Biometric Functionalities and System Errors

Guodong Guo

8/29/2017
Two types of functionalities

• A biometric system can provide two types of identity management functionalities:
 – Verification
 – Identification

• The generic term “recognition” will be used when we do not wish to make a distinction between the verification and identification functionalities

• authentication = verification
Verification

- In verification, the user claims an identity and the system verifies whether the claim is genuine
 - i.e., the system answers the question “Are you who you say you are?”
- **One-to-one match**: the query is compared only to the template corresponding to the claimed identity.
- **How to claim an identity?**
Claim an identity

• The identity claim is usually made through the use of a Personal Identification Number (PIN), a user name, or a token (e.g., smart card)

• **Genuine** and **Impostor**: If the user’s input and the template of the claimed identity have a high degree of similarity, then the claim is accepted as “genuine”

• Otherwise, the claim is rejected and the user is considered an “impostor”

• Other terms: “client” or “authentic” == “genuine”
Application scenarios

• Verification is typically used in applications where the goal is to prevent unauthorized persons from using the services
 – Such as ...?
two-category classification

- Verification can be considered as a two-category classification problem
- Given a claimed identity \(I \) and a query feature set \(x^A \), we need to decide if \((I, x^A)\) belongs to “genuine” or “impostor” class
- Let \(y \) be the stored template corresponding to identity \(I \). Typically, \(x^A \) is compared with \(y \) and a match score \(s \), which measures the similarity between \(x^A \) and \(y \), is computed. The decision rule is given by
(Cons.)

• \((I, x^A) \in \text{genuine, if } s \geq \eta,\)

impostor, if \(s < \eta,\)

where \(\eta\) is a pre-defined threshold.

• If a distance score is used in place of the similarity or match score, the inequalities in the decision rule should be reversed.

• When the identity claim is deemed to be “genuine”, the user is allowed to access the services provided by the system.
Identification

• Identification functionality can be further classified into positive and negative identification

• **Positive identification**: The user attempts to positively identify himself to the system without explicitly claiming an identity.

 – A positive identification system answers the question “Are you someone who is known to the system?” by determining the identity of the user from a known set of identities.

• **Negative identification**: The user is concealing his true identity from the system either explicitly or implicitly.

 – Negative identification is also known as screening and the objective of such systems is to find out “Are you who you say you are not?”
negative identification

• The purpose of negative identification is to prevent a single person from using multiple identities.

• Examples:
 – Screening can be used to prevent the issue of multiple credential records (e.g., driver’s license, passport) assigned to the same person;
 – Screening is used to prevent a person from claiming multiple benefits under different names (a problem commonly encountered in welfare disbursement applications);
Formal description of the identification problem

• Given a query feature set x^A, we need to decide the identity I of the user, where $I \in \{I_1, I_2, \ldots, I_N, I_{N+1}\}$. Here, I_1, I_2, \ldots, I_N correspond to the identities of the N users enrolled in the system, and I_{N+1} indicates the case where no suitable identity can be determined for the given query.

• If x_n is the stored template corresponding to identity I_n and s_n is the match score between x^A and x_n, for $n = 1, 2, \ldots, N$, the decision rule for identification is,

$$x^A \in I_j, \quad \text{if } j = \text{argmax}_n s_n \text{ and } s_j \geq \eta,$$

$$I_{N+1}, \quad \text{otherwise},$$

where η is a pre-defined threshold.
Open set Identification

• The above decision rule is commonly known as *open set identification*, because it is possible to return a result indicating that the user (presenting his biometric trait) is not among the *N* enrolled users.

• Almost all practical biometric identification systems (including screening systems) use *open set identification*, why?
Closed set Identification

• Force the system to return one among the N enrolled identities, irrespective of the value of s_j. Such a scenario is called *closed set identification*.
Semi-automated identification

• In some practical biometric identification systems (e.g., latent fingerprint matching), identification is semi-automated

• A semi-automated biometric system outputs the identities of the top \(t \) matches \((1 < t \ll N)\), and a human expert manually determines the identity (among the \(t \) selected identities) that best matches the given query

• The value of \(t \) could be determined based on the availability and throughput of the human expert(s)

• Why do we need this semi-automated identification?
Example

• Against a large database such as the FBI’s Integrated Automated Fingerprint Identification System (IAFIS), which has approximately 60 million users enrolled, the typical value of t could range from 20 to 50.

• Another approach is to return all identities whose corresponding match scores exceed the threshold (η), since the number of enrolled users in the database can be quite large.
Biometric System Errors

• The science of biometric recognition is based on two fundamental premises, namely, *uniqueness* and *permanence* of the underlying biometric trait.

• **Uniqueness**: A biometric identifier is said to be *unique* only if any two persons in the world can be differentiated based on the given identifier.

• **Permanence**: A biometric trait is *permanent* if it does not change over the lifetime of an individual.
uniqueness and permanence

• These two premises are seldom true in practical biometric systems
 – The physical trait itself may not be unique
 • Example: Fingerprint, face, or iris.
 – The uniqueness or *individuality* of biometric modalities has not been clearly established

• The genetic similarity between related individuals (e.g., twins, father and son) may also contribute to the lack of uniqueness of some biometric traits
 – Example: The facial appearance of identical twins is almost the same
Two types of features

• **Genotypic factors/features**: Modalities such as DNA, where the genetic constitution of the individual largely determines their biometric characteristics are referred to as **genotypic factors/features**

• **Phenotypic factors/features**: The modalities whose characteristics are determined by other sources of randomness in nature (e.g., fingerprints) are referred to as **phenotypic factors/features**
Permanence

• The notion that the biometric traits are permanent is not an established scientific fact, either

• The effects of body growth (especially during childhood and adolescence) on common biometric identifiers like face, fingerprint, or iris, have not been studied in detail

• Biometric systems rely only on the digital measurements of the body characteristics, and not the real physical traits
Biometric samples are seldom identical

• **Intra-user Variations**: The variability observed in the biometric feature set of an individual is known as *intra-user variations* or *intra-class variations*

• This *variability* may be due to *reasons* like
 – imperfect sensing conditions (e.g., noisy fingerprint due to sensor malfunction)
 – alterations in the user’s biometric characteristic (e.g., respiratory ailments impacting speaker recognition)
 – changes in ambient conditions (e.g., inconsistent illumination levels in face recognition applications)
 – variations in the user’s interaction with the sensor (e.g., occluded iris or partial fingerprints)
No perfect match

• Given the *variability* in the acquired biometric traits, it is factitious to expect a perfect match between any two biometric feature sets, even if they come from the same individual

• **When can we have a perfect match?**

 – e.g., in password-based authentication systems, but *not* in a biometric system
Close match in biometric systems

- Biometric systems mostly decide on a person’s identity based on a close match between the template and the query, where the strength of the match (or the degree of similarity) is represented by the match score.
An ideal biometric feature set

- It must exhibit small inter-user similarity and small intra-user variations. In practice, both these conditions may not be fully met either due to
 - inherent *information limitation* (lack of uniqueness) in the underlying biometric trait
 - *representation limitation* (problems in feature extraction)