abort any query at time rt. This leads to the 
effect that all queries are executed very slowly. As a result, very few queries can meet 
the scheduled maintenance time. Note that if t is large, this effect is not so significant. 
This is because those queries whose remaining costs are small at time rt are going to 
finish in a small amount of time. Then other queries can run faster. 

In all ten runs, in most cases, the multi-query PI method performs better than both 
the no PI method and the single-query PI method. In the extreme case, compared to 
the no PI method and the single-query PI method, the multi-query PI method reduces 
the amount of unfinished work by 73% and 94%, respectively. (Note: the maximum 
percentage by which the multi-query PI method can reduce the amount of unfinished 
work is at most 100%.) 

Occasionally, the multi-query PI method performs worse than either the no PI 
method or the single-query PI method. In the worst case, compared to the no PI method 
and the single-query PI method, the multi-query PI method increases the amount of 
unfinished work by 12% and 3%, respectively. This is because in the multi-query PI 
method, the greedy method only provides an approximate solution to the knapsack 
problem (finding the optimal solution to the knapsack problem is NP-hard). Also, the 
estimates provided by multi-query PIs have errors, mainly due to the imprecise 
statistics collected by PostgreSQL.  

Among all the three methods, the multi-query PI method performs the closest to the 
theoretical limitation. When t<tfinish, compared to the theoretical limitation, on 
average, the multi-query PI method increases the amount of unfinished work by 
3%~12%. In the worst case, the multi-query PI method increases the amount of 
unfinished work by 60%. 

In summary, the average performance of the multi-query PI method is better than both 
that of the no PI method and that of the single-query PI method. The multi-query PI 
method can avoid extremely bad decisions. In the best case, the multi-query PI method 
can perform much better than both the no PI method and the single-query PI method. In 
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the worst case, compared to both the no PI method and the single-query PI method, 
the multi-query PI method performs only a little worse. Moreover, in a large number 
of cases, the multi-query PI method performs fairly close to the theoretical limitation.  

6   Related Work 

As mentioned in the introduction, all previous work on PIs has considered only 
single-query PIs, and none of the previous work has considered the application of PIs 
to workload management. Of course, there is a great deal of related work dealing with 
workload management. In general, the workload management problems discussed in 
Section 3 are scheduling problems. In this section, we give a brief survey of existing 
work related to scheduling. 

Process scheduling has been exhaustively studied in the context of operating 
systems. In general, the process scheduler in the operating system does not know the 
job sizes [20]. By contrast, in our workload management environment, the query costs 
are known (or at least the query costs can be roughly estimated). 

Process scheduling and transaction scheduling have been extensively studied in 
real-time operating systems [9, 24] and real-time database systems [1, 18]. In general, 
the main concern there is to meet deadlines rather than to maximize resource 
utilization. Most real-time systems are memory resident and the jobs there can be 
finished in a short amount of time (say, less than a few seconds). Hence, they need 
special time-cognizant protocols (e.g., to handle critical sections). Many real-time 
systems use hard deadlines. As a result, the jobs there are usually pre-defined (i.e., 
“canned” jobs). Also, almost all jobs there have deadlines. 

In our workload management environment, we do not want to sacrifice resource 
utilization ratio in our general-purpose RDBMS. Queries may incur substantial I/Os 
and run for a long time. Therefore, short-term effects can be ignored and no special 
time-cognizant protocol is needed. Before queries are submitted to the RDBMS, we 
have only approximate knowledge of their resource requirements. Also, most queries 
do not have hard deadlines. 

Job scheduling has been extensively studied in operations research and in computer 
science theory [2, 16]. In these studies, jobs usually have precedence constraints. On a 
single machine, jobs are typically executed one after another. Also, the main concern 
is to maximize the throughput/utilization ratio of the machines. In our database 
workload management environment, queries do not have precedence constraints and 
are executed concurrently. 

7   Conclusion 

In this paper we considered going beyond the state of the art in RDBMS PIs by 
considering the impact queries have on each other’s progress and eventual 
termination. Our multi-query PIs consider not only currently executing queries, but 
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also predictions about queries that might arrive in the future. Even approximate 
information about future queries is helpful, and the PIs are adaptive in that they detect 
when they were given “bad” information about the future and correct their estimates 
as they learn more about the true query workload. We also demonstrated how to apply 
the resulting multi-query PIs to several workload management problems. As shown in 
experiments with a prototype implementation, for both estimating remaining query 
execution time and workload management purposes, the proposed multi-query PIs 
have significant advantages over single-query PIs or no PIs, suggesting that multi-
query PIs may be a useful addition to RDBMSs. 
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