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tag and valid bits)



A Direct Mapped Cache Example



Description

(S, E, B, m)  =  (4, 1, 2, 4)

➔ 4 sets

➔ 1 line per set (Direct Mapped!)

➔ 2 bytes per block

➔ 4-bit address space

Address Split

➔ s = 2 bits

➔ b = 1 bit

➔ t = m - (s + b)  => 1 bit
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Points to Note

➔ Tag + Index bits together uniquely identify each block in memory.

➔ 8 memory blocks but only 4 cache sets. Multiple blocks map to same cache set 

i.e. they have the same cache bit.

➔ Blocks that map to the same set can be differentiated/identified by using the 

tag bits.
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What 
happens if 
we try to 
read word at 
address 
0000 again?

And after 
that, read 
1000?

And so on?

Conflict 
misses.

(Because 
there is free 
space in the 
cache and 
yet we get 
misses)
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Any way we can avoid this?



More cache lines!

Set Associative Caches!
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