\/
Y
Wate - alllo mke No— wwle —cllocafe
Coo. Maon'u
o \:)’Uigs ROJL - ;Z’)L (j\) MSSQ/)

R ——

Scanned by CamScanner



o, bt
T 6 2oy,

\Ay(’cmﬁm}@)

T g

T

— Time. » Move, a wovdl U

Scanned by CamScanner



y
%/bﬁdj Cache Hock sze
? Mo 7 cace <l
e vuembe
CMOQ&H\/&;}\

Scanned by CamScanner



- /‘pj_@‘“)bm
W7 ) T e W
e
jmy@b % Blodk Size |
"Digaobacks

- locallly R&"‘“'
w(&% N\At
\om&;bj &QQQ&E
W ;
,,__.__

Scanned by CamScanner



WQ(E 96 A%D ('Wb:\’t% |

DM\DCL%
Gl Fewa @i F Q- T ol
C

messes e ' Wb e,
Y, T
T Wik vae - s Perathy

[ Bwe o chase
o vidam HD@

Fasler WO“B —  Seqllet Cusouah%bg

vy
ooy W E s ﬂf@mibvé

Rate W o  wext
m@)«vwma W ol

Fadk
ik el A N

Sowor Memotes — W?{M Q@odaﬁvibj.

s L S T

Scanned by CamScanner



ES Ukle. badc
o VOU &LWPKL
wod b chre aw
oddibBlonal Bt //

Scanned by CamScanner




Cache Organization
IV

April 1,2016 . Ganesh Kumar




Consider this program

int sumarray(int arr[8]) {
int sum = 0;

for (int i = 0; 1 < 8; i++)
sum += arr[i];

return sum;

Good temporal locality?

Good spatial locality?



int sumarray(int arr[8]) {
int sum = 0;

for (int i = 0; 1 < 8; i++)
sum += arr[i];

return sum;

Good temporal locality?

YES! Variables i and sum are accessed repeatedly!

Good spatial locality?

Clearly! Variable arr is being accessed sequentially in a stride-1-reference pattern.



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arrfi] 0 1 2
Access 1[m]

order

[h] - hit

[M] - miss



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arr]i] 0 1 2 3 4 5 6 7
Access 1[m]

order

[h] - hit

[M] - miss

- Now load block with arr[0] onto the cache.
- Since block size is 16 Bytes, the first four elements of the array get loaded

into the cache.



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arr[i] 0 1 2 3 4 5 6 7
Access 1[m] 2[h] 3[h] 4[h]

order

[h] - hit

[M] - miss

- Now load block with arr[O] onto the cache.
- Since block size is 16 Bytes, the first four elements of the array get loaded

into the cache.
- Accessing arr[1], arr[2] and arr[3] will now be hits!



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arr[i] 0 1 2 3 4 5
Access 1[m] 2[h] 3[h] 4[h] 5[m]

order

[h] - hit

[M] - miss

- Now the loop will access arr[4].
- Miss!
- Load the block containing arr[4] onto the cache.



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arr[i] 0 1 2 3 4 5 6 7
Access 1[m] 2[h] 3[h] 4[h] 5[m] 6[h] 7[h] 8[h]
order

[h] - hit

[M] - miss

- Now the loop will access arr[4].

- Miss!

- Load the block containing arr[4] onto the cache.

- Since block size is 16 bytes, arr[5], arr[6] and arr[7] will also get loaded.
- And when the loop accesses them, it will be cache hits!



Assume the following,
- arris block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

arr[i] 0 1 2 3 4
Access 1[m] 2[h] 3[h] 4[h] 5[m]
order

[h] - hit

[M] - miss

Miss Rate = # of Misses / # of References
Miss Rate =2/8 =0.25

5

6[h]

6

7[h]

7

8[h]



In general, if a cache has a block size of B bytes, then stride-k-reference
pattern will produce an average of

min (1, (wordsize * k) / B)
misses for each iteration of the loop

where k is expressed in words.
For our example,

Average misses =min (1, (4 * 1) /16) =>min (1, 0.25) => 0.25

We can expect an average of 0.25 misses for every iteration.



