CS/ECE 354 - Finals Practice Exam
Spring 2016

Topics to study for Finals

Topic Weightage (points)
Cache Memories 20
Dynamic Memory Allocation 20
Virtual Memory 20
Exceptional Control Flow 20
Linking 20
Total 100

1. Dynamic Memory Allocator [10 points]

Allocator properties:
1. Double word (8 bytes) aligned.
Explicit free list is used for free block organization.
All blocks have a header of size 4 bytes and a footer of size 4 bytes.
Free blocks have prev and next pointers of size 4 bytes each.

o

bit 0 (least significant bit) in the header indicates the use of the current block:

a. 1 for allocated

b. 0 for free
6. zero-sized payloads are not allowed.
7. Allocated block size = sizeof (header) + sizeof (payload) +

sizeof (padding) + sizeof (footer)

8. Free block size = sizeof (header) + sizeof(prev) + sizeof(next) + sizeof (payload) +
sizeof (padding) + sizeof (footer)

Please answer the following questions regarding this allocator:

A. Minimum block size =

B. Maximum block size =

C. For the following memory allocation, what is the size of the payload and padding that
will be used in the allocated block?

You should assume the following:

A free block of size 32 bytes is chosen by the allocator to satisfy the below malloc
request. The header of this block is at the memory location 0x8090A0B4

char *p = malloc(8);

Payload = bytes

Padding = bytes

Memory address stored in the pointer p (in hexadecimal):

0x

D. The contents of the header (and the footer) of a block in the allocator is 0x000000A9.

a. Is the block allocated or free?

b. What is the size of the block (in decimal)?

c. Is the contents of the header of this block valid with respect to this allocator?
Remember: For a block to be valid with respect to an allocator, its size should
satisfy the alignment requirement of the allocator.

YES (OR) NO

2. Cache Hits or Misses? [10 points]

Consider the following matrix transpose function.

void matrix_transpose (int dst[2][2], int src[2][2]) {
int i, j;
for (1 =0; 1< 2; i++) {
for (j =0; j < 2; j++) {
dst[j][i] = src[i][]];

Assume this code runs on a machine with the following properties:

e sizeof(int) ==
The src array starts at address 0 and the dst array starts at address 16 (decimal).
There is a single L1 data cache that is direct-mapped with a block size of 8 bytes.
The cache has a total size of 16 data bytes and the cache is initially empty.
Accesses to the src and dst arrays are the only sources of read and write misses,

respectively.

A. For each row and col, indicate whether the access to src[row][col] and
dst[row][col] is a hit (h) or a miss (m). For example, reading src[@][0] is a miss

and writing dst[@][0] is also a miss.

src array
Column 0 Column 1
Row 0 m
Row 1
dst array
Column 0 Column 1
Row 0 m
Row 1
B. Repeat part A for a cache with a total size of 32 data bytes.
src array
Column 0 Column 1
Row 0 m
Row 1
dst array
Column 0 Column 1
Row 0 m
Row 1

3. Interrupts, Faults, and System calls [10 points]

For the following exceptions, specify the type of the exception.

The three types of possible events are:

1. Interrupts
2. System Calls
3. Faults
No. Event Exception Type
1. Accessing memory at virtual address
0x00000000
2. Exiting a C program by calling exit(0)
3. Pressing CTRL + Z at the keyboard
4. Reading some data from a text file using
read()
5. | Moving the mouse to click on a desktop icon

4. Linking [20 points]

Consider the three files fact.h, fact.c and main.c as shown below and answer the

questions that follow.

NOTE: Line numbers are provided only for the purposes of answering this question and they are
NOT a part of the source files.

. #ifndef FACT_H

. #define FACT_H

. extern unsigned long long int fact(unsigned long int);
. #endif

1. #include "fact.h"
2.
3. extern int g _num_ops;
4.
5. unsigned long long int fact(unsigned long int n)
6. {
7. unsigned long long int result = 1;
8. g num_ops++;
9. while (n > 1) {
10. result *= n;
11. --n;
12. }
13. return result;
14. }
main.c
1. #include "fact.h"
2.
3. #define N 10
4,
5. int g num_ops = ©;
6.
7. int main()
8. {
9. unsigned long long int fact_res[10];
10. int i;
11. for (i =0; 1 < N; ++i) {
12. fact_res[i] = fact(i);
13. }
14. }

The final executable a.out is produced by running the following command:

% gcc fact.c main.c -m32

Questions:
A. What are the files in which the variable g num_ops is declared?
B. What are the files in which the variable g num_ops is defined?
C. Which variables in fact.c need relocation?
D. Which variables in main.c need relocation?
E. What will happen if the variable g num_ops in main.c is made static?

F. What type of object file is a.out ?
a.out is generated using the command: gcc fact.c main.c -m32

i. Relocatable Object File
ii. Executable Object File
G. Which variables in main.c are stored in the data segment?
H. Which variables in fact.c are stored in the data segment?
I. Which variables in main.c are stored in the runtime stack segment?

J. . Which variables in fact.c are stored in the runtime stack segment?

5. Virtual Memory [20 points]

Consider the page table (part of it), the state of 4-entry fully associative TLB and the
assumptions about memory organization as shown in tables below.

PAGE TABLE

VPN PTE VPN PTE
0XFF 0X0712
0XFE 0XO0F33 0XOF 0XO0FOD
0XFD 0X0314 0XO0E 0X0701
0XFC 0X0728 0X0D 0XO0F1B
0XFB 0X0737 0X0C 0XO0F22
0XFA 0X0712 0X0B 0X071A
0XF9 0X0727 0X0A 0X0A06
0XF8 0X0039 0X09 0X0A3E
0XF7 0XO071F 0X08 0XO0F34
0XF6 0XO0F29 0X07 0X0613
0XF5 0X0070A 0X06 0X0017
0XF4 0XOFOF 0X05 0X0738
0XF3 0XO071E 0X04 0XO0F2D
0XF2 0X0604 0X03 0X060E
0XF1 0X031D 0X02 0X0016
0XFO 0X072B 0X01 0XO0F10

0X00 0X0608

TABLE 1

ASSUMPTIONS
64 KB physical address space
64 KB virtual address space
256 byte pages
Fully associative TLB
TLB
VPN PTE Vali
d
0X08 0X0F34 1
0XFA 0X0F02 0
0X14 0X073A 1
0XO0E 0X0701 1

A page table entry (PTE) is 16 bits with following break-up:
PTE[7:0] - physical page number (PPN)

PTE[8] - valid bit (V)

PTE[9] - read permission (R)

PTE[10] - write permission (W)

PTE[11] - Supervisor mode (S)

PTE[15:12] - always zero

A. How many bits are required for virtual page number (VPN) for:
a. the assumptions in table 1
b. the assumptions in table 1, but instead of 64KB physical address space, we have
128KB physical address space
c. the assumptions in table 1, but instead of 64KB virtual address space, we have
32KB virtual address space

B. Given the assumptions in table 1, how many pages does the entire page table occupy?

C. If possible, convert the following virtual addresses (VA) into their corresponding physical
addresses (PA).

Mark the access as:
Page Fault - if the page is on disk, but not in main memory
Illegal Access- if the access does not have desired permission

Assume the process runs in user mode and there are no unallocated pages for this process.

Mark only one box for each access.

Access Physical Address Page Fault Illegal Access

Read byte
VA=0x04FB

Write byte
VA=0xFAS80

Write byte
VA=0x1406

Read byte
VA=0x0220

Read byte
VA=0xF1F2

Read byte
VA=0x01F0

D. Assume the TLB state shown in the table above when processor issues a read request to
virtual address 0xFOOD. Modify the TLB state to what it looks like after this access is successful.
Make the change to TLB diagram above, not below.

10

6. Signals [10 points]

The following faulty piece of code tries to count the number of times the Ctrl+C key is pressed
by the user:

#include <signal.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

int counter = 0;

void SIGINT_handler(int signo)

{
if(signo == SIGINT)
{
counter++;
sleep(10);
}
}

int main (void)

struct sigaction sigint_action;
memset(&sigint_action, @, sizeof(sigint_action));
sigint_action.sa_handler = SIGINT_handler;
sigaction(SIGINT, &sigint action, NULL);

printf("Entering while loop\n");
while(1)

{
//Do nothing

return 0;

11

A user starts the program and waits until the statement “Entering while loop” is printed
out and then starts pressing Ctrl+C 5 times within the next 5 seconds.

(a) What is the value of counter 50 seconds after the statement “Entering while
loop” is printed?

(b) Explain why that value is lower or higher than expected?

/. Cache Miss Rate Analysis [10 points]

You are writing a new 3D game that you hope will earn you fame and fortune. You
are currently working on a function to blank the screen buffer before drawing the
next frame. The screen you are working with is a 4 x 4 array of pixels. The
machine you are working on has a 32 bytes direct-mapped cache with 16-byte lines.
The C structures you are using are as follows:

struct pixel {
char r;
char g;
char b;
char a;

}s

struct pixel buffer[4][4];
int i, j;

Assume the following:
e sizeof(char) == 1 and sizeof(int) == 4.
buffer begins at memory address 0.
The cache is initially empty.
The only memory accesses are to the entries of the array buffer.

Variables 1 and j are stored in registers.

12

A. What percentage of writes in the following code will miss in the cache?

for (1 =0; 1< 4; i++) {
for (j = 0; j < 4; j++){
buffer[i][j].r
buffer[i][j].g
buffer[i][j].b
buffer[i][j].a

)

e

Il
©O 000
e

e

B. What percentage of writes in the following code will miss in the cache?

for (3 =05 j < 4; j++) {
for (1 = 0; 1 < 4; i++){
buffer[i][j].r =
buffer[i][j].g
buffer[i][j].b
buffer[i][]j].a

)

)

0
0
9:
)

-

)

8. Heap Memory [10 points]

Consider an allocator with the following properties.

Allocator properties:
1. Single word (4 bytes) aligned.
Implicit free list is used for free block organization.
Allocator uses best-fit policy for allocating new blocks.
All blocks have a header of size 4 bytes.
bit 0 (least significant bit) in the header indicates the use of the current block:

o

a. 1 for allocated
b. 0 for free
6. block size = sizeof (header) + sizeof (payload) + sizeof (padding)

13

Given the contents of the heap shown in FIGURE 1, show the new contents of the heap in
FIGURE 2 after a call to char *p = malloc(4); is executed. i.e. Your answers should be
given as hexadecimal values.

Note that the address grows from bottom up. i.e. The heap starts at the address 0x8049000 and
grows upwards. The first block is stored starting at the address 0x8049000.

What is the value of pointer variable p if the call to malloc succeeds?

FIGURE 1
(BEFORE call to malloc)

Memory Address
0x804901c
0x8049018
0x8049014
0x8049010
0x804900c
0x8049008
0x8049004

Start of heap => 0x8049000

Value in Memory

0xFE670031

0x00000008

0x12CD0O0AB

0x35670011

0xA1B2C3D4

0x00000010

0x12345678

0x00000009

FIGURE 2

(AFTER call to malloc)

Memory Address
0x804901c¢
0x8049018
0x8049014
0x8049010
0x804900c
0x8049008
0x8049004

Start of heap => 0x8049000

Good luck! :)

14

Value in Memory

