
Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Cache Organization
IV

April 1, 2016 . Ganesh Kumar

Consider this program

int sumarray(int arr[8]) {

int sum = 0;

for (int i = 0; i < 8; i++)

sum += arr[i];

return sum;

}

Good temporal locality?

Good spatial locality?

Code

int sumarray(int arr[8]) {

int sum = 0;

for (int i = 0; i < 8; i++)

sum += arr[i];

return sum;

}

Good temporal locality?

YES! Variables i and sum are accessed repeatedly!

Good spatial locality?

Clearly! Variable arr is being accessed sequentially in a stride-1-reference pattern.

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m]

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

- Now load block with arr[0] onto the cache.
- Since block size is 16 Bytes, the first four elements of the array get loaded

into the cache.

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m]

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

- Now load block with arr[0] onto the cache.
- Since block size is 16 Bytes, the first four elements of the array get loaded

into the cache.
- Accessing arr[1], arr[2] and arr[3] will now be hits!

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m] 2[h] 3[h] 4[h]

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

- Now the loop will access arr[4].
- Miss!
- Load the block containing arr[4] onto the cache.

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m] 2[h] 3[h] 4[h] 5[m]

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

- Now the loop will access arr[4].
- Miss!
- Load the block containing arr[4] onto the cache.
- Since block size is 16 bytes, arr[5], arr[6] and arr[7] will also get loaded.
- And when the loop accesses them, it will be cache hits!

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m] 2[h] 3[h] 4[h] 5[m] 6[h] 7[h] 8[h]

Assume the following,
- arr is block-aligned.
- Words are 4 bytes.
- Block size is 4 words (16 Bytes).
- Cache is initially empty

[h] - hit
[m] - miss

Miss Rate = # of Misses / # of References
Miss Rate = 2/8 = 0.25

arr[i] 0 1 2 3 4 5 6 7

Access
order

1[m] 2[h] 3[h] 4[h] 5[m] 6[h] 7[h] 8[h]

In general, if a cache has a block size of B bytes, then stride-k-reference
pattern will produce an average of

min (1, (wordsize * k) / B)
misses for each iteration of the loop

where k is expressed in words.

For our example,
Average misses = min (1, (4 * 1) / 16) => min (1, 0.25) => 0.25

We can expect an average of 0.25 misses for every iteration.

