
CS354, Spring 2016
Data Lab: Manipulating Bits

Assigned: Feb. 12, Due: Wed., Feb. 26, 09:00 AM

Urmish Thakker (uthakker@cs.wisc.edu ) is the lead person for this assignment.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers. You’ll
do this by solving a series of programming “puzzles.” Many ofthese puzzles are quite artificial, but you’ll
find yourself thinking much more about bits in working your way through them.

2 Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be posted on the
course Web page and Piazza.

3 Handout Instructions

Please copy the file/p/course/cs354-common/public/src/datalab-handout.t ar
file to your private directory.

Start by copyingdatalab-handout.tar to your private directory on a Linux machine in which you
plan to do your work. Then give the command

unix> tar xvf datalab-handout.tar

This will cause a number of files to be unpacked in the directory. Theonly file you will be modifying and
turning in isbits.c .

Thebits.c file contains a skeleton for each of the 8 programming puzzles. Your assignment is to complete
each function skeleton using onlystraightline code for the integer puzzles (no loops or conditionals) and a
limited number of C arithmetic and logical operators. Specifically, you areonly allowed to use the following
eight operators:

1



! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments inbits.c for detailed rules and a discussion of the desired coding style.

4 The Puzzles

This section describes the puzzles that you will be solving in bits.c .

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. Each function has a “Difficulty”
field which gives the difficulty for the puzzle. You can find thedifficulty of each problem in bits.c. The
difficulty helps you plan things or helps you decide what problem to pick up first. The “Max Ops” fields
(again found in bits.c) refers to the maximum number of operations allowed to complete a puzzle. Points will
be deducted for solutions that exceed maximum number of operations. See the comments inbits.c for
more details on the desired behavior of the functions. You may also refer to the test functions intests.c .
These are used as reference functions to express the correctbehavior of your functions, although they don’t
satisfy the coding rules for your functions.

Name Description
getByte(x,n) Get byten from x .
isNotEqual(x,y) Returns true if x is not equal to y
isEqual(x,y) Returns true if x is equal to y

Table 1: Bit-Level Manipulation Functions.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers.
Again, refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description
fitsBits(x,n) Doesx fit in n bits?
negate(x) -x without negation
isPositive(x) x > 0 ?
isNegative(x) x < 0 ?
sign(x) Returns 1 if x is positive, 0 if zero and -1 if negative ?

Table 2: Arithmetic Functions

2



5 Evaluation

Your score will be computed out of a maximum of 120 points. The8 puzzles you must solve are equally
weighted. For each puzzle that you solve, you get a total of 13points if it is correct. You additionally get 2
points if you are within the maxops limit. We will evaluate your functions using thebtest program, which
is described in the next section. You will get full credit fora puzzle if it passes all of the tests performed by
btest , and no credit otherwise.

Autograding your work

We have included some autograding tools in the handout directory — btest , dlc , anddriver.pl —
to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions inbits.c . To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuildbtest each time you modify yourbits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the-f flag to instructbtest to test only a single function:

unix> ./btest -f bitAnd

You can feed it specific function arguments using the option flags-1 , -2 , and-3 :

unix> ./btest -f bitAnd -1 7 -2 0xf

Check the fileREADMEfor documentation on running thebtest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the-e switch:

unix> ./dlc -e bits.c

causesdlc to print counts of the number of operators used by each function. Type./dlc -help
for a list of command line options.

3



• driver.pl: This is a driver program that usesbtest anddlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will usedriver.pl to evaluate your solution.

6 Handin Instructions

Handin thebits.c solution file. Note it should be renamed tocslogin-bits.c . Eg, my
cslogin is uthakker, and I would submit the file asuthakker-bits.c. Copy this file to /p/course/cs354-
common/public/spring16.handin/cslogin/p2.

7 Advice/Notes

• Don’t include the<stdio.h> header file in yourbits.c file, as it confusesdlc and results in
some non-intuitive error messages. You will still be able touseprintf in your bits.c file for
debugging without including the<stdio.h> header, althoughgcc will print a warning that you
can ignore.

• Thedlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced
by gcc . In particular, any declaration must appear in a block (whatyou enclose in curly braces) before
any statement that is not a declaration. For example, it willcomplain about the following code:

int foo(int x)
{

int a = x;
a * = 3; / * Statement that is not a declaration * /
int b = a; / * ERROR: Declaration not allowed here * /

}

• The tests.c should only be used as a reference to get an idea ofwhat is the expected output of a
function.

4


