CS 354: Intro to Computer Systems (Spring 2018)

Lecture 13 - Set Associative Caches
The following problem concerns basic cache lookups.
e The memory is byte addressable.
e Memory accesses are to 1-byte words (not 4-byte words).
e Physical addresses are 12 bits wide.

¢ The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of
the cache are as follows:

4-way Set Associative Cache

Indexﬂ Tag Valid[Byte 0 Byte 1” Tag Va.lidIByte 0 Byte 1” Tag ValidlByte 0 Byte 1|| Tag Valid]Byte 0Byte 1

0 29 0 34 29 87 0 39 AE 7D 1 68 2 8B 1 64 38
1 F3 1 0D 8k 3D 1 oC 3A 4A 1 Ad DB D9 1 A5 3C
2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
3 3B 0 AC 1F EO 0 B5 70 3B 1 66 95 37 1 49 F3
4 80 1 60 35 2B 0 19 57 49 1 8D 41D 00 0 70 AB
5 |EA 1| B4 17 |lcc 1] 67 DB 8 o0 |DE AA | 18 1| 2c D3
6 lic o3 Adalor o]38 ci1|Fo o] 20 13|77 1|DF 05
71loF o]l o0 FF|AF 1| Bl 5F |99 0| AC 9 |[3A 1| 22 79
Part 1

The box below shows the format of a physical address. Indicate (by labeling the dlagl am)
the fields that would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value
returned in hex. Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0x3B6

Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

NN I N N Y N I

Physical memory reference

{ Parameter] Value l

Cache Offset (CO) | Ox
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned | Ox

Part 3

In the 4-way Set Associative Cache given above, list all the hex memory addresses that
will hit in Set 7.

Cache Miss Rate Analysis

You are evaluating the cache performance of the following code on a machine with a 64-byte
direct-mapped data cache (C = 64) with block size of 16-bytes (B = 16).
You are given the following definitions:
struct point {
int x;
int y;
¥
struct point grid[4]1[4];
int total x = 0, total_y = 0;
int i, j;

You should also assume the following:

sizeof(int) == 4.

grid begins at memory address 0.

The cache is initially empty.

The only memory accesses are to the entries of the array grid.
Variables i, j, total x, and total y are stored in registers.

A. Determine the cache performance for the following code snippet 1:

Code snippet 1:
for (1 =0; 1< 4; i++) {
for (3 =0; J < 4; j++) {
total x += grid[i][]j].x;

I3
for (1 = 0@; i< 4; i++) {
for (j =0; j < 4; j++) {
total_y += grid[i][]j].y;

1. What is the total number of reads that miss in the cache?

2. What is the miss rate?

B. Determine the cache performance for the following code snippet 2:

Code snippet 2:
for (i =0; 1 < 4; i++) {
for (j =85 j < 4; j++) {
total_x += grid[i][j].x;
total_y += grid[il[j].y;

1. What is the total number of reads that miss in the cache?

2. What is the miss rate?

C. Which of these 2 code snippets is better with respect to cache performance?
a. Code snippet #1

b. Code snippet #2

Why? (just a single line explanation is sufficient)

Linking
Consider the three files sum.h, sum.c and main.c as shown below and answer the
questions that follow.

sum.h
1 #ifndef SUM_H
2 #define SUM_H
3. extern int sum(int, int);
4 ftendif
sum. c

#include "sum.h"
extern int num_ops;
static int global _sum = ©;

1
2
3
4.
5. int sum(int x, int y)
6
7
8
9

{
global sum += (x+y);
num_ops++;
. return X+y;
lo0. }
main.c
1. #include "sum.h"
2. #define SUCCESS ©
3.
4. int num_ops = 9;
5.
6. int main()
7. {
8. int a = 10;
9. int b = 3;
10. int result = sum(a,b);
11 return SUCCESS;

jEnY
N
—

The final executable a.out is produced by running the following command:
% gcc sum.c main.c -m32

Questions:
A. The variable num_ops is ONLY declared but not defined in the file

B. The variable num_ops is defined in the file

C. Do the following variables / functions need relocation when the executable (a.out) is
formed? (Just answer: Yes or No),
a. Variable global sumin sum.c -

b. Variable result inmain.c -
¢. Variable num_ops inmain.c -
d. Function sum() in sum.c -

e. Function main() inmain.c -

D. Can the variable global_sum be accessed in the file main.c without changing the
type of the variable global_sumin sum.c? Yes OR No.

E. What type of object file is sum.o ?

 sum.o s generated using the command: gcc -c sum.c -m32
i. Relocatable Object File
ii. Executable Object File

F. Which part of program memory (code, data, stack, heap) are the following variables /
functions stored?
a. Variable global_sumin sum.c -

b. Variable resultin main. C-

c. Variable num_ops inmain.c -

d. Function sum() in sum. c -

e. Functionmain() inmain.c -

