
Learning Similarity for Texture Image RetrievalGuodong Guo, Stan Z. Li, and Kap Luk ChanSchool of EEE, Nanyang Technological UniversityNanyang Avenue, Singapore 639798egdguo@ntu.edu.sgAbstract. A novel algorithm is proposed to learn pattern similaritiesfor texture image retrieval. Similar patterns in di�erent texture classesare grouped into a cluster in the feature space. Each cluster is isolatedfrom others by an enclosed boundary, which is represented by severalsupport vectors and their weights obtained from a statistical learningalgorithm called support vector machine (SVM). The signed distance ofa pattern to the boundary is used to measure its similarity. Further-more, the patterns of di�erent classes within each cluster are separatedby several sub-boundaries, which are also learned by the SVMs. Thesigned distances of the similar patterns to a particular sub-boundaryassociated with the query image are used for ranking these patterns.Experimental results on the Brodatz texture database indicate that thenew method performs signi�cantly better than the traditional Euclideandistance based approach.Keywords: Image indexing, learning pattern similarity, boundary dis-tance metric, support vector machines.1 IntroductionImage content based retrieval is emerging as an important research area withapplication to digital libraries and multimedia databases [9] [8] [10] [12]. Texture,as a primitive visual cue, has been studied for over twenty years. Various tech-niques have been developed for texture segmentation, classi�cation, synthesis,and so on. Recently, texture analysis has made a signi�cant contribution to thearea of content based retrieval in large image and video databases. Using textureas a visual feature, one can query a database to retrieve similar patterns basedon textural properties in the images.In conventional approach, the Euclidean or Mahalanobis distances [8] be-tween the images in the database and the query image are calculated and usedfor ranking. The smaller the distance, the more similar the pattern to the query.But this kind of metric has some problems in practice. The similarity measurebased on the nearest neighbor criterion in the feature space is unsuitable in manycases. This is particular true when the image features correspond to low levelimage attributes such as texture, color, or shape. This problem can be illustratedin Fig. 1 (a), where a number of 2-D features from three di�erent image clustersare shown. The retrieval results corresponding to query patterns \a" and \b" are
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class 2(a) (b)Fig. 1. (a). Examples of 2-D features of three di�erent clusters: the circles belong tocluster 1, the balls belong to cluster 2, and the squares belong to cluster 3. Threepoints a, b and c are from cluster 1. (b). A nonlinear boundary separates the examplesof cluster 1 from cluster 2 and 3.much di�erent. In addition, using Euclidean distance measures for the nearestneighbor search might retrieve patterns without any perceptual relevance to theoriginal query pattern.In fact, above problem is classical in pattern recognition, but not much e�orthas been made to address these issues in the context of image database browsing.Ma and Manjunath [7] present a learning based approach to retrieve the similarimage patterns. They use the Kohonen feature map to get a coarse labeling,followed by a �ne-tuning process using learning vector quantization. However,the performance of their learning approach is not good when evaluated by theaverage retrieval accuracy (see Fig. 6-2 on page 108 of [6]). In addition, thereare many parameters to be adjusted heuristically and carefully for applications.Similarity measure is the key component for content-based retrieval. San-tini and Jain [15] develop a similarity measure based on fuzzy logic. Puzichaet al. [14] compare nine image dissimilarity measures empirically, showing thatno measure exhibits best overall performance and the selection of di�erent mea-sures rather depend on the sample distributions. In this paper, we propose anew metric called boundary distance to measure pattern similarities, which isinsensitive to the sample distributions. The basic idea here is that a (non-linear)boundary separates the samples belonging to a cluster of similar patterns withthe remaining. This non-linear boundary encloses all similar patterns inside. InFig. 1 (b), a non-linear boundary separates all samples in cluster 1 with othersbelonging to cluster 2 and 3. The signed distances of all samples to this nonlinearboundary are calculated and used to decide the pattern similarities. This non-



linear boundary can be learned from some training examples before we constructan image database.How to learn the boundary? We argue that an appropriate similarity learningalgorithm for application in content based image retrieval should have two prop-erties: 1) good generalization; 2) simple computation. The �rst one is a commonrequirement for any learning strategy. While the second is very important forlarge image database browsing.A statistical learning algorithm called support vector machine (SVM) [16],is used in our learning approach. The foundations of SVM have been developedby Vapnik [16]. The formulation embodies the Structural Risk Minimization(SRM) principle, which has been shown to be superior to traditional EmpiricalRisk Minimization (ERM) principle employed by conventional arti�cial neuralnetworks [4]. SVMs were developed to solve the classi�cation and regressionproblems [16] [4], and has been used recently to solve the problems in computervision, such as 3D object recognition [13], face detection [11], and so on.We adapt the SVMs to solve the image retrieval problem. The major di�er-ence from the conventional utilization of SVMs is that we use the SVMs to learnthe boundaries.The paper is organized as follows. In Section 2, we describe the basic theoryof SVM and its use for discriminating between di�erent clusters. In Section 3,we present the techniques for learning image pattern similarity and ranking theimages. Section 4 evaluates the performance of the new method for similar imageretrieval. Finally, Section 5 gives the conclusions.2 Cluster Discrimination by Support Vector Machines2.1 Basic Theory of Support Vector MachinesConsider the problem of separating the set of training vectors belonging to twoseparate classes, (x1; y1); : : : ; (xl; yl), where xi 2 Rn, a feature vector of dimen-sion n, and yi 2 f�1;+1g with a hyperplane of equation wx + b = 0. The setof vectors is said to be optimally separated by the hyperplane if it is separatedwithout error and the margin is maximal. In Fig. 2 (a), there are many possiblelinear classi�ers that can separate the data, but there is only one (shown in Fig.2 (b)) that maximizes the margin (the distance between the hyperplane andthe nearest data point of each class). This linear classi�er is termed the opti-mal separating hyperplane (OSH). Intuitively, we would expect this boundaryto generalize well as opposed to the other possible boundaries shown in Fig. 2(a).A canonical hyperplane [16] has the constraint for parameters w and b:minxi yi(w � xi + b) = 1.A separating hyperplane in canonical form must satisfy the following con-straints, yi [(w � xi) + b] � 1; i = 1; : : : ; l (1)
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hyperplane(a) (b)Fig. 2. Classi�cation between two classes using hyperplanes: (a) arbitrary hyperplanesl, m and n; (b) the optimal separating hyperplane with the largest margin identi�edby the dashed lines, passing the two support vectors.The margin is 2kwk according to its de�nition. Hence the hyperplane thatoptimally separates the data is the one that minimizes�(w) = 12 k w k2 (2)The solution to the optimization problem of (2) under the constraints of (1)is given by the saddle point of the Lagrange functional,L(w; b; �) = 12 k w k2 � lXi=1 �i fyi [(w � xi) + b]� 1g (3)where �i are the Lagrange multipliers. The Lagrangian has to be minimizedwith respect to w, b and maximized with respect to �i � 0. Classical Lagrangianduality enables the primal problem (3) to be transformed to its dual problem,which is easier to solve. The dual problem is given by,max� W (�) = max� �minw;b L(w; b; �)� (4)The solution to the dual problem is given by,�� = argmin� lXi=1 �i � 12 lXi=1 lXj=1 �i�jyiyjxi � xj (5)with constraints �i � 0; i = 1; : : : ; l, and Pli=1 �iyi = 0.



Solving Equation (5) with constraints determines the Lagrange multipliers,and the OSH is given by,�w = lXi=1 ��iyixi; �b = �12 �w � [xr + xs] (6)where xr and xs are support vectors, ��r; ��s > 0; yr = 1; ys = �1.For a new data point x, the classi�cation is then,f(x) = sign � �w � x+ �b� = sign lXi=1 ��iyi(xi � x) + �b! (7)To generalize the OSH to the non-separable case, slack variables �i are intro-duced [2]. Hence the constraints of (1) are modi�ed asyi [(w � xi) + b] � 1� �i; �i � 0; i = 1; : : : ; l (8)The generalized OSH is determined by minimizing,�(w; �) = 12 k w k2 +C lXi=1 �i (9)(where C is a given value) subject to the constraints of (8).This optimization problem can also be transformed to its dual problem, andthe solution is the same as (5), but adding the constraints to the Lagrangemultipliers by 0 � �i � C; i = 1; : : : ; l.2.2 Non-linear Mapping by Kernel FunctionsIn the case where a linear boundary is inappropriate, the SVM can map theinput vector, x, into a high dimensional feature space, z. The SVM constructsan optimal separating hyperplane in this higher dimensional space. In Fig. 3, thesamples in the input space can not be separated by any linear hyperplane, butcan be linearly separated in the non-linear mapped feature space. Note that thefeature space in SVMs is di�erent from our texture feature space. According tothe Mercer theorem [16], there is no need to compute this mapping explicitly, theonly requirement is to replace the inner product (xi �xj) in the input space witha kernel function K(xi;xj) to perform the non-linear mapping. This provides away to address the curse of dimensionality [16].There are three typical kernel functions [16]:Polynomial K(x;y) = ((x � y + 1))d (10)where the parameter d is the degree of the polynomial.Gaussian Radial Basis Function
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ΦFig. 3. The feature space is related to input space via a nonlinear map �, causingthe decision surface to be nonlinear in the input space. By using a nonlinear kernelfunction, there is no need to do the mapping explicitly.K(x;y) = exp�� (x� y)22�2 � (11)where the parameter � is the width of the Gaussian function.Multi-Layer PerceptionK(x;y) = tanh (scale:(x � y)� offset) (12)where the scale and offset are two given parameters.For a given kernel function, the classi�er is thus given by,f(x) = sign lXi=1 ��iyiK(xi;x) + �b! (13)2.3 Discrimination Between Multiple ClustersPrevious subsections describe the basic theory of SVM for two-class classi�ca-tion. For image retrieval in a database of multiple image clusters, for instance, cclusters, we can construct c decision boundaries. Note that a cluster may containmore than one image class. The perceptually similar images in di�erent classesare considered as one cluster. Each boundary is used to discriminate betweenthe images of one cluster and all the remaining belonging to other clusters. Theimages belonging to cluster k are enclosed by the kth boundary. This is a one-against-all strategy in the context of pattern recognition. To our knowledge,only the recently proposed support vector machines can be used to obtain theboundary optimally by quadratic programming.



3 Similarity Measure and RankingThe basic idea of learning similarity is to partition the original feature space intoclusters of visually similar patterns.The pair (w; b) de�nes a separating hyperplane or boundary of equationw � x+ b = 0 (14)By kernel mapping, the boundary (w; b;K) is,mXj=1 ���jyjK(x�j ;x) + �b� = 0 (15)where x�j (j = 1; � � � ;m) are support vectors, ���j are the linear combination co-e�cients or weights, and �b� is a constant. Usually, m < l, i.e., the number ofsupport vectors is less than that of the training examples.De�nition 1 (signed distance):The signed distance D(xi;w; b) of a point xi from the boundary (w; b) isgiven by D(xi;w; b) = w � xi + bk w k (16)De�nition 2 (signed distance with kernel):The signed distance D(xi;w; b;K) of a point xi from the boundary (w; b;K)with kernel function K(�; �) is given byD(xi;w; b;K) = Pmj=1 ���jyjK �x�j ;xi�+ �b�kPmj=1 ���jyjx�j k (17)Combining De�nitions 1 and 2 with equation (1), we haveyiD(xi;w; b;K) � 1kPmj=1 ���jyjx�j k (18)for each sample xi, and yi = �1, i = 1; � � � ; l. Therefor, we have,Corollary: The lower bound of the positive examples (yi = 1) to the bound-ary (w; b;K) is 1kPmj=1 ���jyjx�jk ; the upper bound of the negative examples (yi =�1) is � 1kPmj=1 ���jyjx�jk . The boundary (w; b;K) is between these two bounds.In our cluster-based similarity measure, the perceptually similar patternsare grouped into one cluster and labeled as positive examples, while the otherpatterns are treated as being dissimilar to this cluster. Thus we give,De�nition 3 (similarity measure):The patterns xi, i = 1; � � � ; l0 , are said with perceptual similarity if they areconsidered as positive samples (yi = 1) and hence located inside the boundary(w; b;K); the samples outside are said dissimilar to the patterns enclosed by theboundary.



In the case of c clusters, we have c boundaries.De�nition 4 (signed distance to the kth boundary):If the boundary separating cluster k from others is (wk; bk;K), the signeddistance of a pattern xi to the kth boundary isD(xi;wk; bk;K) = Pkmj=1 ���kjykjK �x�kj;xi�+ �b�kkPkmj=1 ���kjykjx�kj k (19)where x�kj, (j = 1; � � � ; km) are the support vectors, ���kj are the optimalLagrange multipliers for the kth boundary, and �b�k are some constants, k =1; � � � ; c.Equation (19) is used to calculate the signed distances of patterns to the kthboundary. The pattern similarities (dissimilarities) are measured by De�nition3. How to connect the c boundaries to each pattern in a database? It is realizedas follows: when an image pattern xi is ingested into the database during itsconstruction, the signed distances of xi to the stored c boundaries are calculated�rstly by equation (19), and then the index k� is selected by,k� = argmax1�k�cD(xi;wk; bk;K) (20)The index k� is therefore connected to the image pattern xi. Basically, thisis a classi�cation problem. Each pattern in the database will be associated witha boundary index.In retrieval, when a query image pattern is given, the boundary index k�connected to the query pattern is �rst found. Then, we use equation (19) tocalculate the signed distances of all samples to the k�th boundary. Accordingto De�nition 3, the images in the database with positive distances to the k�thboundary are considered similar. Thus we obtain the similar image patterns tothe query.How to rank these similar images? The similar images obtained above belongto di�erent texture classes. To rank these images, the class information shouldbe taken into consideration. Assume that cluster k (k = 1; � � � ; c) contains qktexture classes, the feature space of cluster k is further divided into qk subspaces.Each subspace is enclosed by a sub-boundary containing the patterns of the sameclass. Thus, we partition the feature space in a hierarchical manner: in the higherlevel, the database is divided into c clusters, with each contains the perceptuallysimilar patterns inside; in the lower level, each cluster k is further divided intoqk texture classes. The signed distances to the sub-boundary q�k of all imagepatterns enclosed by the boundary k� are used for ranking, if the query imagepattern is located inside the sub-boundary q�k.In summary, each (query) image is associated with two-level boundary in-dexes. The images selected by the higher level boundary are ranked by theirsigned distances to the lower level boundary.The hierarchical approach to texture image retrieval has two advantages: oneis to retrieve the perceptually similar patterns in the top matches; the other is



to speed up the retrieval process further. Note that there is no need to computethe Euclidean distance between two points as in [7].4 Image Retrieval PerformanceThe Brodatz texture database [1] used in the experiments consists of 112 textureclasses. Each of the 512�512 images is divided into 49 sub-images (with overlap),which are 128� 128 pixels, centered on a 7� 7 grid over the original image. The�rst 33 sub-images are used as the training set and the last 16 for retrieval [7].Thus we create a database of 3696 texture images for learning, and a databaseof 1792 texture images to evaluate the retrieval performance. A query image isone of the 1792 images in the database.In this paper we use a similar Gabor �lter banks [3] as that derived in [8],where four scales and six orientations are used. Applying these Gabor �lters toan image results in 24 �ltered images. The mean and standard deviation of each�ltered image are calculated and taken as a feature vector�f = [�00; �01; � � � ; �35; �00; � � � ; �35] (21)where the subscripts represent the scale (s = 0; � � � ; 3) and orientation (o =0; � � � ; 5). The dimension of the feature vector is thus 48.The 112 texture image classes are grouped into 32 clusters, each containing1 to 8 similar textures. This classi�cation was done manually and Table 1 showsthe various clusters and their corresponding texture classes. Note that we useall the 112 texture classes.In the learning stage, we use the Gaussian RBF kernel function with theparameter � = 0:3 and C = 200. Figure 4 illustrates an evaluation based on theaverage retrieval accuracy de�ned as the average percentage number of patternsbelonging to the same image class as the query pattern in the top 15 matches[8]. The comparison is between our hierarchical approach to learning similarityand ranking and that based on the Euclidean distance measure. Note that thesigni�cant better result achieved by our method. This �gure demonstrates thatour hierarchical retrieval can give better result than the traditional Euclideandistance based approach. Note that the learning approach in [6] gives nearly thesame result as that based on Euclidean distance (Fig. 6-2 on page 108 of [6]).Since the average retrieval accuracy does not consider the perceptual similar-ity, another evaluation is done, based on the 32 clusters instead of just the top15 matches [7]. Figure 5 illustrates the second evaluation result. Here the di�er-ences are quite striking. The performance without learning deteriorates rapidlyafter the �st 10 � 15 top matches, however, the retrievals based on our learningsimilarity perform very well consistently.Figure 6 and 7 show some retrieval examples, which clearly demonstrate thesuperiority of our learning approach. Another important issue is the hierarchicalretrieval structure which speed up the search process.
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Table 1. Texture clusters used in learning similarity. The visual similarity within eachcluster are identi�ed by the people in our research group.Cluster Texture Class Cluster Texture Class1 d001 d006 d014 d020 d049 17 d069 d071 d072 d0932 d008 d056 d064 d065 18 d004 d029 d057 d0923 d034 d052 d103 d104 19 d039 d040 d041 d0424 d018 d046 d047 20 d003 d010 d022 d035 d036 d0875 d011 d016 d017 21 d048 d090 d091 d1006 d021 d055 d084 22 d043 d044 d0457 d053 d077 d078 d079 23 d019 d082 d083 d0858 d005 d033 d032 24 d066 d067 d074 d0759 d023 d027 d028 d030 d054 d098 d031 d099 25 d101 d10210 d007 d058 d060 26 d002 d073 d111 d11211 d059 d061 d063 27 d08612 d062 d088 d089 28 d037 d03813 d024 d080 d081 d105 d106 29 d009 d109 d11014 d050 d051 d068 d070 d076 30 d107 d10815 d025 d026 d096 31 d012 d01316 d094 d095 32 d015 d0975 ConclusionsWe have presented a new algorithm to learn pattern similarity for texture imageretrieval. The similar patterns are grouped into a cluster in the feature space.The boundaries isolating each cluster with others can be learned e�ciently bysupport vector machines (SVMs). Similarity measure and ranking are based onthe signed distances to the boundaries, which can be simply computed. Theperformance of similar pattern retrieval is signi�cantly improved as compared tothe traditional Euclidean distance based approach.References1. P. Brodatz, Textures: A Photographic Album for Artists & Designers. New York:Dover, 1966.2. C. Cortes and V. Vapnik, Support vector networks,Machine Learning, 20, 273-297,1995.3. J. G. Daugman, Complete discrete 2-D Gabor transforms by neural networks forimage analysis and compression, IEE Trans. ASSP, vol 36, 1169-1179, July 1988.4. S. Gunn, M. Brown and K. M. Bossley, Network performance assessment for neu-rofuzzy data modeling. Lecture Notes in Computer Science, 1280: 313-323, 1997.5. S. Gunn, Support vector machines for classi�cation and regression, ISIS TechnicalReport, May, 1998.6. W. Y. Ma, NETRA: A Toolbox for Navigating Large Image Databases. PhD thesis,University of California at Santa Barbara, 1997.
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(a) Euclidean distance measure (b) learning similarityFig. 6. Image retrieval comparison. Each query image has 15 other similar images inthe database. The query image (d065-01) is shown at the top left in each case. Notethat the degradation in visual similarity in the case of Euclidean distance measure.The images are ordered according to decreasing similarity from left to right and topto bottom. In the case of learning similarity, the performance continues without anymarked degradation in perceptual similarity, even after 60 Images are retrieved.



(a) Euclidean distance measure (b) learning similarityFig. 7. Image retrieval comparison. Each query image has 15 other similar images inthe database. The query image (d035-01) is shown at the top left in each case. Note thatthe degradation in visual similarity for the case of Euclidean distance measure. In thecase of learning similarity, the performance continues without any marked degradationin perceptual similarity, even after 90 images are retrieved.


