
In summary, good things to do,

- Repeated references to the local variables are good (temporal locality). 
Cache them in the registers!

- Stride-1-reference patterns are also good because all caches store data 
sequentially as contiguous blocks.



Now consider this program

int sumarrayrows(int arr[4][8]) {

int sum = 0;

for (int i = 0; i < 4; i++)

for(int j = 0; j < 8; j++)

sum += arr[i][j];

return sum;

}

- C stores arrays in a row-major order.
- Again, stride-1-reference pattern.



int sumarrayrows(int arr[4][8]) {

int sum = 0;

for (int i = 0; i < 4; i++)

for(int j = 0; j < 8; j++)

sum += arr[i][j];

return sum;

}



int sumarrayrows(int arr[4][8]) {

int sum = 0;

for (int i = 0; i < 4; i++)

for(int j = 0; j < 8; j++)

sum += arr[i][j];

return sum;

}

Miss Ratio = 8/32 = 0.25



Now what if we reference the array in column-major order?

int sumarraycols(int arr[4][8]) {

int sum = 0;

for(int j = 0; j < 8; j++)

for (int i = 0; i < 4; i++)

sum += arr[i][j];

return sum;

}

If the cache is large enough (to hold the entire array) we may get away with this.

But it’s highly unlikely.

So... 



- Access a[0][0]. Cache miss!
- So we load block containing a[0][0] along with a[0][1], a[0][2], a[0][3] onto the 

cache.
- In the second iteration of the innermost loop, we access a[1][0]. Cache miss 

again!
- Now load block containing a[1][0] along with a[1][1], a[1][2], a[1][3] onto the 

cache.
- In the third iteration, we access a[2][0]...

Try working on this example for the following params,
m = 8, S = 4, B = 16 and E = 1. 

How many misses do you get?



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner


