(5 354
ccomble l»\z’D'ka'mt =1

Vve,fzwac{ b}j‘ Remzi Ayimf«\])umw

x86 general-purpose registers

(most significant)

Referred to as %eax, %ebx, %ecx,

(least)

ebx
bx
1 bh
bl

ecx

] ch
cl

edx
dx
] dh
dl

esi
edi

%edx, %esi, %edi, etc.

32 bits
16 bits
8 bits
8 bits

INSTRUCTION: mov SOURCE, DESTINATION

definition: moves "SOURCE" into "DESTINATION"
commonly has trailing character that indicates size of move,
movb — move a byte novw - movwe =2 butes -

movl — move "long" or 4 bytes (that’s an L after mov,
movqg — quad or 8 bytes

e.g.,

not a one)

our focus: movl (mostly)
Initial
— source=number

e.g., mov $10,

(limited) usage
("immediate")
%eax

destination=register

— source=register destination=register

e.g., mov %eax, %ebx

Later, we will add different types of operands for mov

INSTRUCTION: addl SOURCE, DESTINATION

definition: adds SOURCE and DESTINATION, puts result into DESTINATION
i.e., DESTINATION = DESTINATION + SOURCE

limited usage (for now):
— source=number ("immediate") destination=register
- source=register destination=register

INSTRUCTION: subl SOURCE, DESTINATION
definition: DESTINATION = DESTINATION - SOURCE
limited usage (for now):

— source=number ("immediate") destination=register
— source=register destination=register

INSTRUCTION: imull SOURCE, DESTINATION
definition: DESTINATION = DESTINATION * SOURCE

alternate:
imull AUX, SOURCE, DESTINATION
definition: DESTINATION = AUX * SOURCE

limited usage (for now):

— source=number ("immediate") destination=register
— source=register destination=register
- (aux=immediate)

INSTRUCTION: idivl DIVISOR
definition: contents of %edx:%eax (64 bit number) divided by DIVISOR
quotient —> %eax

remainder —-> %edx

limited usage (for now):
- divisor=register

Notes: A bit weird in its usage of VERY SPECIFIC registers!

Problem #1
Write assembly to:
- move value 1 into %eax
- add 10 to it and put result into %eax

Problem #2
Expression: 3 + 6 * 2

Use one register (%eax), and 3 instructions to compute this piece-by-piece

Problem #3

movl $0, %$edx
movl $7, %eax
movl $3, %ebx
idivl %ebx

movl %eax, %ecx
movl $0, $%edx
nmovl $9, $%$eax
movl $2, %ebx
idivl %ebx

movl %edx, %eax
addl %ecx, %eax

Write simple C expression that is equivalent to these instructions

Many x86 instructions can refer to memory addresses;
these addresses take on many different forms.

ABSOLUTE/DIRECT addressing
definition: just use a number as an address

movl 1000, %eax
gets contents (4 bytes) of memory at address 1000, puts into %eax

NOTE: DIFFERENT than movl $1000, %eax
(which just moves the VALUE 1000 into %eax)

INDIRECT addressing
definition: address is in register

movl (%eax), %ebx
treat contents of %eax as address, get contents from that address,
put into %ebx

BASE + DISPLACEMENT addressing
definition: address in register PLUS displacement value (an offset)

movl 8{%eax), %ebx
address = 8 + contents of eax
get contents from that address, put into %ebx

INDEXED addressing
definition: use one register as base, other as index

movl 4 (%eax, %ecx), %ebx
address = 4 + contents{eax] + contents[ecx]
get contents from that address, put into %ebx

SCALED INDEXED addressing (most general form)
definition: use one register as base, other as index, scale index by
constant (e.g., 1, 2, 4, 8)

movl 4 {(%eax, %ecx, 8), %ebx
address = 4 + contents[eax] + 8*contents[ecx]
get contents from that address, put into %ebx

Problem #4 (from CSAPP 3.1)
Memory
Address Value
0x100 OxFF
0x104 0xAB
0x108 0x13
0x10C Ox11
Registers
%eax 0x100
%ecx Ox1

$edx 0x3

Value of:

%eax

0x104

$0x108

(%eax)

4 (%eax)

9 (%eax, %edx)

260 (%ecx, %edx)

OxXFC(, %ecx, 4)

(%eax, %edx, 4)

New register to help with stack: esp (extended stack po

Referred to as %esp

[ssupwmume sssommps ssms@oss se@sssss] eax
(e eii i iie e] ax

Lidsemunss] ah

Ciwwpmans s] al

[ettt e it e s e i e] ebx
R S] bx

[swmmuas s] bh

Csmmeas s &] bl

[ettt e e et et it e et it et eee e] ecx
[isssssss snsensis 1 Cx

Do wmmnis 5 s] ch

[eweeeen. 1 (ki

Liiwaamas: somaniii SEMBHESE SHREHE S] edx
[ecmsns e wmuesssss] dx

[ewwassss] dh

|] dil

[essaness soensssi wuomsiss ewvmassis] esi
[oswsmnss swswes s wponessis wmues s s] edi
[ot et e et e e e e e et e tee e] esp
Lossvwns e snomssss somemesss WMemss s se 1 eip

Points to "top of stack" when program is running
Changes often (room for local variables, function call/

Can use normal instructions to interact with it, e.g.,
Can also use special instructions (we’ll see this later

inter)

32 bits
16 bits
8 bits
8 bits

32 bits

32 bits

return,

etc.)

addl, subl

)

Problem #5
Use instructions to:
— Increase size of stack by 4 bytes
— Store an integer value 10 into the top of the stack
— Retrieve that value and put it into %ecx
- Add 5 to it
— Put final value into %eax

~Decresse size ;’“Z. stack bd 4 bafm

Fdited Bd : Govald . 6

