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Abstract

Biometrics has become more and more important in se-
curity applications. In comparison with many other bio-
metric features, iris recognition has very high recognition
accuracy. Successful iris recognition depends largely on
correct iris localization, however, the performance of cur-
rent techniques for iris localization still leaves room for im-
provement. To improve the iris localization performance,
we propose a novel method that optimally utilizes both the
intensity gradient and texture difference. Experimental re-
sults demonstrate that our new approach gives much bet-
ter results than previous approaches. In order to make the
iris boundary more accurate, we present a new issue called
model selection and propose a method to choose between el-
lipse/circle and circle/circle models. Furthermore, we pro-
pose a dome model to compute mask images and remove
eyelid occlusions in the unwrapped images rather than in
the original eye images with a least commitment strategy.

1. Introduction

A wide variety of systems require reliable personal iden-
tification or verification. Biometric technology overcomes
many of the disadvantages of conventional identification
and verification techniques such as keys, ID cards and pass-
words. Biometrics refers to the automatic recognition of
individuals based on their physiological and/or behavioral
characteristics [12]. There are many features to use as bio-
metric cues, such as face, fingerprint, hand geometry, hand-
writing, iris, retinal vein, and voice. Among all these fea-
tures, iris recognition has very high accuracy [17]. The
complex iris texture carries very distinctive information.
Even the irises of identical twins are different [7] [12].

For a captured iris image, the iris analysis begins with
iris localization. There are two fundamental approaches to
localize the iris in eye images. One is Daugman’s integro-
differential operator (IDO) [8], and the other is the Hough
transform technique [22]. Later on, some other approaches
are proposed that are essentially minor variations of the two

classical methods.
Daugman [8] presented the first approach to computa-

tional iris recognition including iris localization. He pro-
posed to use an integro-differential operator (IDO) for lo-
cating the inner and outer boundaries of an iris via the fol-
lowing optimization,

max
(r,x0,y0)

∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r,x0,y0

I(x, y)
2πr

ds

∣∣∣∣ (1)

where I(x, y) is an image containing an eye. The IDO
searches over the image domain (x, y) for the maximum
in the blurred partial derivative with respect to increasing
radius r, of the normalized contour integral of I(x, y) along
a circular arc ds of radius r and center coordinates (x0, y0).
The symbol ∗ denotes convolution and Gσ(r) is a smooth-
ing function such as a Gaussian of scale σ.

Daugman’s IDO actually behaves as a circular edge de-
tector. The IDO searches the gradient maximum over the
3D parameter space, so there is no need to use any thresh-
old as in the traditional Canny edge detector [4].

Later, Wildes [22] proposed to detect edges in iris images
followed by circular Hough transform [11] to localize iris
boundaries. The Hough transform searches the optimum
parameters of the following,

max
(r,x0,y0)

n∑
j=1

h(xj , yj, x0, y0, r) (2)

where

h(xj , yj , x0, y0, r) =
{

1, if g(xj , yj, x0, y0, r) = 0
0, otherwise

with g(xj , yj , x0, y0, r) = (xj −x0)2 +(yj − y0)2 − r2 for
edge point (xj , yj), j = 1, · · · , n.

One weak point of the edge detection and Hough trans-
form approach is the use of thresholds in edge detection.
Different settings of threshold values may result in different
edges and then affect the Hough transform results signifi-
cantly [20].



Recently, some other methods have been proposed for
iris localization. But most of them are essentially mi-
nor variants of Daugman’s IDO or Wildes’ combination of
edge detection and Hough transform, by either constrain-
ing the parameter search range or speeding up the search
process. For example, Ma et al [15] roughly estimates the
pupil position through pixel intensity value projections and
thresholding, and then do Canny edge detection and circu-
lar Hough transform. Masek [18] implemented an edge de-
tection method slightly different from the Canny [4], and
then used circular Hough transform for iris boundary ex-
traction. He also made his Matlab code public available.
Cui et al [6] computed a wavelet transform and then used
the Hough transform to locate the iris inner boundary, while
using Daugman’s IDO for the outer boundary. Rad et al [21]
used gradient vector pairs at various directions to coarsely
estimate positions of the circle and then used Daugman’s
IDO to refine the iris boundaries. Kim et al [13] used mix-
tures of three Gaussian distributions to coarsely segment
eye images into dark, intermediate, and bright, and then use
the Hough transform for iris localization. Liu et al [14] used
some heuristics to improve the Hough transform results in-
cluding the reduction of edges and the modification of the
Hough voting. A level set method was used in [2].

1.1. Motivation of Our Work

A common observation on eye images is that the iris re-
gion is brighter than the pupil and darker than the sclera.
As a result, almost all previous approaches to iris localiza-
tion are based on the intensity gradient or edge informa-
tion. These methods depend heavily on the strong intensity
contrast between pupil and iris and between iris and sclera.
However, these contrasts are not always strong enough for
iris localization in practice.

Our new observation is that the iris region has very dif-
ferent structure or texture from that of the pupil and sclera.
We believe that this texture difference is also useful for
discrimination between iris and pupil or between iris and
sclera, especially when the intensity contrast is not strong
enough for iris localization. In fact, the rich texture infor-
mation in the iris is used for iris recognition.

Based on this new observation, we develop a new tech-
nique that combines the texture difference between iris and
sclera or between iris and pupil together with the intensity
contrast. The purpose is to improve the iris localization per-
formance significantly.

The remainder of the paper is organized as follows. In
Section 2 a new approach to iris localization is presented.
We discuss a new issue called model selection and give a
solution in Section 3. The mask image computation is pre-
sented in Section 4. The experiments are shown in Section
5, and finally some conclusions are given.

2. Intensity Gradient and Texture Difference

As discussed in previous Section, our approach to iris
localization is to use both the intensity gradient and texture
difference. The new formulation for iris localization is the
following optimization,

(r∗, x∗
0, y

∗
0) = argmax(r,x0,y0)C(I, x0, y0, r) (3)

+ λ T (Zi, Zo, x0, y0, r)

where C(I, x0, y0, r) is the intensity contrast or gradi-
ent over image domain I(x, y) along a circle (x0, y0, r),
and T (Zi, Zo, x0, y0, r) measures the texture difference be-
tween the inner zone Zi and outer zone Zo separated by the
circular boundary (x0, y0, r), as shown in Fig. 1. The pa-
rameter λ is a constant to balance the contributions from in-
tensity gradient and texture difference. Since the whole re-
gion inside or outside the circle is not necessarily uniform or
homogeneous, e.g., the inner region of the iris/sclera bound-
ary contains two different parts, pupil and iris, thus only a
narrow zone next to the circular boundary is used to mea-
sure the texture property.

Figure 1. Show the inner and outer zones separated by a circle
(solid line between two dashed lines) for iris/sclera boundary. The
texture difference are measured between the inner and outer zones
in addition to the intensity gradient for iris localization. Because
of possible eyelid occlusion, the search is restricted to the left and
right quadrants, i.e, -45 to 45 and 135 to 225 degrees. This figure
also illustrates that the pupil and iris may not be concentric and
the pupil/iris boundary may be modeled by an ellipse instead of a
circle.

What is the specific form for each term in Eq. (3)?
For the first term, i.e, intensity gradient or contrast, we
choose to use Daugman’s integro-differential operator, be-
cause the IDO can encode the image intensity gradient very
well along a circular boundary. Thus we have

C(I, x0, y0, r) =
∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
r,x0,y0

I(x, y)
2πr

ds

∣∣∣∣ (4)

For the second term in Eq. (3), we use the Kullback-
Leibler divergence (See Section 2.2) to measure the distance



between two probability distributions derived from the in-
ner and outer zones, respectively. Now the question is how
to extract the texture information from each zone. One may
think of using the standard texture analysis method, e.g, Ga-
bor filters. But the problem is that the filtering approach
usually needs a large region support which may go across
the circular boundary. This is a general issue in texture seg-
mentation where the regional property may be characterized
well but the boundary between two textures can not be lo-
cated precisely. For iris localization, it really needs accu-
rate boundaries to normalize and match iris images. Inac-
curate iris localization deteriorates the iris recognition ac-
curacy quickly no matter how discriminative the iris feature
is.

To efficiently extract the texture properties without in-
fluencing the iris localization negatively, we use a method
called local binary pattern (LBP) with the smallest neigh-
borhood.

2.1. Local Binary Pattern

The local binary pattern (LBP) operator is a simple yet
powerful method of analyzing textures [16]. It was first pro-
posed by Ojala et al [19] for texture classification. The basic
operation of LBP consists of three steps as shown in Fig. 2
using a 4-neighbor system: (1) thresholding the pixel values
of all neighbors using the intensity value of the center pixel
as the threshold, (2) weighting each neighbor with a value
associated with the power of 2, and (3) summing up new
values of all neighbors and setting it for the center pixel.

Figure 2. Illustrate the LBP operator in a 4-neighbor case. Thresh-
old the 4 neighbors with respect to the center pixel, weight each
neighbor with a different number of the power of 2, and finally
summ up the new integers to get a new value for the center pixel.
This process is executed for each pixel under consideration.

The pixels in a region of interest are encoded by new in-
tegers with the LBP operator. Then the histogram of these
new integers for each zone is computed to represent its
probability density function. In our case, a 4-neighbor sys-
tem is considered for the LPB operator, the resulting new
integer value for each center pixel is between 0 and 15, so
each histogram has 16 bins. The LBP operator is executed
for the whole image just once, while the histogram is com-
puted dynamically in the search process.

The probability densities are computed for the inner and

outer zones respectively, denoted as p(x; Zi) and q(x; Zo),
or simply p(x) and q(x) without confusion, where x ∈
{0, · · · , 15}. The distance between two probability distri-
butions is measured by the following KL-divergence.

2.2. KL-Divergence

Given two probability mass function p(x) and q(x), the
Kullback-Leibler divergence (or relative entropy) between
p and q is defined as

D(p||q) =
∑

x

p(x) log
p(x)
q(x)

(5)

The KL-divergence D(p||q) is always non-negative and
is zero if and only if p = q. Even though it is not a true dis-
tance between distributions because it is not symmetric and
does not satisfy the triangle inequality, it is still often use-
ful to think of the KL-divergence as a “distance” between
distributions [5].

As a result, the second term in Eq. (3) can be computed
by the KL-divergence as

T (Zi, Zo, x0, y0, r) = D (p(x; Zi)||q(x; Zo)) (6)

where Zi and Zo are the inner and outer zones sepa-
rated with the circle (x0, y0, r). The probability densities
p(x; Zi) and q(x; Zo) are represented by the histogram of
the integers (from 0 to 15) computed by the LBP operator.

2.3. Multi-Resolution Search

The optimization in Eq. (3) is a search process. In or-
der to reduce the search space and hence speed up the pro-
cess, and also to eliminate the local maxima, we use a multi-
resolution technique. The original image is smoothed and
down-sampled into a much smaller image and the optimum
is found there. Then the search starts again in a finer image
with the initial values set by the result obtained in previous
coarser resolution. The process repeats until reaching the
finest image. Note that the search in each resolution is re-
stricted to the left and right quadrants because of possible
eyelid occlusions [7] as shown in Fig. 1.

3. Model Selection

Most approaches to iris localization use two circles to
model the inner and outer boundaries of the iris. Using
circles is simple to compute but may not fit the iris in-
ner boundary well. Camus and Wildes [3] used an ellipse
to model the pupil/iris boundary and a circle to model the
iris/sclera boundary. The ellipse model fits the inner bound-
ary better than the circle whenever the boundary is not a true
circle, but the problem is, the search will be in a 4D space
instead of 3D. To search in a higher dimensional space will
be slower and may be error prone.



What models should be used for iris boundaries? Should
the inner/outer boundaries be modeled by circle/circle or
ellipse/circle1? We call this the model selection problem.
And we believe that model selection should be data-driven
rather than assigned before hand.

Our scheme is a two-step approach. First, the cir-
cle/circle model is used to approximate the inner/outer iris
boundaries. Second, within the region slightly bigger than
the inner circle, do the following: (1) detect edges using the
Canny edge detector [4], (2) generate chain codes for the de-
tected edge points using 8-connectivity [10], (3) choose the
longest contour from all generated chains to eliminate out-
liers of edge points, (4) fit an ellipse for the chosen contour
using a direct ellipse-fitting method [9], (5) compute the ec-
centricity e of the fitted ellipse, and (6) decide whether to
use ellipse or circle to model the inner iris boundary with
the criterion that, if e > eT , choose the ellipse, otherwise,
keep the circle.

Theoretically, the ellipse model also fits a circular shape.
Why do we choose between ellipse and circle? The reason
is that the circle model makes it simple to unwrap the iris
image into a rectangular image.

The eccentricity is computed by e ≡
√

1 − b2

a2 for a stan-

dard ellipse (x−x0)
2

a2 + (y−y0)
2

b2 = 1. Theoretically the ec-
centricity satisfies 0 ≤ e < 1 and with e = 0 in the case
of a circle. Note that the standard ellipse has the major and
minor axes consistent with the x and y axes, while the fit-
ted ellipses in iris images may be rotated by an angle. The
direct ellipse-fitting method [9] solves a generalized eigen-
value system to estimate the ellipse parameters. It does not
involve any iterative computation and thus is very fast.

To show the necessity of ellipse fitting for real iris im-
ages, Fig. 3 gives an example for iris image 105 1 1 from
the CASIA iris database [1] localized by different methods.
The results in the left and middle images are obtained with
the circle model for the inner boundary using Hough trans-
form and the IDO respectively. It is obvious that the circle
cannot fit the pupil/iris boundary well. The result in the
right image uses direct ellipse fitting and the boundary is
fitted precisely.

4. Mask Computation

The iris is possibly occluded by the upper and/or lower
eyelids. In the earlier work [8], Daugman excluded the top
and bottom part of an iris for iris feature extraction and
recognition. But this may lose some useful information
when very little or no eyelid occlusion exists. As argued by
Wildes [22], explicit modeling of the eyelids should allow
for better use of available information than simply omitting

1We do not consider an ellipse/ellipse model in that the circle usually
fits the visible portion of the outer boundary well.

the top and bottom of the iris. In [7], Daugman used arcu-
ate curves with spline fitting to explicitly search the eyelid
boundaries. Cui et al [6] used a parabolic model for the
eyelids and fit them separately. The upper eyelid is searched
within the eyelash region, while the lower eyelid is searched
from the detected edge points. Masek used straight lines to
approximate the eyelids in his Matlab code [18], which usu-
ally obtains a much larger mask than necessary.

Almost all previous work explicitly estimates the eyelid
boundaries in the original eye images. That is intuitive but
has some problems in practice: (1) the search range for eye-
lids is usually large making the process slow, and (2) most
importantly, the extracted eyelids are always estimated even
when they do not occlude the iris.

To address these issues, we propose to compute the eye-
lid occlusion in the unwrapped rectangular image rather
than in the original eye image. The eyelid region seems
like a dome in the unwrapped image, as shown in Fig. 4 (b)
and (c), so we call it a dome model.

4.1. Dome Model

There are three possible cases for the domes in the un-
wrapped image as shown in Fig. 4: (a) no dome, where
there is no eyelid occlusion, (b) one dome, where only the
upper or lower eyelid occludes, and (c) two domes, where
both upper and lower eyelids occlude the iris.

(a)

(b)

(c)
Figure 4. The dome model. There are three possible cases in an
unwrapped image: (a) none dome (088 1 1), (b) only one dome
(001 1 1), and (c) two domes (087 2 4). The dome boundaries
are drawn with white line.

Using the new dome model, occlusions from either the
upper and lower eyelids can be processed in a unified way.
To extract the domes, a circle model is used to approximate
instead of complex models such as splines [7] and parabolic
models [6], or a rough model of straight lines [18].

Our approach to mask computation is unique in that it is
a least commitment strategy. The algorithm first determines
whether eyelid occlusions exist or not. If no occlusion such
as in Fig. 4 (a), there is no need to call the dome search pro-
cess. When occlusions do exist, the algorithm determines
how many domes (1 or 2) to search, and then finds the re-
lated domes. The algorithm also has a post-processing stage
to reduce possible false alarms.



Figure 3. Demonstrate that the circle model is not accurate for the iris inner boundary. The iris image (105 1 1) uses a circle model to fit
by Hough transform (left) and integro-differential operator (middle). The right image shows the result based on direct ellipse fitting. All
circles and ellipse are drawn with one pixel wide white line.

To detect possible eyelid occlusions in the unwrapped
image, the region of the iris where an eyelid might appear is
compared to a region where occlusion cannot occur. These
regions are compared by looking at their respective distri-
butions of raw pixel values. The KL-divergence (Eqn. (5))
is used to compare the histograms of raw pixel values in the
two regions.

5. Experiments

To evaluate our proposed methods for iris extraction, we
use the CASIA iris database [1] that contains 756 iris im-
ages of 108 classes. For all iris images shown in this paper,
original image names are also given for references.

First, we evaluate the iris localization or detection rate.
In Eq. (3), λ was set to 0.1 to balance the intensity gradient
and texture difference between the inner and outer zones.
Actually the values of λ can range from 0.01 to 0.5 without
too much influence on the performance. We simply choose
a single value and keep if in all our experiments. The pixel
values are normalized into (0, 1) in gradient computation.
In Eq. (4), the central difference approximation is used for
gradient estimation with two pixel intervals. To measure the
texture information with LBP operator, a 4-neighbor sys-
tem was used for each pixel. This smallest neighborhood
helps the boundary localization precision. The inner and
outer zones are both 4-pixel wide along the radial direction
that contains enough information for the structure estima-
tion and has small computation load. The KL-divergence is
computed only for bins x with p(x) · q(x) �= 0. The iris
localization results are shown in Table 1. Our new method
combining intensity gradient and texture difference can lo-
cate 97.6% irises correctly on the CASIA database, which is
much better than the Hough transform technique of 85.6%
and Daugman’s integro-differential operator that uses only
the intensity gradient of 88% iris localization rate. The cor-
rectness of the iris boundaries were determined by manual
inspection.

Some examples are shown in Fig. 5 to see the localiza-
tion results obtained from different methods. The upper row

Table 1. Comparison of iris detection rates on the CASIA database.

Hough Trans. Integro-differential Oper. Ours
85.6% 88% 97.6%

in Fig. 5 shows the results for image 037 2 4. The intensity
contrast between the iris and sclera is not strong, the de-
tected edges are weak, so the Hough transform (left image)
can not find the true boundary. The IDO method (middle)
gets weak gradient information especially in the left part of
the iris, so the detected circle is shifted away from the true
boundary. In contrast, our new method using both gradient
and texture difference can deal with the case of weak gradi-
ent and gives an accurate boundary for the iris (right image,
upper row). Similar analysis holds for the lower row in Fig.
5 for image 039 2 1.

Figure 5. Comparison between different techniques for iris bound-
ary extraction. From left to right, the results are based on
Hough transform, integrodifferential operator, and the proposed
new method. From top to bottom, the iris images are 037 2 4 (first
row) and 039 2 1 (second row).

Second, we verify the model selection problem. Because
the camera viewing line is not perpendicular to the eye, the
perspective effect makes the projection of the pupil not a cir-
cle in the image plane. In addition, eyes can move freely to
a certain range. As a result, the ellipse/circle model is bet-
ter than the circle/circle for iris localization in some cases.



We found that there are 75.7% (572/756) iris images with
eccentricity e > 0.19 where 0.19 is the threshold value cho-
sen to determine whether to use ellipse/circle model or not.
Our approach is to first use the circle/circle model to search
the iris boundaries, and then do direct ellipse fitting for the
inner boundary without turning to a 4D search. As shown
in Fig. 3, for image 105 1 1, either the Hough transform
(left) or IDO (middle) cannot fit well when the circle model
is used for the inner boundary. On the contrary, the ellipse
fitting (right) gives a much better result for the pupil/iris
boundary.

Third, we evaluate the new mask computation method.
As discussed in Section 4, the mask image is computed in
the unwrapped images instead of the original eye images.
The unwrapped image is of size 512 × 64 (see [8] [15] for
details on how to unwrap the iris images). Our approach
first determines whether there is any eyelid occlusion in the
unwrapped image. If not, the algorithm does not extract
any mask. Three regions are obtained with 40 by 20 pixels,
starting from the image bottom. The middle region Rm is
centered at 256, representing part of the iris that is never
occluded by the eyelids. The left region Rl is centered at
128, and the right one Rr is at 384. Their histograms, Hl,
Hm, and Hr, are computed using 32 bins.

In the CASIA iris database, our method can extract the
domes with an accuracy of 93%. We found that almost all
domes are detected, but the dome boundaries are not accu-
rate for 7% (53/756) of the iris images.

6. Conclusions

We have presented a novel method for iris localization
which utilizes both the intensity gradient and texture differ-
ence between the iris and sclera or between the pupil and
iris. The iris localization rate based on the new method is
much higher than the popular Hough transform technique
and the classical integro-differential operator in that previ-
ous methods only use the gradient information and hence
cannot work well when the gradient is not strong enough.
Secondly, we considered the model selection problem and
proposed a solution based on direct ellipse fitting. Thirdly,
we presented a novel approach to mask computation in the
unwrapped image. The new procedure follows a least com-
mitment strategy that triggers the dome detection process
only when necessary.
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