
Chapter 12: Error Handling

Forty years ago, goto-laden code was considered perfectly good practice. Now we strive to write
structured control flows. Twenty years ago, globally accessible data was considered perfectly
good practice. Now we strive to encapsulate data. Ten years ago, writing functions without
thinking about the impact of exceptions was considered good practice. Now we strive to write
exception-safe code.

Time goes on. We live. We learn.

– Scott Meyers, author of Effective C++ and one of the leading experts on C++. [Mey05]

In an ideal world, network connections would never fail, files would always exist and be properly
formatted, users would never type in malformed input, and computers would never run out of memory.
Realistically, though, all of the above can and will occur and your programs will have to be able to respond
to them gracefully. In these scenarios, the normal function-call-and-return mechanism is not robust
enough to signal and report errors and you will have to rely on exception handling, a C++ language feature
that redirects program control in case of emergencies.

Exception handling is a complex topic and will have far-reaching effects on your C++ code. This chapter
introduces the motivation underlying exception handling, basic exception-handling syntax, and some
advanced techniques that can keep your code operating smoothly in an exception-filled environment.

A Simple Problem

Up to this point, all of the programs you've written have proceeded linearly – they begin inside a special
function called main, then proceed through a chain of function calls and returns until (hopefully) hitting
the end of main. While this is perfectly acceptable, it rests on the fact that each function, given its
parameters, can perform a meaningful task and return a meaningful value. However, in some cases this
simply isn't possible.

Suppose, for example, that we'd like to write our own version of the CS106B/X StringToInteger
function, which converts a string representation of an number into an int equivalent. One possible
(partial) implementation of StringToInteger might look like this:*

 int StringToInteger(const string &input) {
 stringstream converter(input);
 int result; // Try reading an int, fail if we're unable to do so.

 converter >> result;
 if (converter.fail())
 // What should we do here?

 char leftover; // See if anything's left over. If so, fail.
 converter >> leftover;
 if (!converter.fail())
 return result;
 else
 // What should we do here?
 }

* This is based off of the GetInteger function we covered in the chapter on streams. Instead of looping and
reprompting the user for input at each step, however, it simply reports errors on failure.

- 370 - Chapter 12: Error Handling

If the parameter input is a string with a valid integer representation, then this function simply needs to
perform the conversion. But what should our function do if the parameter doesn't represent an integer?
One possible option, and the one used by the CS106B/X implementation of StringToInteger, is to call a
function like Error that prints an error and terminates the program. This response seems a bit drastic
and is a decidedly suboptimal solution for several reasons. First, calling Error doesn't give the program a
chance to recover from the problem. StringToInteger is a simple utility function, not a critical
infrastructure component, and if it fails chances are that there's an elegant way to deal with the problem.
For example, if we're using StringToInteger to convert user input in a text box into an integer for
further processing, it makes far more sense to reprompt the user than to terminate the program. Second,
in a very large or complicated software system, it seems silly to terminate the program over a simple
string error. For example, if this StringToInteger function were used in an email client to convert a
string representation of a time to an integer format (parsing the hours and minutes separately), it would
be disastrous if the program crashed whenever receiving malformed emails. In essence, while using a
function like Error will prevent the program from continuing with garbage values, it is simply too drastic
a move to use in serious code.

This approach suggests a second option, one common in pure C – sentinel values. The idea is to have
functions return special values meaning “this value indicates that the function failed to execute correctly.”
In our case, we might want to have StringToInteger return -1 to indicate an error, for example.
Compared with the “drop everything” approach of Error this may seem like a good option – it reports the
error and gives the calling function a chance to respond. However, there are several major problems with
this method. First, in many cases it is not possible to set aside a value to indicate failure. For example,
suppose that we choose to reserve -1 as an error code for StringToInteger. In this case, we'd make all
of our calls to StringToInteger as

 if (StringToInteger(myParam) == -1) {
 /* ... handle error ... */
 }

But what happens if the input to StringToInteger is the string "-1"? In this case, whether or not the
StringToInteger function completes successfully, it will still return -1 and our code might confuse it
with an error case.

Another serious problem with this approach is that if each function that might possibly return an error
has to reserve sentinel values for errors, we might accidentally check the return value of one function
against the error code of another function. Imagine if there were several constants floating around named
ERROR, STATUS_ERROR, INVALID_RESULT, etc., and whenever you called a function you needed to check
the return value against the correct one of these choices. If you chose incorrectly, even with the best of
intentions your error-checking would be invalid.

Yet another shortcoming of this approach is that in some cases it will be impossible to reserve a value for
use as a sentinel. For example, suppose that a function returns a vector<double>. What special
vector<double> should we choose to use as a sentinel?

However, the most serious problem with the above approach is that you as a programmer can ignore the
return value without encountering any warnings. Even if StringToInteger returns a sentinel value
indicating an error, there are no compile-time or runtime warnings if you choose not to check for a return
value. In the case of StringToInteger this may not be that much of a problem – after all, holding a
sentinel value instead of a meaningful value will not immediately crash the program – but this can lead to
problems down the line that can snowball into fully-fledged crashes. Worse, since the crash will probably
be caused by errors from far earlier in the code, these sorts of problems can be nightmarish to debug.

Chapter 12: Error Handling - 371 -

Surprisingly, experience shows that many programmers – either out of negligence or laziness – forget to
check return values for error codes and snowball effects are rather common.

We seem to have reached an unsolvable problem. We'd like an error-handling system that, like Error,
prevents the program from continuing normally when an error occurs. At the same time, however, we'd
like the elegance of sentinel values so that we can appropriately process an error. How can we combine
the strengths of both of these approaches into a single system?

Exception Handling

The reason the above example is such a problem is that the normal C++ function-call-and-return system
simply isn't robust enough to communicate errors back to the calling function. To resolve this problem,
C++ provides language support for an error-messaging system called exception handling that completely
bypasses function-call-and-return. If an error occurs inside a function, rather than returning a value, you
can report the problem to the exception handling system to jump to the proper error-handling code.

The C++ exception handling system is broken into three parts – try blocks, catch blocks, and throw
statements. try blocks are simply regions of code designated as areas that runtime errors might occur. To
declare a try block, you simply write the keyword try, then surround the appropriate code in curly
braces. For example, the following code shows off a try block:

 try {
 cout << "I'm in a try block!" << endl;
 }

Inside of a try block, code executes as normal and jumps to the code directly following the try block once
finished. However, at some point inside a try block your program might run into a situation from which it
cannot normally recover – for example, a call to StringToInteger with an invalid argument. When this
occurs, you can report the error by using the throw keyword to “throw” the exception into the nearest
matching catch clause. Like return, throw accepts a single parameter that indicates an object to throw
so that when handling the exception your code has access to extra information about the error. For
example, here are three statements that each throw objects of different types:

 throw 0; // Throw an int
 throw new vector<double>; // Throw a vector<double> *
 throw 3.14159; // Throw a double

When you throw an exception, it can be caught by a catch clause specialized to catch that error. catch
clauses are defined like this:

 catch(ParameterType param) {
 /* Error-handling code */
 }

Here, ParameterType represents the type of variable this catch clause is capable of catching. catch blocks
must directly follow try blocks, and it's illegal to declare one without the other. Since catch clauses are
specialized for a single type, it's perfectly legal to have cascading catch clauses, each designed to pick up a
different type of exception. For example, here's code that catches exceptions of type int, vector<int>,
and string:

- 372 - Chapter 12: Error Handling

 try {
 // Do something
 }
 catch(int myInt) {
 // If the code throws an int, execution continues here.
 }
 catch(const vector<int>& myVector) {
 // Otherwise, if the code throws a vector<int>, execution resumes here.
 }
 catch(const string& myString) {
 // Same for string
 }

Now, if the code inside the try block throws an exception, control will pass to the correct catch block.
You can visualize exception handling as a room of people and a ball. The code inside the try block begins
with the ball and continues talking as long as possible. If an error occurs, the try block throws the ball to
the appropriate catch handler, which begins executing.

Let's return to our earlier example with StringToInteger. We want to signal an error in case the user
enters an invalid parameter, and to do so we'd like to use exception handling. The question, though, is
what type of object we should throw. While we can choose whatever type of object we'd like, C++ provides
a header file, <stdexcept>, that defines several classes that let us specify what error triggered the
exception. One of these, invalid_argument, is ideal for the situation. invalid_argument accepts in its
constructor a string parameter containing a message representing what type of error occurred, and has
a member function called what that returns what the error was.* We can thus rewrite the code for
StringToInteger as

int StringToInteger(const string& input) {
 stringstream converter(input);
 int result; // Try reading an int, fail if we're unable to do so.

 converter >> result;
 if (converter.fail())
 throw invalid_argument("Cannot parse " + input + " as an integer.");

 char leftover; // See if anything's left over. If so, fail.
 converter >> leftover;
 if (!converter.fail())
 return result;
 else
 throw invalid_argument(string("Unexpected character: ") + leftover);
}

Notice that while the function itself does not contain a try/catch pair, it nonetheless has a throw
statement. If this statement is executed, then C++ will step backwards through all calling functions until it
finds an appropriate catch statement. If it doesn't find one, then the program will halt with a runtime
error. Now, we can write code using StringToInteger that looks like this:

* what is a poor choice of a name for a member function. Please make sure to use more descriptive names in your
code!

Chapter 12: Error Handling - 373 -

 try {
 int result = StringToInteger(myString);
 cout << "The result was: " << result;
 }
 catch(const invalid_argument& problem) {
 cout << problem.what() << endl; // Prints out the error message.
 }
 cout << "Yay! We're done." << endl;

Here, if StringToInteger encounters an error and throws an exception, control will jump out of the try
block into the catch clause specialized to catch objects of type invalid_argument. Otherwise, code
continues as normal in the try block, then skips over the catch clause to print “Yay! We're done.”

There are several things to note here. First, if StringToInteger throws an exception, control
immediately breaks out of the try block and jumps to the catch clause. Unlike the problems we had with
our earlier approach to error handling, here, if there is a problem in the try block, we're guaranteed that
the rest of the code in the try block will not execute, preventing runtime errors stemming from
malformed objects. Second, if there is an exception and control resumes in the catch clause, once the
catch block finishes running, control does not resume back inside the try block. Instead, control
resumes directly following the try/catch pair, so the program above will print out “Yay! We're done.”
once the catch block finishes executing. While this might seem unusual, remember that the reason for
exception handling in the first place is to halt code execution in spots where no meaningful operation can
be defined. Thus if control leaves a try block, chances are that the rest of the code in the try could not
complete without errors, so C++ does not provide a mechanism for resuming program control. Third, note
that we caught the invalid_argument exception by reference (const invalid_argument& instead of
invalid_argument). As with parameter-passing, exception-catching can take values either by value or
by reference, and by accepting the parameter by reference you can avoid making an unnecessary copy of
the thrown object.

A Word on Scope

Exception handling is an essential part of the C++ programming language because it provides a system for
recovering from serious errors. As its name implies, exception handling should be used only for
exceptional circumstances – errors out of the ordinary that necessitate a major change in the flow of
control. While you can use exception handling as a fancy form of function call and return, it is highly
recommended that you avoid doing so. Throwing an exception is much slower than returning a value
because of the extra bookkeeping required, so be sure that you're only using exception handling for
serious program errors.

Also, the exception handling system will only respond when manually triggered. Unless a code snippet
explicitly throws a value, a catch block cannot respond to it. This means that you cannot use exception
handling to prevent your program from crashing from segmentation faults or other pointer-based errors,
since pointer errors result in operating-system level process termination, not C++-level exception
handling.*

Programming with Exception Handling

While exception handling is a robust and elegant system, it has several sweeping implications for C++
code. Most notably, when using exception handling, unless you are absolutely certain that the classes and
functions you use never throw exceptions, you must treat your code as though it might throw an exception

* If you use Microsoft's Visual Studio development environment, you might notice that various errors like null-
pointer dereferences and stack overflows result in errors that mention “unhandled exception” in their
description. This is a Microsoft-specific feature and is different from C++'s exception-handling system.

- 374 - Chapter 12: Error Handling

at any point. In other words, you can never assume that an entire code block will be completed on its own,
and should be prepared to handle cases where control breaks out of your functions at inopportune times.
For example, consider the following function:

 void SimpleFunction() {
 int* myArray = new int[128];
 DoSomething(myArray);
 delete [] myArray;
 }

Here, we allocate space for a raw array, pass it to a function, then deallocate the memory. While this code
seems totally safe, when you introduce exceptions into the mix, this code can be very dangerous. What
happens, for example, if DoSomething throws an exception? In this case, control would jump to the
nearest catch block and the line delete [] myArray would never execute. As a result, our program will
leak the array. If this program runs over a sufficiently long period of time, eventually we will run out of
memory and our program will crash.

There are three main ways that we can avoid these problems. First, it's completely acceptable to just avoid
exception-handling all together. This approach might seem like a cop-out, but it is a completely valid
option that many C++ developers choose. Several major software projects written in C++ do not use
exception handling (including the Mozilla Firefox web browser), partially because of the extra difficulties
encountered when using exceptions. However, this approach results in code that runs into the same
problems discussed earlier in this chapter with StringToInteger – functions can only communicate
errors through return values and programmers must be extra vigilant to avoid ignoring return values.

The second approach to writing exception-safe code uses a technique called “catch-and-rethrow.” Let's
return to the above code example with a dynamically-allocated character buffer. We'd like to guarantee
that the array we've allocated gets deallocated, but as our code is currently written, it's difficult to do so
because the DoSomething function might throw an exception and interrupt our code flow. If there is an
exception, what if we were able to somehow intercept that exception, clean up the buffer, and then
propagate the exception outside of the SimpleFunction function? From an outside perspective, it would
look as if the exception had come from inside the DoSomething function, but in reality it would have taken
a quick stop inside SimpleFunction before proceeding outwards.

The reason this method works is that it is legal to throw an exception from inside a catch block. Although
catch blocks are usually reserved for error handling, there is nothing preventing us from throwing the
exception we catch. For example, this code is completely legal:

 try{
 try {
 DoSomething();
 }
 catch(const invalid_argument& error) {
 cout << "Inner block: Error: " << error.what() << endl;
 throw error; // Propagate the error outward
 }
 }
 catch(const invalid_argument& error) {
 cout << "Outer block: Error: " << error.what() << endl;
 }

Here, if the DoSomething function throws an exception, it will first be caught by the innermost try block,
which prints it to the screen. This catch handler then throws error again, and this time it is caught by
the outermost catch block.

Chapter 12: Error Handling - 375 -

With this technique, we can almost rewrite our SimpleFunction function to look something like this:

 void SimpleFunction() {
 int myArray = new int[128];

 /* Try to DoSomething. If it fails, catch the exception and rethrow it. */
 try {
 DoSomething(myCString);
 }
 catch (/* What to catch? */) {
 delete [] myArray;
 throw /* What to throw? */;
 }

 /* Note that if there is no exception, we still need to clean things up. */
 delete [] myArray;
 }

There's a bit of a problem here – what sort of exceptions should we catch? Suppose that we know every
sort of exception DoSomething might throw. Would it be a good idea to write a catch block for each one
of these types? At first this may seem like a good idea, but it can actually cause more problems than it
solves. First, in each of the catch blocks, we'd need to write the same delete [] statement. If we were
to make changes to the SimpleFunction function that necessitated more cleanup code, we'd need to
make progressively more changes to the SimpleFunction catch cascade, increasing the potential for
errors. Also, if we forget to catch a specific type of error, or if DoSomething later changes to throw more
types of errors, then we might miss an opportunity to catch the thrown exception and will leak resources.
Plus, if we don't know what sorts of exceptions DoSomething might throw, this entire approach will not
work.

The problem is that in this case, we want to tell C++ to catch anything that's thrown as an exception. We
don't care about what the type of the exception is, and need to intercept the exception simply to ensure
that our resource gets cleaned up. Fortunately, C++ provides a mechanism specifically for this purpose. To
catch an exception of any type, you can use the special syntax catch(...), which catches any exception.
Thus we'll have the catch clause inside DoSomething be a catch(...) clause, so that we can catch any
type of exception that DoSomething might throw. But this causes another problem: we'd like to rethrow
the exception, but since we've used a catch(...) clause, we don't have a name for the specific exception
that's been caught. Fortunately, C++ has a special use of the throw statement that lets you throw the
current exception that's being processed. The syntax is

 throw;

That is, a lone throw statement with no parameters. Be careful when using throw;, however, since if
you're not inside of a catch block the program will crash!

The final version of SimpleFunction thus looks like this:

- 376 - Chapter 12: Error Handling

void SimpleFunction() {
 int myArray = new int[128];

 /* Try to DoSomething. If it fails, catch the exception and rethrow it. */
 try {
 DoSomething(myCString);
 }
 catch (...) {
 delete [] myArray;
 throw;
 }

 /* Note that if there is no exception, we still need to clean things up. */
 delete [] myArray;
 }

As you can tell, the “catch-and-rethrow” approach to exception handling results in code that can be rather
complicated. While in some circumstances catch-and-rethrow is the best option, in many cases there's a
much better alternative that results in concise, readable, and thoroughly exception-safe code – object
memory management.

Object Memory Management and RAII

C++'s memory model is best described as “dangerously efficient.” Unlike other languages like Java, C++
does not have a garbage collector and consequently you must manually allocate and deallocate memory.
At first, this might seem like a simple task – just delete anything you allocate with new, and make sure not
to delete something twice. However, it can be quite difficult to keep track of all of the memory you've
allocated in a program. After all, you probably won't notice any symptoms of memory leaks unless you run
your programs for hours on end, and in all likelihood will have to use a special tool to check memory
usage. You can also run into trouble where two objects each point to a shared object. If one of the objects
isn't careful and accidentally deletes the memory while the other one is still accessing it, you can get
some particularly nasty runtime errors where seemingly valid data has been corrupted. The situation gets
all the more complicated when you introduce exception-handling into the mix, where the code to delete
allocated memory might not be reached because of an exception.

In some cases having a high degree of control over memory management can be quite a boon to your
programming, but much of the time it's simply a hassle. What if we could somehow get C++ to manage our
memory for us? While building a fully-functional garbage collection system in C++ would be just short of
impossible, using only basic C++ concepts it's possible to construct an excellent approximation of
automatic memory management. The trick is to build smart pointers, objects that acquire a resource when
created and that clean up the resource when destroyed. That is, when the objects are constructed, they
wrap a newly-allocated pointer inside an object shell that cleans up the mess when the object goes out of
scope. Combined with features like operator overloading, it's possible to create slick smart pointers that
look almost exactly like true C++ pointers, but that know when to free unused memory.

The C++ header file <memory> exports the auto_ptr type, a smart pointer that accepts in its constructor a
pointer to dynamically-allocated memory and whose constructor calls delete on the resource.*
auto_ptr is a template class whose template parameter indicates what type of object the auto_ptr will
“point” at. For example, an auto_ptr<string> is a smart pointer that points to a string. Be careful – if
you write auto_ptr<string *>, you'll end up with an auto_ptr that points to a string *, which is
similar to a string **. Through the magic of operator overloading, you can use the regular dereference
and arrow operators on an auto_ptr as though it were a regular pointer. For example, here's some code

* Note that auto_ptr calls delete, not delete [], so you cannot store dynamically-allocated arrays in auto_ptr. If
you want the functionality of an array with automatic memory management, use a vector.

Chapter 12: Error Handling - 377 -

that dynamically allocates a vector<int>, stores it in an auto_ptr, and then adds an element into the
vector:

 /* Have the auto_ptr point to a newly-allocated vector<int>. The constructor
 * is explicit, so we must use parentheses.
 */
 auto_ptr<vector<int> > managedVector(new vector<int>);
 managedVector->push_back(137); // Add 137 to the end of the vector.
 (*managedVector)[0] = 42; // Set element 0 by dereferencing the pointer.

While in many aspects auto_ptr acts like a regular pointer with automatic deallocation, auto_ptr is
fundamentally different from regular pointers in assignment and initialization. Unlike objects you've
encountered up to this point, assigning or initializing an auto_ptr to hold the contents of another
destructively modifies the source auto_ptr. Consider the following code snippet:

 auto_ptr<int> one(new int);
 auto_ptr<int> two;
 two = one;

After the final line executes, two will hold the resource originally owned by one, and one will be empty.
During the assignment, one relinquished ownership of the resource and cleared out its state.
Consequently, if you use one from this point forward, you'll run into trouble because it's not actually
holding a pointer to anything. While this is highly counterintuitive, it has several advantages. First, it
ensures that there can be at most one auto_ptr to a resource, which means that you don't have to worry
about the contents of an auto_ptr being cleaned up out from underneath you by another auto_ptr to
that resource. Second, it means that it's safe to return auto_ptrs from functions without the resource
getting cleaned up. When returning an auto_ptr from a function, the original copy of the auto_ptr will
transfer ownership to the new auto_ptr during return-value initialization, and the resource will be
transferred safely.* Finally, because each auto_ptr can assume that it has sole ownership of the resource,
auto_ptr can be implemented extremely efficiently and has almost zero overhead.

As a consequence of the “auto_ptr assignment is transference” policy, you must be careful when passing
an auto_ptr by value to a function. Since the parameter will be initialized to the original object, it will
empty the original auto_ptr. Similarly, you should not store auto_ptrs in STL containers, since when
the containers reallocate or balance themselves behind the scenes they might assign auto_ptrs around in
a way that will trigger the object destructors.

For reference, here's a list of the member functions of the auto_ptr template class:

* For those of you interested in programming language design, C++ uses what's known as copy semantics for most
of its operations, where assigning objects to one another creates copies of the original objects. auto_ptr seems
strange because it uses move semantics, where assigning auto_ptrs to one another transfers ownership of some
resource. Move semantics are not easily expressed in C++ and the code to correctly implement auto_ptr is
surprisingly complex and requires an intricate understanding of the C++ language. The next revision of C++, C+
+0x, will add several new features to the language to formalize and simply move semantics and will replace
auto_ptr with unique_ptr, which formalizes the move semantics.

- 378 - Chapter 12: Error Handling

explicit auto_ptr (Type* resource) auto_ptr<int> ptr(new int);

Constructs a new auto_ptr wrapping the specified pointer, which
must be from dynamically-allocated memory.

auto_ptr(auto_ptr& other) auto_ptr<int> one(new int);
auto_ptr<int> two = one;

Constructs a new auto_ptr that acquires resource ownership from
the auto_ptr used in the initialization. Afterwards, the old auto_ptr
will not encapsulate any dynamically-allocated memory.

T& operator *() const *myAutoPtr = 137;

Dereferences the stored pointer and returns a reference to the
memory it's pointing at.

T* operator-> () const myStringAutoPtr->append("C++!");

References member functions of the stored pointer.

T* release() int *regularPtr = myPtr.release();

Relinquishes control of the stored resource and returns it so it can be
stored in another location. The auto_ptr will then contain a NULL
pointer and will not manage the memory any more.

void reset(T* ptr = NULL) myPtr.reset();
myPtr.reset(new int);

Releases any stored resources and optionally stores a new resource
inside the auto_ptr.

T* get() const SomeFunction(myPtr.get()); // Retrieve stored resource

Returns the stored pointer. Useful for passing the managed
resource to other functions.

Of course, dynamically-allocated memory isn't the only C++ resource that can benefit from object memory
management. For example, when working with OS-specific libraries like Microsoft's Win32 library, you
will commonly have to manually manage handles to system resources. In spots like these, writing
wrapper classes that act like auto_ptr but that do cleanup using methods other than a plain delete can
be quite beneficial. In fact, the system of having objects manage resources through their constructors and
destructors is commonly referred to as resource acquisition is initialization, or simply RAII.

Exceptions and Smart Pointers

Up to this point, smart pointers might seem like a curiosity, or perhaps a useful construct in a limited
number of circumstances. However, when you introduce exception handling to the mix, smart pointers
will be invaluable. In fact, in professional code where exceptions can be thrown at almost any point, smart
pointers are almost as ubiquitous as regular C++ pointers.

Let's suppose you're given the following linked list cell struct:

 struct nodeT {
 int data;
 nodeT *next;
 };

Chapter 12: Error Handling - 379 -

Now, consider this function:

 nodeT* GetNewCell() {
 nodeT* newCell = new nodeT;
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell;
 }

This function allocates a new nodeT cell, then tells it to hold on to the value returned by
SomeComplicatedFunction. If we ignore exception handling, this code is totally fine, provided of course
that the calling function correctly holds on to the nodeT * pointer we return. However, when we add
exception handling to the mix, this function is a recipe for disaster. What happens if
SomeComplicatedFunction throws an exception? Since GetNewCell doesn't have an associated try
block, the program will abort GetNewCell and search for the nearest catch clause. Once the catch
finishes executing, we have a problem – we allocated a nodeT object, but we didn't clean it up. Worse,
since GetNewCell is no longer running, we've lost track of the nodeT entirely, and the memory is
orphaned.

Enter auto_ptr to save the day. Suppose we change the declaration nodeT* newCell to
auto_ptr<nodeT> newCell. Now, if SomeComplicatedFunction throws an exception, we won't leak
any memory since when the auto_ptr goes out of scope, it will reclaim the memory for us. Wonderful! Of
course, we also need to change the last line from return newCell to return newCell.release(),
since we promised to return a nodeT *, not an auto_ptr<nodeT>. The new code is printed below:

 nodeT* GetNewCell() {
 auto_ptr<nodeT> newCell(new nodeT);
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell.release(); // Tell the auto_ptr to stop managing memory.
 }

This function is now wonderfully exception-safe thanks to auto_ptr. Even if we prematurely exit the
function from an exception in SomeComplicatedFunction, the auto_ptr destructor will ensure that our
resources are cleaned up. However, we can make this code even safer by using the auto_ptr in yet
another spot. What happens if we call GetNewCell but don't store the return value anywhere? For
example, suppose we have a function like this:

 void SillyFunction() {
 GetNewCell(); // Oh dear, there goes the return value.
 }

When we wrote GetNewCell, we tacitly assumed that the calling function would hold on to the return
value and clean the memory up at some later point. However, it's totally legal to write code like
SillyFunction that calls GetNewCell and entirely discards the return value. This leads to memory
leaks, the very problem we were trying to solve earlier. Fortunately, through some creative use of
auto_ptr, we can eliminate this problem. Consider this modified version of GetNewCell:

 auto_ptr<nodeT> GetNewCell() {
 auto_ptr<nodeT> newCell(new nodeT);
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell; // See below
 }

- 380 - Chapter 12: Error Handling

Here, the function returns an auto_ptr, which means that the returned value is itself managed. Now, if
we call SillyFunction, even though we didn't grab the return value of GetNewCell, because
GetNewCell returns an auto_ptr, the memory will still get cleaned up.

Documenting Invariants with assert

The exception-handling techniques we've covered so far are excellent ways of handling and recovering
from errors that can only be detected at compile-time. If a network connection fails to open, or your
graphics card fails to initialize correctly, you can use exceptions to report the error so that your program
can detect and recover from the problem.

However, there is an entirely different class of problems that your programs might encounter at runtime –
logic errors. As much as we'd all like to think that we can write perfect software on the first try, we all
make mistakes when designing programs. We pass NULL pointers into functions that expect them to be
non-NULL. We make accidental changes to linked lists while iterating over them. We pass in values by
reference that we meant to pass in by value. These are normal errors in the programming process, and
while time and experience can reduce their frequency, they can never entirely be eliminated. The question
then arises – given that you are going to make mistakes during development, how can you design your
software to make it easier to detect and correct these errors?

When designing software, at various points in the program you will expect certain conditions to hold true.
You might expect that a certain integer is even, or that a pointer is non-NULL, etc. If these conditions don't
hold, it's often a sign that your program contains a bug.

One trick you can use to make it easier to detect and diagnose bugs is to have the program check that these
invariants hold at runtime. If they do, then everything is going according to plan, but if for some reason
the invariants do not hold it could signal the presence of a bug. If the program can then report that an
invariant failed to hold, it will make it significantly easier to debug. For this purpose, C++ provides the
assert macro. assert, exported by the header <cassert>, checks to see that some condition holds true.
If so, the macro has no effect. Otherwise, it prints out the statement that did not evaluate to true, along
with the file and line number in which it was written, then terminates the program. For example, consider
the following code:

 void MyFunction(int *myPtr) {
 assert(myPtr != NULL);
 *myPtr = 137;
 }

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print out a
message that might look something like this:

 Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because assert abruptly terminates the program without giving the rest of the application a chance to
respond, you should not use assert as a general-purpose error-handling routine. In practical software
development, assert is usually used to express programmer assumptions about the state of execution
that can only be broken if the software is written incorrectly. If an assert fails, it means that the
programmer made a mistake, not that something unusual occurred at runtime. For errors that might arise
during normal execution, such as missing files or malformed user input, user exception handling. For
errors that represent a bug in the original code, assert is a much better choice.

Chapter 12: Error Handling - 381 -

Let's consider a concrete example. Assume we have some enumerated type Color, which might look like
this:

 enum Color {Red, Green, Blue, Magenta, Cyan, Yellow, Black, White};

Now, suppose that we want to write a function called IsPrimaryColor that takes in a Color and reports
whether that color is a primary color (red, green, or blue). Here's one implementation:

 bool IsPrimaryColor(Color c) {
 switch(c) {
 case Red:
 case Green:
 case Blue:
 return true;
 default:
 /* Otherwise, must not be a primary color. */
 return false;
 }
 }

Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color. Otherwise, we
return that it is not a primary color. However, what happens if the parameter is not a valid Color, perhaps
if the call is IsPrimaryColor(Color(-1))? In this function, since we assume that that the parameter is
indeed a color, we might want to indicate that to the program by explicitly putting in an assert test.
Here's a modified version of the function, using assert and assuming the existence of a function IsColor:

 bool IsPrimaryColor(Color c) {
 assert(IsColor(c)); // We assume that this is really a color.
 switch (c) {
 case Red:
 case Green:
 case Blue:
 return true;
 default:
 /* Otherwise, must not be a primary color. */
 return false;
 }
 }

Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to
the line that caused the problem. If we have a good debugger, we should be able to figure out which caller
erroneously passed in an invalid Color and can better remedy the problem. Were we to ignore this case
entirely, we might have considerably more trouble debugging the error, since we would have no indication
of where the problem originated.

While assert can be used to catch a good number of programmer errors during development, it has the
unfortunate side-effect of slowing a program down at runtime because of the overhead of the extra
checking involved. Consequently, most major compilers disable the assert macro in release or optimized
builds. This may seem dangerous, since it eliminates checks for inconsistent state, but is actually not a
problem because, in theory, you shouldn't be compiling a release build of your program if assert
statements fail during execution.* Because assert is entirely disabled in optimized builds, you should use
assert only to check that specific relations hold true, never to check the return value of a function. If an
assert contains a call to a function, when assert is disabled in release builds, the function won't be called,

* In practice, this isn't always the case. But it's still a nice theory!

- 382 - Chapter 12: Error Handling

leading to different behavior in debug and release builds. This is a persistent source of debugging
headaches.

Chapter 12: Error Handling - 383 -

More to Explore

Exception-handling and RAII are complex topics that have impressive ramifications for the way that your
write C++ code. However, we simply don't have time to cover every facet of exception handling. In case
you're interested in exploring more advanced topics in exception handling and RAII, consider looking into
the following:

1. The Standard Exception Classes: In this chapter we discussed invalid_argument, one of the
many exception classes available in the C++ standard library. However, there are several more
exception classes that form an elaborate hierarchy. Consider reading into some of the other classes
– some of them even show up in the STL!

2. Exception Specifications. Because functions can throw exceptions at any time, it can be difficult
to determine which pieces of code can and cannot throw exceptions. Fortunately, C++ has a feature
called an exception specification which indicates what sorts of exceptions a function is allowed to
throw. When an exception leaves a function with an exception specification, the program will
abort unless the type of the exception is one of the types mentioned in the specification.

3. Function try Blocks. There is a variant of a regular try block that lets you put the entire contents
of a function into a try/catch handler pair. However, it is a relatively new feature in C++ and is not
supported by several popular compilers. Check a reference for more information.

4. new and Exceptions. If your program runs out of available memory, the new operator will indicate
a failure by throwing an exception of type bad_alloc. When designing custom container classes,
it might be worth checking against this case and acting accordingly.

5. The Boost Smart Pointers: While auto_ptr is useful in a wide variety of circumstances, in many
aspects it is limited. Only one auto_ptr can point to a resource at a time, and auto_ptrs cannot
be stored inside of STL containers. The Boost C++ libraries consequently provide a huge number
of smart pointers, many of which employ considerably more complicated resource-management
systems than auto_ptr. Since many of these smart pointers are likely to be included in the next
revision of the C++ standard, you should be sure to read into them.

Bjarne Stroustrup (the inventor of C++) wrote an excellent introduction to exception safety, focusing
mostly on implementations of the C++ Standard Library. If you want to read into exception-safe code, you
can read it online at http://www.research.att.com/~bs/3rd_safe.pdf. Additionally, there is a most
excellent reference on auto_ptr available at
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm that is a great resource on the subject.

Practice Problems

1. Explain why the auto_ptr constructor is marked explicit. (Hint: Give an example of an error you
can make if the constructor is not marked explicit).

2. The SimpleFunction function from earlier in this chapter ran into difficulty with exception-safety
because it relied on a manually-managed C string. Explain why this would not be a problem if it
instead used a C++ string.

- 384 - Chapter 12: Error Handling

3. Consider the following C++ function:

 void ManipulateStack(stack<string>& myStack) {
 if (myStack.empty())
 throw invalid_argument("Empty stack!");

 string topElem = myStack.top();
 myStack.pop();

 /* This might throw an exception! */
 DoSomething(myStack);

 myStack.push(topElem);
 }

This function accepts as input a C++ stack<string>, pops off the top element, calls the
DoSomething function, then pushes the element back on top. Provided that the DoSomething
function doesn't throw an exception, this code will guarantee that the top element of the stack
does not change before and after the function executes. Suppose, however, that we wanted to
absolutely guarantee that the top element of the stack never changes, even if the function throws
an exception. Using the catch-and-rethrow strategy, explain how to make this the case.

5. Write a class called AutomaticStackManager whose constructor accepts a stack<string> and
pops off the top element (if one exists) and whose destructor pushes the element back onto the
stack. Using this class, rewrite the code in Problem 4 so that it's exception safe. How does this
version of the code compare to the approach using catch-and-rethrow?

