
Cache Organization
II

March 28, 2016 . Ganesh Kumar

CACHE

CACHE

Set 0

Set 1

Set S-1

S Sets

Set 0

Set S-1

CACHE

E Lines in
each Set.

In this
example,
E=3

Set 0

Set S-1

CACHE

Block

Block

Block

Set 0

Set S-1

CACHE

Block

Block

Block

Each
Block
holds B
bytes

Set 0

Set S-1

CACHE

Block

Block

Block

Size of the Cache = S
x E x B bytes

(not including
overhead such as
tag and valid bits)

A Direct Mapped Cache Example

Description

(S, E, B, m) = (4, 1, 2, 4)

➔ 4 sets

➔ 1 line per set (Direct Mapped!)

➔ 2 bytes per block

➔ 4-bit address space

Address Split

➔ s = 2 bits

➔ b = 1 bit

➔ t = m - (s + b) => 1 bit

Set 0

Set 1

Set 3

Set 2

2 Byte Block

2 Byte Block

2 Byte Block

2 Byte Block

Points to Note

➔ Tag + Index bits together uniquely identify each block in memory.

➔ 8 memory blocks but only 4 cache sets. Multiple blocks map to same cache set

i.e. they have the same cache bit.

➔ Blocks that map to the same set can be differentiated/identified by using the

tag bits.

Set 0

Set 1

Set 3

Set 2

Offset 1Offset 00 tag

0

0

0

Initial State of
the cache

Set 0

Set 1

Set 3

Set 2

0

0

0

0

Read word
(in this case,
a byte) at
address
0000.

0 00 0
Set = 00

Set 0

Set 1

Set 3

Set 2

0

0

0

0

Read word
(in this case,
a byte) at
address
0000.

0 00 0
Set = 00

Valid bit is 0!
Cache miss!

Fetch block
0 from
memory

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]1 0

0

0

0

Read word
(in this case,
a byte) at
address
0000.

0 00 0
Set = 00

Valid bit is 0!
Cache miss!

Fetch block
0 from
memory

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]1 0

0

0

0

Read word
at address
0001.

0 00 1
Set = 00
Tag = 0
Offset = 1

Cache hit!

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]1 0

0

0

0

Read word
at address
1101.

1 10 1
Set = 10
Tag = 1
Offset = 1

Cache line in
set 2 is not
valid.

Cache miss!!

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]

mem[13]mem[12]

1 0

0

1 1

0

Read word
at address
1101.

1 10 1
Set = 10
Tag = 1
Offset = 1

Cache line in
set 2 is not
valid.

Cache miss!!

So load that
block into set
2

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]

mem[13]mem[12]

1 0

0

1 1

0

Read word
at address
1000.

1 00 0
Set = 00
Tag = 1
Offset = 0

Cache line in
set 0 is valid!

But tag bit
does not
match.

Cache miss!

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[1]mem[0]

mem[13]mem[12]

1 0

0

1 1

0

Read word
at address
1000.

1 00 0
Set = 00
Tag = 1
Offset = 0

Cache miss!

So load block
that contains
this address
1000 onto
cache.

And replace
the existing
line.

(Simple
replacement
policy!)

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[9]mem[8]

mem[13]mem[12]

1 1

0

1 1

0

Read word
at address
1000.

1 00 0
Set = 00
Tag = 1
Offset = 0

Cache miss!

So load block
that contains
this address
1000 onto
the cache.

And replace
the existing
line.

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[9]mem[8]

mem[13]mem[12]

1 1

0

1 1

0

What
happens if
we try to
read word at
address
0000 again?

Offset 0 Offset 1

Set 0

Set 1

Set 3

Set 2

mem[9]mem[8]

mem[13]mem[12]

1 1

0

1 1

0

What
happens if
we try to
read word at
address
0000 again?

And after
that, read
1000?

And so on?

Conflict
misses.

(Because
there is free
space in the
cache and
yet we get
misses)

Offset 0 Offset 1

Any way we can avoid this?

More cache lines!

Set Associative Caches!

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

