X200

ol
wnd OF

N3

p——

Ow 0D OR FICE

Consider the following code snippet. Assume that the variable num is allocated

e

starting from memory address 0x3000.
P ot e T
int num = OxOFFlgg;
int *pnum = #
char *pchr = (char =) pnum;
(a.) What are the values of the following expressions? In other words what is the
value that will be printed if these éxpressions are used in a print statement. e.g.,
printf ("0x%x", xpnum); Write all values in hexadecimal. [7 points]

Expréssion Value
*pnum 0x FFICE
(short)num 0x F' CE

pchr([l] .

(char) num

Ox Ff
0x CE

—a)‘fdm@ ‘

++ (*pchr) 0x C/F
(+tpenr D 0x 3001
++pnum

0x30017t

(b) The function is_str_longer () compares the length of two strings s and t
and should return: :
i. 1 (one), if strlen(s) > strlen(t)
ii. 0 (zero), otherwise
The function signéture of strlen is: unsigned int strlen(char =*s);
Will the function is_str_longer () work as expected? If yes, just write
“WORKS”. If not, mention the issue and provide a fix for the same. You may
assume that the pointers s and t point to valid strings and are NOT NULL.
int is_str_'longer (char *xs; char =*t) { .
if (strlen(s) — strlen(t) > 0)
return 1;
else
E return 0;
}
ANSWER:

C8 254~ Jyhure § -

s %)’F ety
o e B
4 3 ¢ [DH ——\% | 0,,
I =
Dﬁ:: OOO l /Ll'_l——
FaaliEat
0 _n —[3)
e /r));'@L 2 —[
e,
%: R
I

- O J/BJ

- biw
%/ Or1224 5878

0

FG)\/\OVV%/ 0 noud '” '
i B
Aivisov “
yn v

obiw‘%w\ X\ [M e
: meV /KO\NQN

%DO”H ooo‘oao " -lN:[

7 odx TPo0x —

CpU

/

(My I &

(

AL ——
I 2

WDM 4</ s / %y - ecx

conforl e

#W '
add: 4+ ’ M&X% /, (zk;{;

ALY /[by

Loxtoo_} [ghieo)

(5354
G zm,fs(/d N

| 'Pve.fzwacf bi{{: Remzi /'\Y!‘?i?'Cf’JDMf tay

x86 general-purpose registers

(most significant) (least)

[e e i i i e st e e e] eax 32 bits
Lo et e 1 ax 16 bits
|] ah 8 bits

| R] al 8 bits

[oo e e et e e e e] ebx
| ceeeea..] Dbx
|] bh

[,] bl

S] ecx
|] cx
| PP] ch

| P 1 cl

[t e e i e e e e i i et e e] edx
1 dx
[] dh

[eeieenn.] dl

[e e e e i i e e e e e] esi

S] edi

Referred to as %eax, %ebx, %ecx, %edx, %esi, %edi, etc.

INSTRUCTION: mov SOURCE, DESTINATION

definition: moves "SOURCE" into "DESTINATION"

commonly has trailing character that indicates sgize of move, e.g.,
movb — move a byte - novWw - mdvwe 2 bifes -
movl — move "long" or 4 bytes (that’s an L after mov, not a one)
movg — quad or 8 bytes

our focus: movl (mostly)

Initial (limited) usage

— source=number ("immediate") destination=register

e.g., mov $10, %eax

~ source=register destination=register
e.g., mov %eax, %ebx

Later, we will add different types of operands for mov

INSTRUCTION: addl SOURCE, DESTINATION

definition: adds SOURCE and DESTINATION, puts result into DESTINATION
i.e., DESTINATION = DESTINATION + SOURCE

limited usage (for now):
- source=number ("immediate") destination=register
— source=register destination=register

INSTRUCTION: subl SOURCE, DESTINATION
definition: DESTINATION = DESTINATION - SOURCE
limited usage (for now):

— source=number ("immediate") destination=register
- source=register destination=register

INSTRUCTION: imull SOURCE, DESTINATION
definition: DESTINATION = DESTINATION x SOURCE

alternate:
imull AUX, SOURCE, DESTINATION
definition: DESTINATION = AUX * SOURCE

limited usage (for now):

— source=number ("immediate") destination=register
— source=register destination=register
— {(aux=immediate)

INSTRUCTION: idivl DIVISOR
definition: contents of %edx:%eax (64 bit number) divided by DIVISOR
quotient -> %eax

remainder -> %edx

limited usage (for now):
- divisor=register

Notes: A bit weird in its usage of VERY SPECIFIC registers!

o dut
Problem #1

Write assembly to: Q/ . /
— move value 1 into %eax MDV{ g $ ' éélb)(

— add 10 to it and put result into %eax

oddl 410, o eax

Problem #2
Expression: 3 + 6 x 2

Use one register (%eax), and 3 instructions to compute this piece-by-piece
mov| $6, 900
all 42, "/é 15
am 43, % wx .
VANV YA/ YN

Problem #3 - Im' LA —CD.Q MI (7>
movl $0, %edx

movl $7, %eax

movl $3, %ebx

idivl /'ebx —-——————> 7 3 ‘ OD T Dl C‘g)
movl Ty %) ’

P T = o—”'—“//h\\‘

\
movl 50, %edx . . / ZCX .
movl $9, %eax &i@g\;\\@ (‘Q’>
movl $2, %ebx ; (l '
idivl %ebx ~————/—“””""') . e
movl %edx, %eax,

4

addl %ecx, %eax

Write 51mple C expression that is e valent to these instructio

Many x86 instructions can refer to memory addresses;
these addresses take on many different forms.

ABSOLUTE/DIRECT addressing
definition: just use a number as an address

movl 1000, %eax
gets contents (4 bytes) of memory at address 1000, puts into %eax

NOTE: DIFFERENT than movl $1000, %eax
(which just moves the VALUE 1000 into %eax)

INDIRECT addressing
definition: address is in register

movl (%eax), %ebx
treat contents of %eax as address, get contents from that address,
put into %ebx

BASE + DISPLACEMENT addressing
definition: address in register PLUS displacement value (an offset)

movl 8 (%eax), %ebx
address = 8 + contents of eax
get contents from that address, put into %ebx

INDEXED addressing
definition: use one register as base, other as index

movl 4 (%eax, %ecx), %ebx
address = 4 + contents{eax] + contents[ecx]
get contents from that address, put into %ebx

SCALED INDEXED addressing (most general form)
definition: use one register as base, other as index, scale index by
constant (e.g., 1, 2, 4, 8)

movl 4 (%eax, %ecx, 8), %ebx
address = 4 + contents[eax] + 8xcontents[ecx]
get contents from that address, put into %ebx

Problem #4 (from CSAPP 3.1)

Memory

Address Value
0x100 (oxFF]
0x104 0xAB
0x108 0x13
0x10C 0x11

Registers
%eax 0x100
%ecx 0x1
$edx 0x3

Value o

0x (00
0x104 DXAB
$0x108 OX]_Q_&

(%eax) » Z2K‘FF—
4 (%eax) OXA/B

9 (%eax, %edx) (O x I.
260 (5ecx, %edx) C))Cl ES

0XFC(, $ecx, 4) DXFF
DX

(%eax, %edx, 4)

wor|

4 +oxlo0 = Dxios (adh

J

Mo\rg Ox{&f/q,L%ﬁf
mow, UW) p R

91 pxloo+ px3 = 0x

+ ox| + 0x3 @
DRivg | ‘

oxFC +[0xl % 4) =

)

10 a@.’fk)

@

X
X

BINY

omo+@%¢
= (”)xu
4

(0D
He

New register to help with stack: esp (extended stack pointer)

Referred to as %esp

oottt e e i i e et et e e] eax 32 bits
1 ax 16 bits
| PP] ah 8 bits
| PP] ail 8 bits
Lot e e it e it et e e e e] ebx
|] bx
[eein.] bh
[,] bl
[t e e i i e e e e i] ecx
[i i e i] cx
| P] ch
| PP] cl
ettt e e e i i i ettt et e 1 edx
S] dx
| AP] dh
| AP] di
et e i i et e i e e 1 esi
[e e i ey e] edi
[et i e e e i i it e et e] esp 32 bits
[e e e de e 1 eip 32 bits

Points to "top of stack" when program is running
Changes often (room for local variables, function call/return, etc.)

Can use normal instructions to interact with it, e.g., addl, subl
Can also use special instructions (we’ll see this later)

Problem #5
Use instructions to:
— Increase size of stack by 4 bytes)
— Store an integer value 10 into the top of the stack
— Retrieve that value and put it into %ecx
— Add 5 to it
— Put final valu% into %eax ’
=N dize af stk bd 4 baf«l '

g

E dity d bd ; @ZYM 6

