DMA

Ganesh Kumar . April 8th, 2016

Assume the following,

- Initially, the heap has a capacity of 16 words.

0	4	8	12	16	20	24									

- 1 word = 4 bytes.
- Heap is double-word aligned

(a) p1 $=$ malloc $(4 * \operatorname{sizeof}($ int $))$

(b) p2 $=$ malloc (5*sizeof (int))

(c) p3 $=\operatorname{malloc}(6 * \operatorname{sizeof}($ int $))$

(d) free (p2)

(e) p4 $=$ malloc ($2 *$ sizeof (int) $)$
$4 / 8$.
Last Clan
Memory Protection
(1) Virtual Memory /

Addressing
More memory that what is physically available.
9.9
(2) Dynamic Memory Allocation \rightarrow Heap (Text, Data, Stack).
\rightarrow malloc r fee Explicit

Implicit.
realloc
void * realloc (void* pto, size $\frac{\text { size }}{\downarrow}$) unsigned int.

section null (if there is not M1 enough space

Bala \rightarrow we do not know What values will be there in the newly allocated block.
callow
(void *) calloc (sir et mum, size t size);
returns a pointer bo zero-initialized memory block. ($\begin{array}{c}\text { size } \\ \text { block }\end{array}=$ mum $*$ size $)$ bytes.

Mallee and Free
malloc.
What if there is no space on the heap? malloc \rightarrow call the Shrek () system
call to get mare
 memory for the kep
\rightarrow a request bo the OS.
spark ()
void * sbrk (int incr);
If everything goes sight, sbrk
\rightarrow will retain the old bat value.
something want wong \rightarrow retion - 1
posit \rightarrow stressor $\left(\frac{\text { errno }}{T}\right)$;
sbrk would set this depending on what went using.

Design Goals (Allocator)
(1) Throughput (\uparrow)

If it does wo mallows and 100 frees in a second,

$$
\begin{aligned}
\text { Throughput }= & 200 \text { operations } \\
& \text { per second. } .
\end{aligned}
$$

(2) Memory Utilization.

VM is limited.
I Allocated Memory
Total Heap Size
Tradeoff \rightarrow Throughput x Memory Utilization //

Fragmentation
Poor heap
utilization
because
of Fragmentation.
Internal Fragmentation
\longrightarrow When an allocated block is larger than the payload.
When could this happen?
\rightarrow Larger block size due to some alignment sestriction D (paylad).
\rightarrow Minimum block size restriction

How much space is wasted by
Internal Fragmentation.
$\operatorname{SUM}\binom{$ all allocated }{ blocks } - SUM (size of $\begin{gathered}\text { all paybads). }\end{gathered}$
External Fragmentation

(1) Requesting 3 words.
(2) Even though the neap has 4 words of free space, it cannot satisfy the request.

Typically \rightarrow to avoid external fragmentation.
Small \# of (over) Large \#
large free blocks
of small free blocks.

Design Considerations
(1) Free bock organization

Lists?
Pointers?
(2) Placement.

How do we Choose a block?
(3) Splitting.

Asper we allocate a free
block, what do we do with the gest?
(4) Coalescing

What do we do with the block that was just freed?

Free $!\leftarrow$| Free |
| :--- |
| |
| Allocated |
| Allocated |
| Free |

