hila 21 08 854 - Spig 2019
1 ke 10

Korews agjao\ o %g\’w !

AR

s i
7 lM debp | L

o e (6]

L [f76e

ndoddy = DX 08 OZ,L £§E
[3B

BT w e [lofulo
HﬁL L I AW{?{%

|
/
g 1?;% |
K Ahng |
G U1

L

30

mor et - = 8 b
Hugnat ccphent: = 8 g

w2l
% V“K“‘F\“

I —— g% ®
vV ak 0 .

Dx ODODOD O.d | 0O D

b %“W block ,

i
block
Aze =
y
Lok
o \Tf))
hox
-
{
e

b

1. Memory Allocator
Consider a dynamic memory allocator with the following properties.

e Double word (8 bytes) aligned.

Implicit free list is used for free block organization.

All blocks have a header of size 4 bytes.

The size of a block (including the header) is stored in the header.

bit O (least significant bit) in the header indicates the use of the current block:
1 for allocated, 0 for free.

Answer the following questions regarding this allocator:

(a) Minimum block size =
(b) Maximum block size =

(c) For the following memory allocation, what is the size of the payload and
padding that will be used in the allocated block? Block splitting might happen
based on the size of the request.

You should assume the following: A free block of size 32 bytes is chosen by
the allocator to satisfy the below malloc request. The header of this block is
at the memory location 0x8090A0B4.

char *p = malloc(8);
Payload = __ bytes
Padding = bytes

Memory address stored in the pointer p (in hexadecimal) :

0Ox

(d) The contents of the header of a block in the allocator is 0x000000A9.

i. Is the block allocated or free?
ii. What is the size of the block (in decimal)?

iii. Is the contents.of the header of this block valid with respect to this allo-
cator? Remember;(for a block to be valid with respect to an allocator, its
size should satisfy the alignment requirement of the allocator. Yes OR No

2. Assembly review

Consider the following

FQ
e

128 {,q 2 (b

functions a,nd their corresponding assembly functi

were generated on a Linux/x86 mac (f_\)
=8912 =(= (5
S

/

/* copy string x to buf %/ 'é { ’_1?
void foo(char *x) { ’-/l F\—’ =X

anEShuf s

strcpy ((char *)buf, x);
|)
void callfoo () {

foo("abcdefghi") ;
}
080484f4 <foo>:
080484f4: 55 pushl %ebp
080484f5: 89 eb5 movl %esp, sebp amb ng ’
080484£7: 83 ec 18 subl $0x18,%esp
080484fa: 8b 45 08 movl 0x8 (%ebp) , $eax [GK’ ai~fm”ahﬂ
080484fd: 83 c4 f8 addl SOxfffffff8,%esp
08048500: 50 pushl %eax
08048501: 8d 45 fc leal Oxfffffffc (%ebp), $eax
08048504 : 50 pushl %eax
08048505: e8 ba fe ff ff call 80483c4 <strcpy> —4L '/‘_LLD
0804850a: 89 ec movl %ebp, sesp
‘0804850c: 5d popl %ebp e
0804850d: @5 ret
08048510 <callfoo>:
08048510: 55 pushl $%ebp
08048511: 89 e5 movl %esp, $ebp
08048513: 83 ec 08 subl $0x8, %$esp
08048516: 83 c4 f4 addl SOxfffffff4,%esp
08048519: 68 9c¢ 85 04 08 ushl $0x804859c # push string address

804851e: e8 dl £ff £Ff £f Jpall 80484f4 <foozﬂj
08048523 o7 TETE movl %ebp, $esp
08048525: 5d popl %ebp
08048526 @3 ret
'\ | \ -1
L

28 —>

i)

-_
-—

DE04ES 22
]}F FF FF D

call

i i

%u’

Some useful things to help you solve this problem:

e strcpy (char =*dst,

char xsrc) copies the string at address src (in-

cluding the terminating ‘\ 0’ character) to address dst. It does not check the

size of the destination buffer.

e Recall that Linux/x86 machines areILittle Endian.)

e You will need to know the hex values of the following characters:

Character | Hex value || Character | Hex value
‘a’ 0x61 i 0x66
‘b’ 0x62 ‘g’ 0x67
‘¢’ 0x63 ‘W’ 0x68
gl 0x64 9’ 0x69
‘e’ 0x65 ‘\0’ 0x00

Now consider what happens on a Linux/x86 machine when callfoo () calls foo ()
with the input string “abcdefghi”.

(a) List the contents of the following memory locations immediately after st rcpy
returns to foo. Each answer should be an unsigned 4-byte integer that
would be output when printed using a printf (e.g., 0x0840A1B1).

(b)

buf[0]

buf[1]

Il

buf[2]

HVL C'/X

%Loﬂ) '

Immediately before the ret instruction at address 0x0804850d executes,
what is the value of the frame pointer register $ebp?

b9 67 L6 b

Immediately after the ret instruction at address 0x0804850d executes,

%ebp = 0x

what is the value of the program counter register $eip?

seip = 0x D8 04 00 69

3. Dynamic Memory Allocation - Implementation

Consider an allocator that uses an implicit free list. Each memory block, ei-
ther allocated or free, has a size that is a multiple of eight bytes. Thus, only the
29 higher order bits in the header and footer are needed to record block size,
which includes the header and footer and is represented in units of bytes. The
usage of the remaining 3 lower order bits is as follows:

e bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

e bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for
free.

e bit 2 is unused and is always set to be 0.

Five helper routines are defined to facilitate the implementation of free (void
xp). The functionality of each routine is explained in the comment above the
function definition. Fill in the body of the helper routines, the code section label
(i.e., A, B, or C) that implement the corresponding functionality correctly. The
tilde (~) operator in C is the ones’ complement operator.

/* given a pointer p to an allocated block, i.e., p is a
pointer returned by some previous malloc()/realloc() call;
returns the pointer to the header of the blockx/

void * header (voidx p)

{

void xptr;

7

return pEEx;

A. ptr = p-1
B. ptr =(verd) ((int =)p=1)

C. ptr = (void «) ((int =«)p-—4)

/* given a pointer to a valid block header or footer,
returns the size of the block */

int size(void xhp)

{

int result;

7

return result;

A. result=(*hp) & (~7)
B. result=((* (char *)hp) & (~5))<<2
C. result=(x(int *)hp) & (~7)

18/\ ////lé/: %//4’(36/0| | I T

Vz/l //////V W |- | gL/II/////Q/OI ' “f;l%/‘ 7//1‘
Tplih)%,&\@zF
~0 oL how
gEla v
/ | | | 3/% %

8\ I//A go

//lléiol

8/,%81
{ sl
2z

/14l

prises

