
Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 921 – 941, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-query SQL Progress Indicators

Gang Luo1, Jeffrey F. Naughton2, and Philip S. Yu1

1 IBM T.J. Watson Research Center
2 University of Wisconsin-Madison

luog@us.ibm.com, naughton@cs.wisc.edu, psyu@us.ibm.com

Abstract. Recently, progress indicators have been proposed for SQL queries in
RDBMSs. All previously proposed progress indicators consider each query in
isolation, ignoring the impact simultaneously running queries have on each
other’s performance. In this paper, we explore a multi-query progress indicator,
which explicitly considers concurrently running queries and even queries
predicted to arrive in the future when producing its estimates. We demonstrate
that multi-query progress indicators can provide more accurate estimates than
single-query progress indicators. Moreover, we extend the use of progress
indicators beyond being a GUI tool and show how to apply multi-query progress
indicators to workload management. We report on an initial implementation of a
multi-query progress indicator in PostgreSQL and experiments with its use both
for estimating remaining query execution time and for workload management.

1 Introduction

Recently, [4, 6, 11, 12] proposed progress indicators (PIs) for SQL queries in
RDBMSs. For a SQL query, a PI keeps track of the work completed and continuously
estimates the remaining query execution time. [4, 6, 11, 12] proposed a set of
techniques to implement single-query PIs. By single-query, we mean that in
estimating the progress of a SQL query Q, these estimators only consider the current
load and the progress of query Q itself, ignoring the effect of concurrently running
queries and future queries. The main contributions of this paper are the first proposal
of a multi-query PI, the exploration of its performance as compared to single-query
PIs, and an application of the multi-query PI to problems arising in workload
management.

Clearly there are cases where a single-query PI gives bad estimates. For example, if
one query is substantially impeding the progress of another, but the first query is
about to finish, a single-query PI will grossly overestimate the remaining execution
time of the second query. Avoiding such behavior was our original motivation for
developing multi-query PIs.

When estimating the remaining execution time for a query Q, a multi-query PI
considers Q, other concurrently running queries, and, if available, predictions about
new queries that can be expected to arrive while Q is running. As multi-query PIs
consider more information than single-query PIs, they can provide more accurate
estimates. A reasonable concern is whether we are depending on accurate predictions
of the future. The answer is no – our multi-query PIs continuously monitor the system

922 G. Luo, J.F. Naughton, and P.S. Yu

and adjust their predictions as time progresses. The closer the predictions about future
queries are to reality, the better the initial estimates – but eventually the PIs will detect
and correct their estimates even in situations in which their initial estimates were
based on highly inaccurate information about the future.

In the published literature, SQL PIs have been proposed as a graphical user interface
(GUI) tool [6, 11]. In this paper, we also present a new motivation for considering
multi-query PIs: workload management. We formulate several workload management
problems and show how to solve them by using information provided by multi-query
PIs. Traditionally, workload management is static in that once workload management
decisions are made, they are not changed. In this paper, we exploit multi-query PIs to
facilitate more dynamic workload management. PIs are used to continuously monitor
the system status. If the system status differs significantly from what was predicted, the
original workload management decisions are revised accordingly. That is, our
workload management methods are adaptive, hence they are consistent with the
industry trend of autonomic computing [8] and automatic administration [13].

The rest of the paper is organized as follows. Section 2 describes our multi-query
PI. Section 3 discusses three workload management problems, and describes our
solution to each workload management problem by using the information provided by
our multi-query PIs. Section 4 discusses some practical considerations for building
multi-query PIs. Section 5 presents results from an initial implementation of our
techniques in PostgreSQL. We discuss related work in Section 6 and conclude in
Section 7.

2 Multi-query Progress Indicator

In this section, we describe our multi-query PI. The single-query PIs in [11, 12] (the
PIs described in [4, 6] predict only percentage of completion, not remaining query
execution time) work roughly as follows. For a query Q, the PI initially takes the
optimizer’s estimated cost for Q measured in some unit we call U’s. The choice of U
can be somewhat arbitrary, so for concreteness we let U represent the amount of work
required to process one page of bytes. At any time during Q’s execution, based on the
statistics collected so far, the PI refines the estimated remaining query cost c. The PI
also continuously monitors the current query execution speed s, and the remaining
query execution time is estimated as t=c/s.

Although monitoring the current query’s execution speed means that the single-
query PI implicitly considers the impact of other queries running in the system (since
the measured speed will be slower if other queries are running), the single-query PI
does not explicitly consider other queries in that it has no idea how long they will run.
In the following, we show how to build a multi-query PI that explicitly considers
other queries. The main idea in multi-query PIs is that they should predict future
execution speeds by considering the expected remaining execution time for
concurrently running queries, and, if statistics are available, they should even attempt
to predict the impact of queries that might arrive while the current query is running.

 Multi-query SQL Progress Indicators 923

2.1 Initial Simplifying Assumptions

We first describe some simplifying assumptions that enable a framework for
describing and analyzing multi-query PIs. This framework is useful even when they
only roughly approximate true system behavior. Section 4 gives our rationale for
these assumptions and discusses how our PI is affected when they are relaxed.

Assumption 1: The RDBMS processes work units at a constant rate C (work units
per second) that is independent of the number of running queries.

Assumption 2: The PI has perfect knowledge about the remaining cost ci of each
running query Qi.

Assumption 3: Queries execute at speed proportional to the weights associated with
their priorities. In more detail, suppose n queries Q1, Q2, …, and Qn are running in the
RDBMS concurrently. Qi (1≤i≤n) has priority pi. The corresponding weight for
priority pi is wi. Then each Qi (1≤i≤n) is executed at speed WwCs ii /×= , where

∑
=

=
n

j
jwW

1

.

2.2 Multi-query Progress Estimation

We first consider the simple case where no new queries arrive while the current
queries are executing. Although this is an artificial case, it is useful in providing
insight for the more general case we discuss in Section 2.4. Also, as we will see, this
case turns out to be important in its own right in the context of workload management.

Suppose n queries Q1, Q2, …, and Qn are running in the RDBMS, where Qi (1≤i≤n)
has priority pi and weight wi. The current time is time 0. To estimate the remaining
query execution time, the n queries Q1, Q2, …, and Qn are first sorted in the ascending
order of ci/si. That is, after sorting, we have

nn scscsc /// 2211 ≤≤≤ L (or equivalently,

nn wcwcwc /// 2211 ≤≤≤ L (1)

This order will be useful in the discussion below.
The execution of the n queries is divided into n stages. At the end of each stage, a

query finishes execution. Stage i (1≤i≤n) lasts for time ti. We call this the standard
case in the remainder of this paper.

Q1

Q4

Q2

Q3

t1 t2 t3 t4

stage 1 stage 2 stage 3 stage 4

Fig. 1. Sample execution of n=4 queries

To give the reader a feeling of

how the n queries will behave,
Figure 1 shows a sample execution
of n=4 queries. All these queries
have the same priority. At the end
of stage i (1≤i≤n), query Qi
finishes execution. During each
stage i, the amount of work

924 G. Luo, J.F. Naughton, and P.S. Yu

completed for Qj (i≤j≤n) is re-presented as a rectangle, where the height of the rectangle
represents the execution speed of Qj.

Now we describe our algorithm in detail. We first discuss stage 1. Recall that

nn scscsc /// 2211 ≤≤≤ L . Hence, among all the n queries Q1, Q2, …, and Qn, Q1 will

be the first one to finish, and it will finish at time
111 / sct = .

During stage 1, for each i (2≤i≤n), the amount of work completed for query Qi is

111
)1(/ scstsa iii ×=×= 11 / wwc i×= . Hence, at the end of stage 1, the remaining cost of Qi

(2≤i≤n) is
11

)1()1(/ wwccacc iiiii ×−=−= .

Now we discuss stage 2. During this stage, there are n-1 queries running: Q2, Q3, …,
and Qn. Each Qi (2≤i≤n) executes at speed)1()1(/WwCs ii ×= , where

1
2

)1(wWwW
n

j
j −==∑

=

.

For each i (2≤i≤n),
1

)1(
1

)1()1()1(/)/(/)/(/ wWCcCWwcsc iiii ×−×= . According to (1),

nn wcwcwc /// 3322 ≤≤≤ L . Hence,)1()1()1(
3

)1(
3

)1(
2

)1(
2 /// nn scscsc ≤≤≤ L . That is, among the queries

Q2, Q3, …, Qn, Q2 will finish first, and it will take time t2, where)1(
2

)1(
22 / sct = .

During stage 2, for each i (3≤i≤n), the amount of work completed for query Qi is
)1(

2
)1(

2
)1(

2
)1()2(/ scstsa iii ×=×=

2
)1(

2 / wwc i×= . Hence, at the end of stage 2, the remaining cost

of Qi (3≤i≤n) is
2

)1(
2

)1()2()1()2(/ wwccacc iiiii ×−=−= 2121211 /)/(/ wwwwccwwcc iii ××−−×−=

22 / wwcc ii ×−= .

This procedure is repeated for all the n stages to compute all the ti’s (1≤i≤n). By
induction, we find that Q1, Q2, …, and Qn will finish in the order Q1, Q2, …, and Qn.
That is, at the end of each stage i, Qi finishes execution. At time 0, the remaining
execution time of Qi is ∑

=

=
i

j
ji tr

1

.

The time complexity of the above algorithm is)ln(nnO × , and the space
complexity is O(n). (The derivation details are omitted due to space constraints.)

2.3 Non-empty Query Admission Queues

An RDBMS typically contains a query admission queue. If the RDBMS is
overloaded, newly arrived queries will be put into the query admission queue rather
than starting execution immediately. Since queries already in the query admission
queue are also “known” queries, a multi-query PI can extend its visibility into the
future by examining this queue. An example of this is given in our experimental
evaluation in Section 5.

2.4 Considering Future Queries

The above discussion assumed that no new queries arrive while the queries currently
in the RDBMS are running. In general, new queries will keep arriving, hence they
will influence the load on the RDBMS, and a PI must somehow account for these
queries. These queries are different from those in the admission queue – they have not
yet arrived and predictions about them necessarily involve speculation.

 Multi-query SQL Progress Indicators 925

If nothing at all is known about the future, then one guess about future loads is as
good as another, and there is no point in trying to do any forecasting. However, in
practice we think it is rare that absolutely nothing can be predicted about the future,
and that rough approximate information is likely to be available. The goal of the PI
then is to use such approximate information to improve its guesses about the future.

In our approach, we assume that we know the average query priority p , the

average cost c , and the average arrival rate λ. (The average inter-arrival time is then
λ/1=t .) Of course such predictions are only approximate, and as will be shown in

our experimental section, they need not be very accurate for the multi-query PI to
outperform a single-query PI. In many applications, the overall load on the system
over time is at least partially predictable, and these numbers can be obtained from past
statistics. Then we proceed in a way similar to that in Section 2.2. The only difference
is that every t seconds, we predict that a new query with priority p and cost c will

arrive at the RDBMS, and it is considered in the PI’s estimates.

3 Workload Management

Workload management for RDBMS has been extensively studied (e.g., [3, 7, 14, 19,
23]), and major commercial RDBMSs come with workload management tools [8, 10,
13, 15]. However, due to a lack of information about the progress of queries running
in the RDBMS, these tools cannot always make intelligent decisions.

For example, consider the following scheduled maintenance problem. Suppose at
time 0, we need to schedule maintenance (e.g., we need to install some new software,
or add several new data server nodes to a parallel RDBMS), and that the maintenance
is scheduled to begin at time t. A common practice is to perform two operations [22]:

O1: Starting from time 0, no new queries are allowed to enter the RDBMS.
O2: The existing queries are allowed to run until time t, when any queries that have

not completed are aborted.

The challenge is how to choose the maintenance time t so as to minimize the amount
of lost work without over-delaying the maintenance. In general, workload
management tools do not know which queries can finish by time t, so the DBA needs
to guess an arbitrary time that he/she thinks is appropriate. However, if we can
estimate query running times, then more intelligent decisions can be made. For
example, operation O2 can then be replaced with the following two operations:

O2′: Predict which queries cannot finish by time t and abort them at time 0. (Note:
aborting queries will reduce the load on the RDBMS and hence change the
estimate about which queries cannot finish by time t.)

O3: Let other queries in the RDBMS keep running. Suppose at time t, some of these
queries have not finished execution (this is possible if our estimation has errors).
Then they are either aborted or allowed to run to completion – the appropriate
action depends on both the application requirement and the estimate of how soon
those queries are going to finish.

926 G. Luo, J.F. Naughton, and P.S. Yu

Compared to operation O2, operations O2′ and O3 have the following advantages.
First, even for the same maintenance time t, by aborting some “hopeless” queries,
more queries can finish. Second, the amount of lost work can be controlled by
adjusting the maintenance time t.

As a second example, suppose that for some reason, the DBA needs to speed up the
execution of a target query Q. The DBA decides to do this by choosing one running
query (the victim query) and blocking its execution. In this case, a common approach
is to choose the victim query to be the heaviest resource consumer. However, if it
happens that this victim query will finish quickly, then blocking the execution of this
query will not speed up the execution of Q as much as blocking some other query that
has a longer remaining execution time. If the remaining execution time of the running
queries can be estimated, we can avoid choosing a victim query that is about to finish.

From the above discussion, we can see that it is desirable to give the workload
management tool more information about the remaining execution time of running
queries, and to use this information to make more intelligent decisions.

In this section, we discuss how to do this for three workload management
problems. Variants of these workload management problems are frequently
encountered in practice. Our goal is not to give an exhaustive account of all ways that
PIs could be useful for workload management; rather, it is to demonstrate by example
that the information provided by multi-query PIs can improve the quality of decisions
made by workload management tools.

In our discussion, for ease of description, we assume that the n queries Q1, Q2, …,
and Qn are numbered so that

nn scscsc /// 2211 ≤≤≤ L . Furthermore, we present our

techniques for making workload management decisions based on the current system
status (the n queries Q1, Q2, …, and Qn).

3.1 Single-Query Speed Up Problem

Suppose we want to speed up the execution of a target query Qi (1≤i≤n). A natural
choice is to increase the priority of Qi. However, if Qi is already of highest priority,
then we must either block one or more other queries, or lower the priority of one or
more other queries. In this paper, the first alternative is considered.

Assume that at time 0, we want to speed up the execution of query Qi by blocking
h≥1 victim queries. Which h queries should be blocked? This is our single-query
speed up problem. We first consider the simple case where h=1, and then discuss h≥1.
Intuitively, the optimal victim query Qv should satisfy the following two conditions:

C1: Qv should be the heaviest resource consumer.
C2: If not blocked, Qv should run for the longest time (at least longer than Qi).

In other words,

C1: The weight of Qv, wv, should be the largest.
C2: cv/sv, or v (since all queries are sorted in the ascending order of cj/sj), should be

the largest.

 Multi-query SQL Progress Indicators 927

It is not always possible to find a victim query that satisfies both conditions.
Rather, the optimal victim query should be chosen based on a tradeoff between these
two conditions. This tradeoff leads to a mathematical optimization problem.

The sketch of our method is as follows. The n-1 queries Q1, Q2, …, Qi-1, Qi+1, Qi+2,
…, and Qn are divided into two sets: S1={Q1, Q2, …, Qi-1} and S2={Qi+1, Qi+2, …, Qn}.
In either set Sj (j=1, 2), the best candidate victim query

jvQ is picked. This is achieved

by quantifying the “benefit” of speeding up the execution of the target query Qi that is
gained by blocking the execution of the victim query. Then the optimal victim query
Qv is the better one of

1vQ and
2vQ .

Our algorithm contains three steps.
Step 1: The queries in set S2 are examined first. In this case, condition C2 does not
matter, as each Qj (i+1≤j≤n) runs longer than Qi. To satisfy condition C1 as much as
possible, a natural choice is to choose query

2vQ to be the query with the highest

weight. That is, }1|max{
2

njiww jv ≤≤+= .

Q1

1t

Q2

Q3

Q4

t4

stage 1 stage 2 stage 3 stage 4

2t 3t

Fig. 2. Sample execution of n=4 queries
(the execution of Q3 is blocked at time 0)

We justify this choice formally. Suppose Qm
(i+1≤m≤n) is chosen as the victim query. To
compute the “benefit” of blocking Qm, the follow-
ing key technique is used. The entire period of
executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1,
…, and Qn is divided into n stages. During each
stage j (1≤j≤n), except for Qm, the amount of
work completed for Qk (1≤k≤ n, k ≠ m) remains
the same as that in the standard case (recall that
the standard case is defined in Section 2.2).

It is easy to see that except for stage m, at the end of each stage j (1≤j≤n, j≠m), a
query (Qj) finishes execution. Also, at stage j (1≤j≤i), compared to the standard case,
the execution of each Qk (j≤k≤n, k≠m) is sped up by a factor of

)/(∑∑
==

−
n

jp
mp

n

jp
p www

. As a

result, the duration of stage j is shortened from tj to ∑∑
==

−×=′
n

jp
p

n

jp
mpjj wwwtt /)(

. In other

words, the duration of stage j is shortened by ∑
=

×=′−=∆
n

jp
pmjjjj wwtttt / .

Hence, the remaining execution time of query Qi is shortened by

∑ ∑∑
= ==

×=∆=
i

j
m

n

jp
pj

i

j
jm wwttT

11

)/(. In order to maximize Tm, wm needs to be maximized.

Step 2: Now the queries in set S1 are examined. Suppose Qm (1≤m≤i-1) is chosen as the
victim query. To compute the “benefit” of blocking Qm, the technique of Step 1 is used
again. The entire period of executing the n-1 queries Q1, Q2, …, Qm-1, Qm+1, …, and Qn
is divided into n stages. During each stage j (1≤j≤n), except for Qm, the amount of work
completed for Qk (1≤k≤n, k≠m) remains the same as that in the standard case.

The remaining execution time of query Qi is shortened by Tm=cm/C. This is
because in the first i stages, by blocking the execution of Qm at time 0, cm’s work is
saved. To maximize

1vT , we should choose
1vQ such that }11|max{

1
−≤≤= imcc mv

.

928 G. Luo, J.F. Naughton, and P.S. Yu

Step 3: The optimal victim query Qv is the better one of
1vQ and

2vQ . That is,

},max{
21 vvv TTT = .

From the above analysis, it can be seen that at time 0, by blocking a query Qm
(1≤m≤n) whose remaining execution time is rm, no more than rm can be saved from
the execution of other queries. This agrees with our assertion at the beginning of
Section 3 that if the victim query will finish soon, blocking its execution will not help
much. The time complexity of the above algorithm is)ln(nnO × , while the space
complexity is O(n).

We now consider the special case where all n queries Q1, Q2, …, and Qn have the
same priority. In this case, the solution to the problem is greatly simplified:

(1) If i<n, the optimal victim query is any Qj (i+1≤j≤n).
(2) If i=n, the optimal victim query is Qn-1.

The time complexity of this solution algorithm is O(n). This is because in this case,
there is no need to either sort the n queries Q1, Q2, …, and Qn in ascending order of
cj/sj or compute all the tj’s. Rather, given the target query Qi whose remaining cost is
c, to find the optimal victim query, all the other queries need to be scanned (at most)
once. If we find a query whose remaining cost is no less than c, we are done.
Otherwise the query with the largest remaining cost is picked.

Now we return to the general case of our single-query speed up problem, where
h≥1. Suppose the h victim queries are chosen to be

1gQ ,
2gQ , …, and

hgQ , where

}{}...,,2,1{}...,,,{ 21 inggg h −⊆ . Assume by blocking
jgQ (1≤j≤h) at time 0, the

remaining execution time of Qi is shortened by
jgT . Then from an analysis similar to

that above, it can be shown that by blocking the h victim queries
1gQ ,

2gQ , …, and

hgQ at time 0, the remaining execution time of Qi is shortened by ∑
=

h

j
g j

T
1

.

Based on this observation, the following greedy method can be used to deal with the
general case of our single-query speed up problem. First, the optimal victim query is
chosen according to the algorithm presented previously. Then, among the remaining
queries, the next optimal victim query is chosen. This procedure is repeated h times to
get h victim queries. These h victim queries are the optimal h victim queries.

3.2 Multiple-Query Speed Up Problem

Suppose now that we want to block a single query to speed up the execution of the
other n-1 queries. Which query should be blocked? This is the multiple-query speed
up problem.

Suppose Qm (1≤m≤n) is chosen as the victim query. From an analysis similar to
that in Section 3.1, we know that for each j (1≤j≤m), compared to the standard case,
the duration of stage j is shortened by ∑

=

×=∆
n

jp
pmjj wwtt / . Also, each stage j

(m+1≤j≤n) is the same as that in the standard case.

 Multi-query SQL Progress Indicators 929

At each stage j (1≤j≤m), n-j queries Qj, Qj+1, …, Qm-1, Qm+1, …, and Qn are
running, and their total response time is improved by

jtjn ∆×−)(. Hence, by blocking

Qm at time 0, the total response time of all the other n-1 queries Q1, Q2, …, Qm-1, Qm+1,
…, and Qn is improved by ∑

=

∆×−=
m

j
jm tjnR

1

)(∑∑
==

××−=
n

jp
pm

m

j
j wwtjn /)(

1

. To maximize Rm,

we should choose the optimal victim query Qv such that }1|max{ nmRR mv ≤≤= . The

time complexity of the above algorithm is)ln(nnO × . Also, the space complexity of

the above algorithm is O(n).

3.3 Scheduled Maintenance Problem

In this section, we discuss the problem mentioned at the beginning of Section 3: how
can we choose the maintenance time t and the queries to abort so that the amount of
lost work can be minimized without over-delaying the maintenance? In practice, the
amount of lost work Lw can be defined in multiple ways. Due to space constraints, in
this paper, only the following two cases are discussed:

Case 1: Lw is the total amount of work that has been completed for the queries that
will be aborted.

Case 2: Lw is the total cost of the queries that will be aborted. In this case, it is
more appropriate to call Lw the amount of unfinished work, since the aborted queries
need to be rerun after the RDBMS is restarted.

For each i (1≤i≤n), let ei denote the amount of work that has been completed for
query Qi at time 0. We only describe the solution to Case 1. For Case 2, the solution is
the same except that for each i (1≤i≤n), ei needs to be replaced with ei+ci. Recall that
ci is the remaining cost of query Qi at time 0.

In our discussion, we assume that the overhead of aborting queries is negligible
compared to the query execution cost. This will be true in a primarily read-only
environment. In general, aborting jobs may introduce non-negligible overhead. How
to handle this case is left as an interesting area for future work.

We define the system quiescent time to be the time when all the n queries Q1, Q2,
…, and Qn (except for those queries that are aborted, if any) finish execution. The
estimated system quiescent time is our estimation of the earliest time when
the system maintenance can start. Suppose for each i (1≤i≤n), by aborting Qi at time 0,
the system quiescent time is shortened by Vi. It is easy to see that Vi=ci/C. Also,
by aborting h queries

1gQ ,
2gQ , …, and

hgQ at time 0, where 1≤h≤n and

}...,,2,1{}...,,,{ 21 nggg h ⊆ , the system quiescent time is shortened by ∑
=

h

j
g j

V
1

.

Our goal is to maximize ∑
=

h

j
g j

V
1

while minimizing ∑
=

h

j
g j

e
1

. This is the standard

knapsack problem [5]. Consequently, we use a greedy method to solve it. First the n
queries Q1, Q2, …, and Qn are re-sorted in ascending order of ei/Vi (recall that we
assume that originally, the n queries Q1, Q2, …, and Qn are sorted in ascending order
of ci/si). After re-sorting, we have

nn ffffff VeVeVe ///
2211

≤≤≤ L (or equivalently,

930 G. Luo, J.F. Naughton, and P.S. Yu

nn ffffff cecece ///
2211

≤≤≤ L), where }...,,,{ 21 nfff is a permutation of }...,,2,1{ n .

Then we keep aborting
1f

Q ,
2f

Q , …, until the system quiescent time becomes

satisfactory.

4 Revisiting the Assumptions

Sections 2 and 3 are based on the three assumptions in Section 2.1. Although we
believe that these assumptions approximate reasonable system behavior, in practice,
the system behavior will deviate from that predicted by these assumptions. Overall,
the impact of relaxing these assumptions is that the multi-query PI now gives only
approximate estimates, and for this reason the “advice” it gives for workload
management becomes heuristic rather than provably optimal. As mentioned in the
introduction, our method is adaptive and can make dynamic adjustments to ameliorate
previous errors. This can mitigate the effect of imprecise estimates. We discuss this in
more detail in the following subsections.

4.1 Assumptions 1 and 2

Assumption 1 says that for all the running queries, the RDBMS processes C units of
work per second in total. When Assumption 1 is not valid, the PI may either
underestimate the speedup that will occur when a query terminates (if, for example,
the system was thrashing until that query finished), or overestimate the speedup that
will occur when a query terminates (if, for example, a CPU-intensive query terminates
and the other queries are all I/O-intensive). While this will hurt the accuracy of the
multi-query PI, it is still likely to be superior to that of a single-query PI, which pays
no attention whatsoever to other queries.

Assumption 2 says that for each running query, the exact remaining cost is known.
If these estimates turn out to be far off, the accuracy of the multi-query PI will again
be harmed, although again it is likely to be better than that of a PI that completely
ignores these other queries. These scenarios could be dealt with in a number of ways,
including augmenting the PI to have a more accurate performance model (including
better modeling of a lightly loaded system), being willing to tolerate inaccuracies in
the PI’s estimates, or even revisiting the workload management decisions periodically
if the inaccuracies of the model have resulted in suboptimal decisions. Which
approach is best under which circumstances is an interesting question for future
research. We suspect that because the PI adjusts its estimates “on the fly” as it
discovers that they are inaccurate, it may not be worth the effort to improve the
precision of these estimates – but this is still an open question and also scope for
interesting future research.

4.2 Assumption 3

Assumption 3 says that each query’s execution speed is proportional to the weight
associated with its priority. This assumption is mainly for concreteness, for to discuss

 Multi-query SQL Progress Indicators 931

workload management problems in the context of queries with priorities, some policy
needs to be specified for how priority affects execution speed. If a system implements
a different approach to priorities, a priority model for the multi-query PI would need
to be developed for that approach. Even if the system attempts to implement a policy
where execution speed is proportional to priority, the true behavior may be different
for a variety of reasons – one example is the details of query interactions (e.g., a high-
priority I/O-intensive query might not substantially block a low-priority CPU-
intensive query, or two queries compete for/share buffer pool pages and thus slow
down/speed up each other’s execution). As was the case in Section 4.1, these factors
will harm the accuracy of the multi-query PI, and ways to deal with this include
building a more accurate model, tolerating errors, or periodically revising decisions.

4.3 Other Practical Considerations

The time complexity of most algorithms described in this paper is)ln(nnO × , where
n is the number of queries in the RDBMS. This is a cause for some concern if n is
large. However, in general, we would expect that the majority of queries are short
(i.e., queries that can finish in a few seconds) and not really candidates for progress
estimation or relevant individually for workload management. For this reason we
think it is reasonable for the purposes of workload management and progress
estimation to ignore these short queries and focus on long-running queries. Thus the
effective n in the preceding formula is likely to be small and the computational cost
will be small.

5 Performance Evaluation

In this section, we present results from a prototype implementation of our techniques
in PostgreSQL Version 7.3.4 [17].

5.1 Experiment Environment

Our measurements were performed with the PostgreSQL client application and server
running on a Dell Inspiron 8500 PC with one 2.2GHz processor, 512MB main
memory, one 40GB disk, and running the Microsoft Windows XP operating system.
The relations used for the experiments followed the schema of the standard TPC-R
Benchmark relations [21]:

lineitem (partkey, quantity, extendedprice, …),
part_i (partkey, retailprice, …) (i≥1).

Table 1. Test data set

 number of tuples total size
lineitem 24M 3.02GB
part_i (i≥1) 10×Ni 1.4×Ni KB

932 G. Luo, J.F. Naughton, and P.S. Yu

In our experiments, each part_i relation (i≥1) contains 10×Ni tuples. (How the Ni’s
are chosen is discussed later.) The partkey attribute values in the part_i relations are
randomly distributed between the minimal partkey attribute value and the maximal
partkey attribute value in the lineitem relation. In a given part_i relation, all the tuples
have different partkey attribute values. On average, each part_i tuple matches with 30
lineitem tuples on the attribute partkey. We built an index on the partkey attribute of
the lineitem relation.

The following queries were tested, which find parts that are on average selling for
25% below suggested retail price:

Query Qi (i≥1): select * from part_i p where p.retailprice×0.75>
(select sum(l.extendedprice)/sum(l.quantity) from lineitem l where l.partkey=p.partkey);

Each query is a nested query that contains a correlated sub-query. The query plan
chosen by PostgreSQL for the correlated sub-query is an index-scan on the lineitem
relation. We repeated our experiments with other kinds of queries. The results were
similar and thus not presented here.

Before we ran queries, we ran the PostgreSQL statistics collection program on all
the relations. PostgreSQL does not support priorities for queries. Hence, all the
queries Qi (i≥1) have the same priority. In all experiments, the outputs from each PI
were stored into a separate file.

5.2 Multi-query Progress Indicator

Three experiments were performed to compare single-query PIs with multi-query PIs.
In the first two experiments, we ensure that no new queries arrive at the RDBMS
while the queries under consideration are running. In the third experiment, we explore
the situation in which new queries keep arriving at the RDBMS.

5.2.1. Multiple Concurrent Query (MCQ) Experiment
In this experiment, ten queries were used: Qi (1≤i≤10). Their Ni’s followed a Zipfian
distribution with parameter a=1.2. At time 0, each of these ten queries was at a
random point of its execution.

This experiment was performed multiple times. A typical run is examined here.
In this run, among the n =10 queries Qi (1≤i≤10), we focus on a typical large query Q.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400 450

time (seconds)

es
ti

m
at

e
d

 r
em

ai
n

in
g

 q
u

er
y

ex

ec
u

ti
o

n
 t

im
e

 (
se

co
n

d
s)

single-query estimate

mult i-query est imate

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450

t ime (seconds)

q
u

e
ry

 e
x

e
cu

ti
o

n
 s

p
e

e
d

 (
U

s
p

er
 s

e
c

o
n

d
)

Fig. 3. Remaining query execut-
ion time estimated over time for
Q (MCQ experiment)

Fig. 4. Query execution speed
monitored over time for Q
(MCQ experiment)

For this Q, Figure 3
shows the remaining
query execution time
estimated by the PI
over time. Figure 4
shows the query execut-
ion speed monitored by
the PI over time. In
Figure 3, the actual re-
maining query execut-
ion time is represented
by the dashed line, the

 Multi-query SQL Progress Indicators 933

single-query estimate is provided by the single-query PI, and the multi-query estimate
is provided by the multi-query PI.

From time 0 to the completion time of query Q, due to the completion of other
concurrent queries, the execution speed of Q gradually increases by almost a factor of
five. The multi-query PI is able to predict the change in the load on the RDBMS while
the single-query PI cannot. As a result, the multi-query estimate is fairly close to the
actual remaining query execution time, while the single-query estimate differs from
the actual remaining query execution time by almost a factor of three at the beginning.

5.2.2. Non-empty Admission Queue (NAQ) Experiment
In this experiment, three queries were used: Q1, Q2, and Q3, with N1=50. N2=10.
N3=20. The query admission policy was that at any time, at most two queries could
run concurrently in the RDBMS. At time 0, Q1, Q2, and Q3 entered the RDBMS
admission queue. Q1 and Q2 started execution first, with Q3 blocked until Q2 finishes.

The purpose of this experiment is to show that when the admission queue is not
empty, multi-query PIs that consider the admission queue can provide more accurate
estimates than either single-query PIs or multi-query PIs that do not consider the
admission queue. In effect, examining the admission queue lets the PI see farther into
the future.

0

100

200

300

400

500

0 50 100 150 200 250 300 350 400

time (seconds)

e
st

im
a
te

d
 r

e
m

ai
n

in
g
 q

u
er

y

e
x

e
cu

ti
o

n
 t

im
e
 (

se
c
o
n

d
s)

s ingle-query estimate

multi-query estimate (without

considering admission queue)
multi-query estimate

(considering admission queue)

Fig. 5. Remaining query execution time esti-
mated over time for Q1 (NAQ experiment)

For query Q1, Figure 5 shows the
remaining query execution time
estimated by the PIs over time. There,
the actual remaining query execution
time is represented by the dashed line.
Two vertical dashed-dotted lines are
used, one representing the start time of
Q3, and another representing the finish
time of Q3.

The execution time of query Q1 is
longer than the sum of the execution
time of Q2 and the execution time of Q3.

Before Q2 finishes, without considering Q3 that is waiting in the admission queue,
neither the single-query PI nor the multi-query PI can accurately predict the load on
the RDBMS after the completion of Q2. Hence, the multi-query estimate considering
the admission queue is more precise than the other approaches.

At the 97th second, query Q2 finishes and Q3 starts. The query admission queue
becomes empty. The multi-query PI is able to predict that Q3 will finish before Q1 and
then the execution speed of Q1 will increase, while the single-query PI incorrectly
assumes that the execution speed of Q1 will remain the same during the execution of
Q1. As a result, the multi-query estimate becomes more precise than the single-query
estimate until Q3 finishes at the 291st second.

5.2.3. Stream Concurrent Query (SCQ) Experiment
In this experiment, at time 0, ten queries Qi (1≤i≤10) were running in the RDBMS and
each of them was at a random point of its execution. New queries kept arriving at the

934 G. Luo, J.F. Naughton, and P.S. Yu

RDBMS according to a Poisson process with parameter λ. (The unit of λ is second-1.)
For both Qi’s (1≤i≤10) and new queries, their Ni’s followed a Zipfian distribution with
parameter a=2.2. (We also tested other values of a. The results are similar and thus
omitted.)

Consider any Qi (1≤i≤10). Suppose the actual remaining query execution time is
tactual. At time 0, the multi-query PI estimates the remaining query execution time to
be tmulti. The relative error of the multi-query estimate is defined as

%100/|| ×− actualactualmulti ttt . The relative error of the single-query estimate is defined in

a similar way.
Among all Qi’s (1≤i≤10), the one with the largest remaining cost at time 0 will

finish last and is thus called the last finishing query. The test was repeated one
hundred times (one hundred runs). Unless otherwise specified, all the reported
numbers are averaged over these one hundred runs.

0%

50%

100%

150%

200%

250%

0 0.05 0.1 0.15 0.2

lambda

re
la

ti
v

e
er

ro
r

single-query est imate

mult i-query estimate

0%

20%

40%

60%

80%

0 0.05 0.1 0.15 0.2

lambda

re
la

ti
v

e
 e

rr
o

r

single-query est imate

mult i-query estimate

Fig. 6. Relative error of estimated re-
maining execution time for the last
finishing query (a=2.2)

Fig. 7. Average relative error of esti-
mated remaining execution time for
al l ten queries (a=2.2)

We first
discuss the
case where
the multi-
query PI
knows the
exact aver-
age arrival
rate λ and
the exact
average cost

c of future queries. For the last finishing query, Figure 6 shows the relative error of
the estimated remaining execution time. For all Qi’s (1≤i≤10), Figure 7 shows the
average relative error of the estimated remaining execution time.

When producing estimates, the multi-query PI considers both concurrently running
queries and future queries. In contrast, the single-query PI incorrectly assumes that the
load will remain stable in the future. As a result, the relative error of the multi-query
estimate is always smaller than that of the single-query estimate.

When the system is stable, the relative error of the single-query estimate decreases
as λ increases. This is because the larger the λ, the closer to reality the assumption
made by the single-query PI. In contrast, the relative error of the multi-query estimate
increases with λ, as the faster new queries arrive, the larger and the more random their
influence on existing queries. Note that the stable system case is the most common
case encountered in practice. In this case, the relative error of the multi-query estimate
is much smaller than that of the single-query estimate.

When λ>0.07, new queries come faster than the RDBMS can process them and
thus the system becomes unstable. In this case, the influence of new queries on
existing queries becomes fairly large and random. Hence, single-query and multi-
query estimates have roughly the same (large) relative error.

Among all Qi’s (1≤i≤10), the last finishing query gets the largest and most random
influence from new queries. Consequently, PIs provide the least precise estimate for
the last finishing query. This leads to the effect that for both single-query and

 Multi-query SQL Progress Indicators 935

multi-query estimates, the average relative error for the ten queries is smaller than the
relative error for the last finishing query.

0%

50%

100%

150%

200%

250%

0 0.05 0.1 0.15 0.2

lambda estimated by multi-query PI

re
la

ti
v

e
er

ro
r

single-query estimate

mult i-query est imate

0%

20%

40%

60%

80%

0 0.05 0.1 0.15 0.2

lambda estimated by mult i-query PI

re
la

ti
v

e
e

rr
o

r

single-query est imate

mult i-query estimate

Fig. 8. Relative error of estimated
remaining execution time for the last
finishing query (a=2.2 , lambda=0.03)

Fig. 9. Average relative error of
estimated remaining execution time for
all ten queries (a=2.2 , lambda=0.03)

Now we
discuss the
case where
the multi-
query PI
cannot esti-
mate λ, the
average arri-
val rate of
future queries,
precisely. We
include this
experiment
to illustrate

one example of the multi-query PI detecting when its estimates were wrong and then
adapting and correcting its estimates. This is not the only way it does so; like single-
query PIs, multi-query PIs also react to incorrect cost estimates (due perhaps to bad
cardinality estimates or an inaccurate hardware cost model) and incorrect assumptions
about how concurrently executing queries affect the performance of a given query
(even single-query PIs notice, e.g., that they have slowed down when another query
starts, even though they do not know why, or how long the slowdown might last, or if
a similar slowdown might occur again in the future from a yet-to-arrive query.)
Because we have explored this sort of adaptivity in our prior work [11, 12], we do not
explore it here. Instead, we focus on a kind of adaptivity unique to multi-query PIs,
i.e., adapting to errors in expected query arrival rate.

Let λ=0.03. The multi-query PI makes its estimate based on λ' while λ'≠λ. For the
last finishing query, Figure 8 shows the relative error of the estimated remaining
execution time. For all Qi’s (1≤i≤10), Figure 9 shows the average relative error of the
estimated remaining execution time.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

t ime (seconds)

e
st

im
at

ed
 r

em
ai

n
in

g
 q

u
er

y

ex
e
cu

ti
o
n

 t
im

e
(s

ec
o
n

d
s)

lambda'=0.04

lambda'=0.05

Fig. 10. Remaining query execution time
estimated by multi -query PI over time
(lambda=0.03)

The bigger the difference between λ' and λ,
the more inaccurate the multi-query estimate.
However, unless λ' is more than five times
larger than λ, the relative error of the multi-
query estimate is always smaller than that of
the single-query estimate. This shows that, at
least in these tests, even somewhat inaccurate
information about the future is better than no
information about the future.

We pick a typical run among the one
hundred runs. In this run, for the last finishing
query, Figure 10 shows the remaining query
execution time estimated by the multi-query

PI over time. There, the actual remaining query execution time is represented by
the dashed line. At the beginning, due to the incorrectly estimated arrival rate λ', the

936 G. Luo, J.F. Naughton, and P.S. Yu

multi-query estimate is quite different from the actual remaining query execution
time. The bigger the difference between λ' and λ, the more inaccurate the multi-query
estimate. However, the multi-query PI is adaptive and can correct its own errors. The
closer to query completion time, the more precise the multi-query estimate is.

In summary, as long as there is some reasonable (approximate) information about
the future load, the multi-query PI can provide (often much) more accurate estimate of
remaining query execution time than the single-query PI. This information need not
be extremely accurate - the multi-query PI is adaptive and can correct its own errors
over time.

5.3 Workload Management

Section 3 discussed three workload management problems. The experiment results for
these three workload management problems were similar, since similar techniques
were used for each problem. Accordingly, in this section, only the experiment results
for Case 2 of the scheduled maintenance problem are presented, where the amount of
unfinished work is defined as the total cost of all queries that will be aborted.

5.3.1. Experiment Description
We wanted to simulate a typical situation in practice, where the number of small
queries submitted to the RDBMS is much larger than the number of large queries
submitted to the RDBMS. To achieve this, a large number of queries Qi (i≥1) are
used. We let all the Ni’s follow a Zipfian distribution with parameter a=2.2. (We also
tested other values of a. The results were similar and thus are omitted.) Note that Ni
“represents” the cost of Qi. Each Qi (i≥1) has the same probability to be submitted to
the RDBMS.

We evaluated the performance of our workload management techniques in the
following way. At any time, n=10 queries

jfQ (fj≥1, 1≤j≤10) are running in the

RDBMS. At the time that a query
jfQ finishes execution, a random k (k≥1) is picked

and query Qk is submitted to the RDBMS for execution. Hence, for all the queries Qk
submitted to the RDBMS, the Nk’s follow a Zipfian distribution with parameter a.

A random time rt is chosen. At time rt, the RDBMS is inspected and decisions are
made to prepare for system maintenance scheduled for t seconds later. By a simple
mathematical derivation, it can be shown that for the n=10 queries

jgQ (gj≥1, 1≤j≤10)

running at time rt, their
jgN ’s follow a Zipfian distribution with parameter a-1. Due

to space constraints, we only describe the main ideas in the derivation while
omitting the details. For a particular Qk (k≥1), the probability that Qk is running
at time rt is proportional to both the probability that Qk is submitted and the
cost of Qk (larger queries will run longer and hence are easier to be “seen”). Thus,

1/1)/1()(−=×∝= aa
g mmmmNyprobabilit

j

.

We compare the following three methods:

No PI method: No PI was used. Rather, we performed operations O1 and O2
described in Section 3.

 Multi-query SQL Progress Indicators 937

Single-query PI method: We used the single-query PI and performed operations O1,
O2′, and O3. When operation O2′ was performed, the query with the largest estimated
remaining cost was first aborted. Then if necessary, we further aborted the query with
the second largest estimated remaining cost, and so on.
Multi-query PI method: We used the multi-query PI and performed operations O1,
O2′, and O3. When operation O2′ was performed, the algorithm described in Section
3.3 was used.

In all three methods, at the scheduled maintenance time rt+t, the queries that had
not finished execution were aborted. The test was repeated ten times (ten runs).
Unless otherwise specified, all the reported numbers are averaged over these ten runs.

For the n=10 queries
jgQ (gj≥1, 1≤j≤10) running at time rt, the total work TW is

defined to be their total cost. The unfinished work UW is defined to be the total cost
of those queries that are aborted between time rt and the scheduled maintenance time
rt+t. (Recall that unfinished queries are aborted at time rt+t.) Finally, tfinish is defined
to be their remaining execution time under the no interruption condition. That is,
under the condition that no new queries enter the RDBMS for execution and there is
no scheduled maintenance so that none of the existing n=10 queries is aborted, all the
existing n=10 queries can finish by time rt+tfinish.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

t / t
fin ish

U
W

 /
 T

W

no PI method

single-query PI method

multi-query PI method

theoretical limitat ion

Fig. 11. Unfinished work of the three methods
(a=2.2)

Figure 11 shows the unfinished work
of the three methods. Note that the x-axis
is t/tfinish. The y-axis is UW/TW. That is,
both the x-axis and the y-axis have been
“normalized,” as the specific values of
tfinish and TW vary from one run to
another. In the rest of Section 5.3, when
we refer to the amount of unfinished
work, we always mean UW/TW.

Figure 11 also shows the theoretical
limit that any method can achieve. This
limit is computed using the exact informat-

ion that comes from the actual run-to-completion execution of the n=10 queries. That
is, based on this exact information, we compute the optimal set of queries that should
be aborted at time rt so that all the other queries can finish by the scheduled
maintenance time rt+t.

If t=tfinish, then in both the no PI method and the multi-query PI method, all queries
can run to completion and there is no unfinished work. However, in the single-query
PI method, 67% of the total work TW is not finished. The reason is as follows. In
general, as can be seen from the experiment results in Section 5.2.1, the single-query
PI tends to significantly overestimate the remaining execution time of those queries
whose remaining costs are large at time rt. Consequently, the single-query PI method
thinks that a large portion of those queries cannot meet the scheduled maintenance
time and aborts them unnecessarily at time rt.

If t<tfinish, each of the three methods needs to abort queries. Among the three
methods, the multi-query PI method has the least amount of unfinished work.

938 G. Luo, J.F. Naughton, and P.S. Yu

Compared to the no PI method, the multi-query PI method reduces the amount of
unfinished work by 18%~44%. Compared to the single-query PI method, the multi-
query PI method reduces the amount of unfinished work by 15%~67%. The reason for
this reduction of work is as follows. First, in this case the multi-query PI can estimate
the remaining query execution time fairly precisely. As a result, the multi-query PI
method can estimate which queries cannot finish in time and abort them early so that
more queries can meet the scheduled maintenance time. Second, as explained above,
the single-query PI method aborts a large number of queries unnecessarily. Finally,
the no PI method does not abort any query until the scheduled maintenance time. As a
result, before the scheduled maintenance time, queries compete with each other for
resources and are executed relatively slowly. Hence, compared to the multi-query PI
method, fewer queries can meet the scheduled maintenance time.

In general, the no PI method has less unfinished work than the single-query PI
method. However, when t is small (say, t=0.2×tfinish), the no PI method has a little bit
more unfinished work than the single-query PI method. This is because in this case, at
time rt, the single-query PI method aborts those queries whose remaining costs are
large. Then other queries can run faster and finish by the scheduled maintenance time.
In contrast, the no PI method does not abort any query at time rt. This leads to the
effect that all queries are executed very slowly. As a result, very few queries can meet
the scheduled maintenance time. Note that if t is large, this effect is not so significant.
This is because those queries whose remaining costs are small at time rt are going to
finish in a small amount of time. Then other queries can run faster.

In all ten runs, in most cases, the multi-query PI method performs better than both
the no PI method and the single-query PI method. In the extreme case, compared to
the no PI method and the single-query PI method, the multi-query PI method reduces
the amount of unfinished work by 73% and 94%, respectively. (Note: the maximum
percentage by which the multi-query PI method can reduce the amount of unfinished
work is at most 100%.)

Occasionally, the multi-query PI method performs worse than either the no PI
method or the single-query PI method. In the worst case, compared to the no PI method
and the single-query PI method, the multi-query PI method increases the amount of
unfinished work by 12% and 3%, respectively. This is because in the multi-query PI
method, the greedy method only provides an approximate solution to the knapsack
problem (finding the optimal solution to the knapsack problem is NP-hard). Also, the
estimates provided by multi-query PIs have errors, mainly due to the imprecise
statistics collected by PostgreSQL.

Among all the three methods, the multi-query PI method performs the closest to the
theoretical limitation. When t<tfinish, compared to the theoretical limitation, on
average, the multi-query PI method increases the amount of unfinished work by
3%~12%. In the worst case, the multi-query PI method increases the amount of
unfinished work by 60%.

In summary, the average performance of the multi-query PI method is better than both
that of the no PI method and that of the single-query PI method. The multi-query PI
method can avoid extremely bad decisions. In the best case, the multi-query PI method
can perform much better than both the no PI method and the single-query PI method. In

 Multi-query SQL Progress Indicators 939

the worst case, compared to both the no PI method and the single-query PI method,
the multi-query PI method performs only a little worse. Moreover, in a large number
of cases, the multi-query PI method performs fairly close to the theoretical limitation.

6 Related Work

As mentioned in the introduction, all previous work on PIs has considered only
single-query PIs, and none of the previous work has considered the application of PIs
to workload management. Of course, there is a great deal of related work dealing with
workload management. In general, the workload management problems discussed in
Section 3 are scheduling problems. In this section, we give a brief survey of existing
work related to scheduling.

Process scheduling has been exhaustively studied in the context of operating
systems. In general, the process scheduler in the operating system does not know the
job sizes [20]. By contrast, in our workload management environment, the query costs
are known (or at least the query costs can be roughly estimated).

Process scheduling and transaction scheduling have been extensively studied in
real-time operating systems [9, 24] and real-time database systems [1, 18]. In general,
the main concern there is to meet deadlines rather than to maximize resource
utilization. Most real-time systems are memory resident and the jobs there can be
finished in a short amount of time (say, less than a few seconds). Hence, they need
special time-cognizant protocols (e.g., to handle critical sections). Many real-time
systems use hard deadlines. As a result, the jobs there are usually pre-defined (i.e.,
“canned” jobs). Also, almost all jobs there have deadlines.

In our workload management environment, we do not want to sacrifice resource
utilization ratio in our general-purpose RDBMS. Queries may incur substantial I/Os
and run for a long time. Therefore, short-term effects can be ignored and no special
time-cognizant protocol is needed. Before queries are submitted to the RDBMS, we
have only approximate knowledge of their resource requirements. Also, most queries
do not have hard deadlines.

Job scheduling has been extensively studied in operations research and in computer
science theory [2, 16]. In these studies, jobs usually have precedence constraints. On a
single machine, jobs are typically executed one after another. Also, the main concern
is to maximize the throughput/utilization ratio of the machines. In our database
workload management environment, queries do not have precedence constraints and
are executed concurrently.

7 Conclusion

In this paper we considered going beyond the state of the art in RDBMS PIs by
considering the impact queries have on each other’s progress and eventual
termination. Our multi-query PIs consider not only currently executing queries, but

940 G. Luo, J.F. Naughton, and P.S. Yu

also predictions about queries that might arrive in the future. Even approximate
information about future queries is helpful, and the PIs are adaptive in that they detect
when they were given “bad” information about the future and correct their estimates
as they learn more about the true query workload. We also demonstrated how to apply
the resulting multi-query PIs to several workload management problems. As shown in
experiments with a prototype implementation, for both estimating remaining query
execution time and workload management purposes, the proposed multi-query PIs
have significant advantages over single-query PIs or no PIs, suggesting that multi-
query PIs may be a useful addition to RDBMSs.

Acknowledgements

We would like to thank Curt J. Ellmann and Michael W. Watzke for helpful discussions.
This work was supported in part by NSF grants CDA-9623632 and ITR 0086002.

References

1. R.K. Abbott, H. Garcia-Molina. Scheduling Real-time Transactions: a Performance
Evaluation. VLDB 1988: 1-12.

2. J. Blazewicz, K.H. Ecker, and E. Pesch et al. Scheduling Computer and Manufacturing
Processes, Second Edition. Springer-Verlag, 2001.

3. M.J. Carey, S. Krishnamurthi, and M. Livny. Load Control for Locking: The 'Half-and-
Half' Approach. PODS 1990: 72-84.

4. S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can We Trust Progress Estimators
for SQL Queries? SIGMOD Conf. 2005.

5. T.H. Cormen, C.E. Leiserson, and R.L. Rivest et al. Introduction to Algorithms, Second
Edition. MIT Press, 2001.

6. S. Chaudhuri, V.R. Narasayya, and R. Ramamurthy. Estimating Progress of Long Running
SQL Queries. SIGMOD Conf. 2004: 803-814.

7. C. Faloutsos, R.T. Ng, and T.K. Sellis. Predictive Load Control for Flexible Buffer
Allocation. VLDB 1991: 265-274.

8. IBM Autonomic Computing homepage. http://www.research.ibm.com/autonomic.
9. S. Khanna, M. Sebree, and J. Zolnowsky. Realtime Scheduling in SunOS 5.0. USENIX

Winter 1992: 375-390.
10. G.M. Lohman, S. Lightstone. SMART: Making DB2 (More) Autonomic. VLDB 2002:

877-879.
11. G. Luo, J.F. Naughton, and C.J. Ellmann et al. Toward a Progress Indicator for Database

Queries. SIGMOD Conf. 2004: 791-802.
12. G. Luo, J.F. Naughton, and C.J. Ellmann et al. Increasing the Accuracy and Coverage of

SQL Progress Indicators. ICDE 2005: 853-864.
13. Microsoft AutoAdmin Project homepage. http://research.microsoft.com/dmx/autoadmin.
14. D.T. McWherter, B. Schroeder, and A. Ailamaki et al. Priority Mechanisms for OLTP and

Transactional Web Applications. ICDE 2004: 535-546.
15. Oracle Database: Manageability. http://www.oracle.com/database/index.html?db_

manageability.html.

 Multi-query SQL Progress Indicators 941

16. M. Pinedo. Scheduling: Theory, Algorithms, and Systems, Second Edition. Prentice Hall,
2001.

17. PostgreSQL homepage, 2005. http://www.postgresql.org.
18. K. Ramamritham. Real-Time Databases. Distributed and Parallel Databases 1(2): 199-226,

1993.
19. D. Shasha, P. Bonnet. Database Tuning: Principles, Experiments, and Troubleshooting

Techniques. Morgan Kaufmann Publishers, 2002.
20. A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts, Sixth Edition. John

Wiley, 2002.
21. TPC Homepage. TPC-R benchmark, www.tpc.org.
22. Michael W. Watzke. Personal communication, 2005.
23. G. Weikum, C. Hasse, and A. Moenkeberg et al. The COMFORT Automatic Tuning

Project. Inf. Syst. 19(5): 381-432, 1994.
24. W. Zhao. Editor. Special Issue on Real-Time Computing Systems. Operating Systems

Review 23(3), 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

