Handout - Static Storage Class (5/4)

This handout is an extension of what we discussed about the static storage class in lecture
today.

What does the keyword static placed in front of a function or variable definition mean?
[1]- A static variable inside a function can keep its value between invocations.

Why? Because static variables are stored in the data or bss segment and not in the function’s
stack frame.

Example: static.c code which we discussed in class (posted in the handouts section.)

[2] - A static global variable or function are visible only in the file they are defined in.

main.c func.c

static int static_var = 0; // global_var is visible here.
int global_var = 1; // static_var is not visible here.
main () { func() {

} // global_var is visible here

// static_var is not visible here.

}

A non-static global variable on the other hand can be accessed from an other file using extern.
Same restrictions apply for functions.

Surprise Bonus Fact!
Did you know that if you don’t specify an executable file name (using the -o option) when
creating your executable object file, gcc assigns a default name of a.out?

Example
gcc myfile.c -m32 -o myfile Creates an executable object file named myfile

gcc myfile.c -m32 Creates an executable object file named a.out

