
Chapter 12: Error Handling
_________________________________________________________________________________________________________

Forty years ago, goto-laden code was considered perfectly good practice.  Now we strive to write  
structured control flows.  Twenty years ago, globally accessible data was considered perfectly  
good practice.   Now we strive to encapsulate data.  Ten years ago, writing functions without  
thinking about the impact of exceptions was considered good practice.  Now we strive to write  
exception-safe code.

Time goes on.  We live.  We learn.

– Scott Meyers, author of Effective C++ and one of the leading experts on C++. [Mey05]

In  an  ideal  world,  network  connections  would  never  fail,  files  would  always  exist  and  be  properly 
formatted, users would never type in malformed input, and computers would never run out of memory.  
Realistically, though, all of the above can and will occur and your programs will have to be able to respond 
to  them  gracefully.   In  these  scenarios,  the  normal  function-call-and-return mechanism  is  not  robust 
enough to signal and report errors and you will have to rely on exception handling, a C++ language feature 
that redirects program control in case of emergencies.

Exception handling is a complex topic and will have far-reaching effects on your C++ code.  This chapter  
introduces  the  motivation  underlying  exception  handling,  basic  exception-handling  syntax,  and  some 
advanced techniques that can keep your code operating smoothly in an exception-filled environment.

A Simple Problem

Up to this point, all of the programs you've written have proceeded linearly – they begin inside a special  
function called main, then proceed through a chain of function calls and returns until (hopefully) hitting 
the  end of  main.   While  this  is  perfectly  acceptable,  it  rests  on the fact  that  each  function,  given its 
parameters, can perform a meaningful task and return a meaningful value.  However, in some cases this 
simply isn't possible.

Suppose,  for  example,  that  we'd  like  to  write  our  own  version  of  the  CS106B/X  StringToInteger 
function, which converts a  string representation of an number into an  int equivalent.  One possible 
(partial) implementation of StringToInteger might look like this:*

    int StringToInteger(const string &input) {
        stringstream converter(input);
        int result; // Try reading an int, fail if we're unable to do so.

        converter >> result;
        if (converter.fail())
            // What should we do here?

        char leftover; // See if anything's left over.  If so, fail.
        converter >> leftover;
        if (!converter.fail())
           return result;
        else
           // What should we do here?
     }

* This  is  based off  of  the  GetInteger function we covered in  the chapter  on streams.   Instead of  looping and 
reprompting the user for input at each step, however, it simply reports errors on failure.
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If the parameter input is a string with a valid integer representation, then this function simply needs to 
perform the conversion.  But what should our function do if the parameter doesn't represent an integer? 
One possible option, and the one used by the CS106B/X implementation of StringToInteger, is to call a 
function like Error that prints an error and terminates the program.  This response seems a bit drastic 
and is a decidedly suboptimal solution for several reasons.  First, calling Error doesn't give the program a 
chance  to  recover  from  the  problem.   StringToInteger is  a  simple  utility  function,  not  a  critical 
infrastructure component, and if it fails chances are that there's an elegant way to deal with the problem.  
For example,  if  we're using  StringToInteger to convert user input in a text  box into an integer for 
further processing, it makes far more sense to reprompt the user than to terminate the program.  Second,  
in a very large or complicated software system, it seems silly to terminate the program over a simple 
string error.  For example, if this  StringToInteger function were used in an email client to convert a 
string representation of a time to an integer format (parsing the hours and minutes separately), it would 
be disastrous if the program crashed whenever receiving malformed emails.  In essence, while using a 
function like Error will prevent the program from continuing with garbage values, it is simply too drastic 
a move to use in serious code.

This approach suggests a second option, one common in pure C –  sentinel values.   The idea is to have 
functions return special values meaning “this value indicates that the function failed to execute correctly.”  
In  our  case,  we  might  want  to  have  StringToInteger return  -1  to  indicate  an  error,  for  example. 
Compared with the “drop everything” approach of Error this may seem like a good option – it reports the 
error and gives the calling function a chance to respond.  However, there are several major problems with 
this method.  First, in many cases it is not possible to set aside a value to indicate failure.  For example, 
suppose that we choose to reserve -1 as an error code for StringToInteger.  In this case, we'd make all 
of our calls to StringToInteger as

    if (StringToInteger(myParam) == -1) { 
        /* ... handle error ... */ 
    }

But what happens if the input to StringToInteger is the string "-1"?  In this case, whether or not the 
StringToInteger function completes successfully, it will still return -1 and our code might confuse it  
with an error case.

Another serious problem with this approach is that if each function that might possibly return an error 
has to reserve sentinel values for errors, we might accidentally check the return value of one function 
against the error code of another function.  Imagine if there were several constants floating around named 
ERROR,  STATUS_ERROR,  INVALID_RESULT, etc., and whenever you called a function you needed to check 
the return value against the correct one of these choices.  If you chose incorrectly, even with the best of  
intentions your error-checking would be invalid.

Yet another shortcoming of this approach is that in some cases it will be impossible to reserve a value for 
use  as  a  sentinel.   For  example,  suppose  that  a  function  returns  a  vector<double>.   What  special 
vector<double> should we choose to use as a sentinel?

However, the most serious problem with the above approach is that you as a programmer can ignore the 
return value without encountering any warnings.   Even if StringToInteger returns a sentinel  value 
indicating an error, there are no compile-time or runtime warnings if you choose not to check for a return 
value.  In the case of  StringToInteger this may not be that much of a problem – after all,  holding a 
sentinel value instead of a meaningful value will not immediately crash the program – but this can lead to  
problems down the line that can snowball into fully-fledged crashes.  Worse, since the crash will probably  
be caused by errors from far earlier in the code, these sorts of problems can be nightmarish to debug. 
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Surprisingly, experience shows that many programmers – either out of negligence or laziness – forget to 
check return values for error codes and snowball effects are rather common.

We seem to have reached an unsolvable problem.  We'd like an error-handling system that, like  Error, 
prevents the program from continuing normally when an error occurs.  At the same time, however, we'd 
like the elegance of sentinel values so that we can appropriately process an error.  How can we combine  
the strengths of both of these approaches into a single system?

Exception Handling

The reason the above example is such a problem is that the normal C++ function-call-and-return system 
simply isn't robust enough to communicate errors back to the calling function.  To resolve this problem,  
C++ provides language support for an error-messaging system called exception handling that completely 
bypasses function-call-and-return.  If an error occurs inside a function, rather than returning a value, you 
can report the problem to the exception handling system to jump to the proper error-handling code.

The C++ exception handling system is broken into three parts –  try blocks,  catch blocks,  and  throw 
statements.  try blocks are simply regions of code designated as areas that runtime errors might occur.  To 
declare a  try block,  you simply write the keyword  try,  then surround the appropriate code in curly 
braces.  For example, the following code shows off a try block:

    try {
        cout << "I'm in a try block!" << endl;
    }

Inside of a try block, code executes as normal and jumps to the code directly following the try block once 
finished.  However, at some point inside a try block your program might run into a situation from which it 
cannot normally recover – for example, a call to StringToInteger with an invalid argument.  When this 
occurs, you can report the error by using the  throw keyword to “throw” the exception into the nearest 
matching catch clause.  Like return, throw accepts a single parameter that indicates an object to throw 
so that  when handling the exception your code has access to extra information about the error.   For 
example, here are three statements that each throw objects of different types:

    throw 0;                     // Throw an int
    throw new vector<double>;    // Throw a vector<double> *
    throw 3.14159;               // Throw a double

When you throw an exception, it can be caught by a catch clause specialized to catch that error.  catch 
clauses are defined like this:

    catch(ParameterType param) {
        /* Error-handling code */
    }

Here, ParameterType represents the type of variable this catch clause is capable of catching.  catch blocks 
must directly follow try blocks, and it's illegal to declare one without the other.  Since catch clauses are  
specialized for a single type, it's perfectly legal to have cascading catch clauses, each designed to pick up a 
different type of exception.  For example, here's code that catches exceptions of type int,  vector<int>, 
and string:
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    try {
       // Do something
    }
    catch(int myInt) {
       // If the code throws an int, execution continues here.
    }
    catch(const vector<int>& myVector) {
       // Otherwise, if the code throws a vector<int>, execution resumes here.
    }
    catch(const string& myString) {
       // Same for string
    }

Now, if the code inside the try block throws an exception, control will pass to the correct  catch block. 
You can visualize exception handling as a room of people and a ball.  The code inside the try block begins 
with the ball and continues talking as long as possible.  If an error occurs, the try block throws the ball to 
the appropriate catch handler, which begins executing.

Let's return to our earlier example with StringToInteger.  We want to signal an error in case the user 
enters an invalid parameter, and to do so we'd like to use exception handling.  The question, though, is 
what type of object we should throw.  While we can choose whatever type of object we'd like, C++ provides 
a  header  file,  <stdexcept>,  that  defines  several  classes  that  let  us  specify  what  error  triggered  the 
exception.  One of these, invalid_argument, is ideal for the situation.  invalid_argument accepts in its 
constructor a string parameter containing a message representing what type of error occurred, and has 
a  member function called  what that  returns  what the  error  was.*  We can thus rewrite  the  code for 
StringToInteger as

int StringToInteger(const string& input) {
   stringstream converter(input);
   int result; // Try reading an int, fail if we're unable to do so.

   converter >> result;
   if (converter.fail())
      throw invalid_argument("Cannot parse " + input + " as an integer.");

   char leftover; // See if anything's left over.  If so, fail.
   converter >> leftover;
   if (!converter.fail())
      return result;
   else
      throw invalid_argument(string("Unexpected character: ") + leftover);
}

Notice  that  while  the  function  itself  does  not  contain  a  try/catch pair,  it  nonetheless  has  a  throw 
statement.  If this statement is executed, then C++ will step backwards through all calling functions until it  
finds an appropriate  catch statement.  If it doesn't find one, then the program will halt with a runtime 
error.  Now, we can write code using StringToInteger that looks like this:

* what is a poor choice of a name for a member function.  Please make sure to use more descriptive names in your 
code!
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    try {
        int result = StringToInteger(myString);
        cout << "The result was: " << result;
    }
    catch(const invalid_argument& problem) {
        cout << problem.what() << endl; // Prints out the error message.
    }
    cout << "Yay!  We're done." << endl;

Here, if StringToInteger encounters an error and throws an exception, control will jump out of the try 
block into the  catch clause specialized to catch objects of  type  invalid_argument.   Otherwise,  code 
continues as normal in the try block, then skips over the catch clause to print “Yay!  We're done.”

There  are  several  things  to  note  here.   First,  if  StringToInteger throws  an  exception,  control 
immediately breaks out of the try block and jumps to the catch clause.  Unlike the problems we had with 
our earlier approach to error handling, here, if there is a problem in the try block, we're guaranteed that 
the  rest  of  the  code  in  the  try block  will  not  execute,  preventing  runtime  errors  stemming  from 
malformed objects.  Second, if there is an exception and control resumes in the  catch clause, once the 
catch block  finishes  running,  control  does  not resume  back  inside  the  try block.   Instead,  control 
resumes directly following the  try/catch pair, so the program above will print out “Yay!  We're done.” 
once the catch block finishes executing.  While this might seem unusual, remember that the reason for 
exception handling in the first place is to halt code execution in spots where no meaningful operation can  
be defined.  Thus if control leaves a try block, chances are that the rest of the code in the try could not 
complete without errors, so C++ does not provide a mechanism for resuming program control.  Third, note 
that we caught the  invalid_argument exception by reference (const invalid_argument& instead of 
invalid_argument).  As with parameter-passing, exception-catching can take values either by value or  
by reference, and by accepting the parameter by reference you can avoid making an unnecessary copy of  
the thrown object.

A Word on Scope

Exception handling is an essential part of the C++ programming language because it provides a system for  
recovering  from  serious  errors.   As  its  name  implies,  exception  handling  should  be  used  only  for 
exceptional circumstances – errors out of  the ordinary that  necessitate a major change in the flow of  
control.  While you can use exception handling as a fancy form of function call and return, it is highly  
recommended that you avoid doing so.  Throwing an exception is  much slower than returning a value 
because  of  the  extra  bookkeeping required,  so  be  sure  that  you're  only  using  exception handling  for 
serious program errors.

Also, the exception handling system will only respond when manually triggered.  Unless a code snippet 
explicitly throws a value, a catch block cannot respond to it.  This means that you cannot use exception 
handling to prevent your program from crashing from segmentation faults or other pointer-based errors,  
since  pointer  errors  result  in  operating-system  level  process  termination,  not  C++-level  exception 
handling.*

Programming with Exception Handling

While exception handling is a robust and elegant system, it has several sweeping implications for C++ 
code.  Most notably, when using exception handling, unless you are absolutely certain that the classes and  
functions you use never throw exceptions, you must treat your code as though it might throw an exception  

* If you use Microsoft's Visual Studio development environment, you might notice that various errors like null-
pointer  dereferences  and  stack  overflows  result  in  errors  that  mention  “unhandled  exception”  in  their 
description.  This is a Microsoft-specific feature and is different from C++'s exception-handling system.
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at any point.  In other words, you can never assume that an entire code block will be completed on its own, 
and should be prepared to handle cases where control breaks out of your functions at inopportune times.  
For example, consider the following function:

    void SimpleFunction() {
        int* myArray = new int[128];
        DoSomething(myArray);
        delete [] myArray;
    }

Here, we allocate space for a raw array, pass it to a function, then deallocate the memory.  While this code  
seems totally safe, when you introduce exceptions into the mix, this code can be very dangerous.  What  
happens,  for  example,  if  DoSomething throws an exception?  In this case,  control  would jump to the 
nearest catch block and the line delete [] myArray would never execute.  As a result, our program will 
leak the array.  If this program runs over a sufficiently long period of time, eventually we will run out of  
memory and our program will crash.

There are three main ways that we can avoid these problems.  First, it's completely acceptable to just avoid  
exception-handling all  together.   This approach might seem like a cop-out,  but it is a completely valid  
option that many C++ developers choose.   Several  major software projects written in C++ do not use  
exception handling (including the Mozilla Firefox web browser), partially because of the extra difficulties 
encountered when using exceptions.   However,  this  approach results  in code that  runs into the  same 
problems discussed earlier  in this chapter with  StringToInteger –  functions can only communicate 
errors through return values and programmers must be extra vigilant to avoid ignoring return values.

The second approach to writing exception-safe code uses a technique called “catch-and-rethrow.”  Let's 
return to the above code example with a dynamically-allocated character buffer.  We'd like to guarantee 
that the array we've allocated gets deallocated, but as our code is currently written, it's difficult to do so 
because the DoSomething function might throw an exception and interrupt our code flow.  If there is an 
exception,  what  if  we  were  able  to  somehow  intercept  that  exception,  clean  up  the  buffer,  and then 
propagate the exception outside of the SimpleFunction function?  From an outside perspective, it would 
look as if the exception had come from inside the DoSomething function, but in reality it would have taken 
a quick stop inside SimpleFunction before proceeding outwards.

The reason this method works is that it is legal to throw an exception from inside a catch block.  Although 
catch blocks are usually reserved for error handling, there is nothing preventing us from throwing the  
exception we catch.  For example, this code is completely legal:

    try{
        try {
            DoSomething();
        }
        catch(const invalid_argument& error) {
           cout << "Inner block: Error: " << error.what() << endl;
           throw error; // Propagate the error outward
        }
    }
    catch(const invalid_argument& error) {
        cout << "Outer block: Error:  " << error.what() << endl;
    }

Here, if the DoSomething function throws an exception, it will first be caught by the innermost try block, 
which prints it to the screen.  This catch handler then throws error again, and this time it is caught by 
the outermost catch block.
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With this technique, we can almost rewrite our SimpleFunction function to look something like this:

    void SimpleFunction() {
        int myArray = new int[128];

        /* Try to DoSomething.  If it fails, catch the exception and rethrow it. */
        try {
            DoSomething(myCString);
        }
        catch (/* What to catch? */) {
            delete [] myArray;
            throw /* What to throw? */;
        }

        /* Note that if there is no exception, we still need to clean things up. */
        delete [] myArray;
    }

There's a bit of a problem here – what sort of exceptions should we catch?  Suppose that we know every  
sort of exception DoSomething might throw.  Would it be a good idea to write a catch block for each one 
of these types?  At first this may seem like a good idea, but it can actually cause more problems than it  
solves.  First, in each of the catch blocks, we'd need to write the same delete [] statement.  If we were 
to make changes to the  SimpleFunction function that necessitated more cleanup code, we'd need to 
make progressively more changes to the  SimpleFunction catch cascade, increasing the potential for 
errors.  Also, if we forget to catch a specific type of error, or if DoSomething later changes to throw more 
types of errors, then we might miss an opportunity to catch the thrown exception and will leak resources.  
Plus, if we don't know what sorts of exceptions DoSomething might throw, this entire approach will not 
work.

The problem is that in this case, we want to tell C++ to catch anything that's thrown as an exception.  We 
don't care about what the type of the exception is, and need to intercept the exception simply to ensure 
that our resource gets cleaned up.  Fortunately, C++ provides a mechanism specifically for this purpose.  To 
catch an exception of any type, you can use the special syntax catch(...), which catches any exception. 
Thus we'll have the catch clause inside DoSomething be a catch(...) clause, so that we can catch any 
type of exception that DoSomething might throw.  But this causes another problem: we'd like to rethrow 
the exception, but since we've used a catch(...) clause, we don't have a name for the specific exception 
that's been caught.  Fortunately, C++ has a special use of the  throw statement that lets you throw the 
current exception that's being processed.  The syntax is

    throw;

That is,  a  lone  throw statement with no parameters.  Be careful when using  throw;,  however, since if 
you're not inside of a catch block the program will crash!

The final version of SimpleFunction thus looks like this:
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void SimpleFunction() {
        int myArray = new int[128];

        /* Try to DoSomething.  If it fails, catch the exception and rethrow it. */
        try {
            DoSomething(myCString);
        }
        catch (...) {
            delete [] myArray;
            throw;
        }

        /* Note that if there is no exception, we still need to clean things up. */
        delete [] myArray;
    }

As you can tell, the “catch-and-rethrow” approach to exception handling results in code that can be rather  
complicated.  While in some circumstances catch-and-rethrow is the best option, in many cases there's a  
much better alternative that  results  in concise,  readable,  and thoroughly exception-safe code –  object  
memory management.

Object Memory Management and RAII

C++'s memory model is best described as “dangerously efficient.”  Unlike other languages like Java, C++ 
does not have a garbage collector and consequently you must manually allocate and deallocate memory. 
At first, this might seem like a simple task – just delete anything you allocate with new, and make sure not 
to delete something twice.  However, it can be quite difficult to keep track of all of the memory you've 
allocated in a program.  After all, you probably won't notice any symptoms of memory leaks unless you run 
your programs for hours on end, and in all likelihood will have to use a special tool to check memory 
usage.  You can also run into trouble where two objects each point to a shared object.  If one of the objects  
isn't careful and accidentally  deletes the memory while the other one is still accessing it, you can get 
some particularly nasty runtime errors where seemingly valid data has been corrupted.  The situation gets  
all the more complicated when you introduce exception-handling into the mix, where the code to delete 
allocated memory might not be reached because of an exception.

In some cases having a high degree of control over memory management can be quite a boon to your  
programming, but much of the time it's simply a hassle.  What if we could somehow get C++ to manage our 
memory for us?  While building a fully-functional garbage collection system in C++ would be just short of  
impossible,  using  only  basic  C++  concepts  it's  possible  to  construct  an  excellent  approximation  of  
automatic memory management.  The trick is to build smart pointers, objects that acquire a resource when 
created and that clean up the resource when destroyed.  That is, when the objects are constructed, they 
wrap a newly-allocated pointer inside an object shell that cleans up the mess when the object goes out of  
scope.  Combined with features like operator overloading, it's possible to create slick smart pointers that 
look almost exactly like true C++ pointers, but that know when to free unused memory.

The C++ header file <memory> exports the auto_ptr type, a smart pointer that accepts in its constructor a 
pointer  to  dynamically-allocated  memory  and  whose  constructor  calls  delete on  the  resource.* 
auto_ptr is a template class whose template parameter indicates what type of object the auto_ptr will 
“point” at.  For example, an auto_ptr<string> is a smart pointer that points to a string.  Be careful – if 
you write  auto_ptr<string *>, you'll end up with an  auto_ptr that points to a  string *, which is 
similar to a string **.  Through the magic of operator overloading, you can use the regular dereference 
and arrow operators on an auto_ptr as though it were a regular pointer.  For example, here's some code 

* Note that auto_ptr calls delete, not delete [], so you cannot store dynamically-allocated arrays in auto_ptr.  If 
you want the functionality of an array with automatic memory management, use a vector.
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that dynamically allocates a  vector<int>, stores it in an auto_ptr, and then adds an element into the 
vector:

    /* Have the auto_ptr point to a newly-allocated vector<int>.  The constructor
     * is explicit, so we must use parentheses.
     */
    auto_ptr<vector<int> > managedVector(new vector<int>);
    managedVector->push_back(137); // Add 137 to the end of the vector.
    (*managedVector)[0] = 42; // Set element 0 by dereferencing the pointer.

While in many aspects  auto_ptr acts like a regular pointer with automatic deallocation,  auto_ptr is 
fundamentally  different  from regular  pointers  in  assignment  and initialization.   Unlike  objects  you've 
encountered  up  to  this  point,  assigning  or  initializing  an  auto_ptr to  hold  the  contents  of  another 
destructively modifies the source auto_ptr.  Consider the following code snippet:

    auto_ptr<int> one(new int);
    auto_ptr<int> two;
    two = one;

After the final line executes,  two will hold the resource originally owned by one, and one will be empty. 
During  the  assignment,  one relinquished  ownership  of  the  resource  and  cleared  out  its  state. 
Consequently,  if  you use  one from this point forward, you'll  run into trouble because it's not actually 
holding a pointer to anything.  While this is highly counterintuitive, it has several advantages.  First, it 
ensures that there can be at most one auto_ptr to a resource, which means that you don't have to worry 
about the contents of an auto_ptr being cleaned up out from underneath you by another  auto_ptr to 
that resource.  Second, it means that it's safe to return  auto_ptrs from functions without the resource 
getting cleaned up.  When returning an auto_ptr from a function, the original copy of the auto_ptr will 
transfer  ownership  to  the  new  auto_ptr during  return-value  initialization,  and the  resource  will  be 
transferred safely.*  Finally, because each auto_ptr can assume that it has sole ownership of the resource, 
auto_ptr can be implemented extremely efficiently and has almost zero overhead.

As a consequence of the “auto_ptr assignment is transference” policy, you must be careful when passing 
an auto_ptr by value to a function.  Since the parameter will be initialized to the original object, it will  
empty the original  auto_ptr.  Similarly, you should not store  auto_ptrs in STL containers, since when 
the containers reallocate or balance themselves behind the scenes they might assign auto_ptrs around in 
a way that will trigger the object destructors.

For reference, here's a list of the member functions of the auto_ptr template class:

* For those of you interested in programming language design, C++ uses what's known as copy semantics for most 
of its operations, where assigning objects to one another creates copies of the original objects.  auto_ptr seems 
strange because it uses move semantics, where assigning auto_ptrs to one another transfers ownership of some 
resource.   Move semantics  are not easily  expressed in C++ and the code to correctly  implement  auto_ptr is 
surprisingly complex and requires an intricate understanding of the C++ language.  The next revision of C++,  C+
+0x,  will  add several new features to the language to formalize and simply move semantics and will  replace  
auto_ptr with unique_ptr, which formalizes the move semantics.
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explicit auto_ptr (Type* resource) auto_ptr<int> ptr(new int);

Constructs  a  new  auto_ptr wrapping  the  specified  pointer,  which 
must be from dynamically-allocated memory.

auto_ptr(auto_ptr& other) auto_ptr<int> one(new int);
auto_ptr<int> two = one;

Constructs a new  auto_ptr that acquires resource ownership from 
the auto_ptr used in the initialization.  Afterwards, the old auto_ptr 
will not encapsulate any dynamically-allocated memory.

T& operator *() const *myAutoPtr = 137;

Dereferences  the  stored  pointer  and  returns  a  reference  to  the 
memory it's pointing at.

T* operator-> () const myStringAutoPtr->append("C++!");

References member functions of the stored pointer.

T* release() int *regularPtr = myPtr.release();

Relinquishes control of the stored resource and returns it so it can be 
stored in another location.  The  auto_ptr will then contain a  NULL 
pointer and will not manage the memory any more.

void reset(T* ptr = NULL) myPtr.reset();
myPtr.reset(new int);

Releases any stored resources and optionally stores a new resource 
inside the auto_ptr.

T* get() const SomeFunction(myPtr.get()); // Retrieve stored resource

Returns  the  stored  pointer.   Useful  for  passing  the  managed 
resource to other functions.

Of course, dynamically-allocated memory isn't the only C++ resource that can benefit from object memory  
management.  For example, when working with OS-specific libraries like Microsoft's Win32 library, you 
will  commonly  have  to  manually  manage  handles  to  system  resources.   In  spots  like  these,  writing 
wrapper classes that act like auto_ptr but that do cleanup using methods other than a plain delete can 
be quite beneficial.  In fact, the system of having objects manage resources through their constructors and 
destructors is commonly referred to as resource acquisition is initialization, or simply RAII.

Exceptions and Smart Pointers

Up to this point, smart pointers might seem like a curiosity, or perhaps a useful construct in a limited 
number of circumstances.  However, when you introduce exception handling to the mix, smart pointers 
will be invaluable.  In fact, in professional code where exceptions can be thrown at almost any point, smart  
pointers are almost as ubiquitous as regular C++ pointers.

Let's suppose you're given the following linked list cell struct:

    struct nodeT {
        int data;
        nodeT *next;
    };
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Now, consider this function:

    nodeT* GetNewCell() {
        nodeT* newCell = new nodeT;
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell;
    }

This  function  allocates  a  new  nodeT  cell,  then  tells  it  to  hold  on  to  the  value  returned  by 
SomeComplicatedFunction.  If we ignore exception handling, this code is totally fine, provided of course  
that the calling function correctly holds on to the  nodeT * pointer we return.  However, when we add 
exception  handling  to  the  mix,  this  function  is  a  recipe  for  disaster.   What  happens  if 
SomeComplicatedFunction throws an exception?  Since  GetNewCell doesn't have an associated  try 
block, the program will  abort  GetNewCell and search for the nearest  catch clause.   Once the  catch 
finishes executing, we have a problem – we allocated a  nodeT object, but we didn't clean it up.  Worse, 
since  GetNewCell is  no  longer  running,  we've  lost  track  of  the  nodeT entirely,  and  the  memory  is 
orphaned.

Enter  auto_ptr to  save  the  day.   Suppose  we  change  the  declaration  nodeT*  newCell to 
auto_ptr<nodeT> newCell.  Now, if  SomeComplicatedFunction throws an exception, we won't leak 
any memory since when the auto_ptr goes out of scope, it will reclaim the memory for us.  Wonderful!  Of 
course,  we also need to change the last line from  return newCell to  return newCell.release(), 
since we promised to return a nodeT *, not an auto_ptr<nodeT>.  The new code is printed below:

    nodeT* GetNewCell() {
        auto_ptr<nodeT> newCell(new nodeT);
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell.release(); // Tell the auto_ptr to stop managing memory.
    }

This function is now wonderfully exception-safe thanks to  auto_ptr.   Even if we prematurely exit the 
function from an exception in SomeComplicatedFunction, the auto_ptr destructor will ensure that our 
resources are cleaned up.  However,  we can make this code even safer by using the  auto_ptr in yet 
another spot.   What happens if  we call  GetNewCell but don't  store the return value anywhere?  For 
example, suppose we have a function like this:

    void SillyFunction() {
        GetNewCell(); // Oh dear, there goes the return value.
    }

When we wrote  GetNewCell,  we tacitly assumed that the calling function would hold on to the return 
value  and  clean  the  memory  up  at  some  later  point.   However,  it's  totally  legal  to  write  code  like 
SillyFunction that calls  GetNewCell and entirely discards the return value.   This leads to memory 
leaks,  the  very  problem  we  were  trying  to  solve  earlier.   Fortunately,  through  some  creative  use  of 
auto_ptr, we can eliminate this problem.  Consider this modified version of GetNewCell:

    auto_ptr<nodeT> GetNewCell() {
        auto_ptr<nodeT> newCell(new nodeT);
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell; // See below
    }
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Here, the function returns an auto_ptr, which means that the returned value is itself managed.  Now, if 
we  call  SillyFunction,  even  though  we  didn't  grab  the  return  value  of  GetNewCell,  because 
GetNewCell returns an auto_ptr, the memory will still get cleaned up.

Documenting Invariants with assert

The exception-handling techniques we've covered so far are excellent ways of handling and recovering 
from errors that can only be detected at compile-time.  If  a network connection fails to open, or your  
graphics card fails to initialize correctly, you can use exceptions to report the error so that your program  
can detect and recover from the problem.

However, there is an entirely different class of problems that your programs might encounter at runtime –  
logic errors.  As much as we'd all like to think that we can write perfect software on the first try, we all  
make mistakes when designing programs.  We pass NULL pointers into functions that expect them to be 
non-NULL.  We make accidental changes to linked lists while iterating over them.  We pass in values by  
reference that we meant to pass in by value.  These are normal errors in the programming process, and 
while time and experience can reduce their frequency, they can never entirely be eliminated.  The question 
then arises – given that you are going to make mistakes during development, how can you design your 
software to make it easier to detect and correct these errors?

When designing software, at various points in the program you will expect certain conditions to hold true.  
You might expect that a certain integer is even, or that a pointer is non-NULL, etc.  If these conditions don't 
hold, it's often a sign that your program contains a bug.

One trick you can use to make it easier to detect and diagnose bugs is to have the program check that these  
invariants hold at runtime.  If they do, then everything is going according to plan, but if for some reason 
the invariants do not hold it could signal the presence of a bug.  If the program can then report that an  
invariant failed to hold, it will make it significantly easier to debug.  For this purpose, C++ provides the 
assert macro.  assert, exported by the header <cassert>, checks to see that some condition holds true. 
If so, the macro has no effect.  Otherwise, it prints out the statement that did not evaluate to true, along  
with the file and line number in which it was written, then terminates the program.  For example, consider  
the following code:

    void MyFunction(int *myPtr) {
        assert(myPtr != NULL);
        *myPtr = 137;
    }

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print out a 
message that might look something like this:

    Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because  assert abruptly terminates the program without giving the rest of the application a chance to  
respond, you should not use  assert as a general-purpose error-handling routine.  In practical software 
development,  assert is usually used to express programmer assumptions about the state of execution 
that  can  only  be  broken if  the  software  is  written  incorrectly.   If  an  assert fails,  it  means  that  the 
programmer made a mistake, not that something unusual occurred at runtime.  For errors that might arise 
during normal execution, such as missing files or malformed user input,  user exception handling.   For 
errors that represent a bug in the original code, assert is a much better choice.
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Let's consider a concrete example.  Assume we have some enumerated type Color, which might look like 
this:

    enum Color {Red, Green, Blue, Magenta, Cyan, Yellow, Black, White};

Now, suppose that we want to write a function called IsPrimaryColor that takes in a Color and reports 
whether that color is a primary color (red, green, or blue).  Here's one implementation:

    bool IsPrimaryColor(Color c) {
        switch(c) {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }

Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color.  Otherwise, we 
return that it is not a primary color.  However, what happens if the parameter is not a valid Color, perhaps 
if the call is IsPrimaryColor(Color(-1))?  In this function, since we assume that that the parameter is 
indeed a color,  we might want to indicate that to the program by explicitly putting in an  assert test. 
Here's a modified version of the function, using assert and assuming the existence of a function IsColor:

    bool IsPrimaryColor(Color c) {
        assert(IsColor(c)); // We assume that this is really a color.
        switch (c) {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }

Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to 
the line that caused the problem.  If we have a good debugger, we should be able to figure out which caller  
erroneously passed in an invalid Color and can better remedy the problem.  Were we to ignore this case 
entirely, we might have considerably more trouble debugging the error, since we would have no indication  
of where the problem originated.

While  assert can be used to catch a good number of programmer errors during development, it has the 
unfortunate  side-effect  of  slowing  a  program  down  at  runtime  because  of  the  overhead of  the  extra 
checking involved.  Consequently, most major compilers disable the assert macro in release or optimized 
builds.  This may seem dangerous, since it eliminates checks for inconsistent state, but is actually not a  
problem  because,  in  theory,  you  shouldn't  be  compiling  a  release  build  of  your  program  if  assert 
statements fail during execution.*  Because assert is entirely disabled in optimized builds, you should use 
assert only to check that specific relations hold true, never to check the return value of a function.  If an  
assert contains a call to a function, when assert is disabled in release builds, the function won't be called, 

* In practice, this isn't always the case.  But it's still a nice theory!
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leading  to  different  behavior  in  debug  and  release  builds.   This  is  a  persistent  source  of  debugging 
headaches.
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More to Explore

Exception-handling and RAII are complex topics that have impressive ramifications for the way that your 
write C++ code.  However, we simply don't have time to cover every facet of exception handling.  In case  
you're interested in exploring more advanced topics in exception handling and RAII, consider looking into 
the following:

1. The Standard Exception Classes: In this chapter we discussed  invalid_argument, one of the 
many exception classes available in the C++ standard library.  However, there are several more 
exception classes that form an elaborate hierarchy.  Consider reading into some of the other classes 
– some of them even show up in the STL!

2. Exception Specifications.  Because functions can throw exceptions at any time, it can be difficult 
to determine which pieces of code can and cannot throw exceptions.  Fortunately, C++ has a feature 
called an exception specification which indicates what sorts of exceptions a function is allowed to 
throw.  When an exception leaves a function with an exception specification,  the program will  
abort unless the type of the exception is one of the types mentioned in the specification.

3. Function try Blocks.  There is a variant of a regular try block that lets you put the entire contents 
of a function into a try/catch handler pair.  However, it is a relatively new feature in C++ and is not  
supported by several popular compilers.  Check a reference for more information.

4. new and Exceptions.  If your program runs out of available memory, the new operator will indicate 
a failure by throwing an exception of type bad_alloc.  When designing custom container classes, 
it might be worth checking against this case and acting accordingly.

5. The Boost Smart Pointers: While auto_ptr is useful in a wide variety of circumstances, in many 
aspects it is limited.  Only one auto_ptr can point to a resource at a time, and auto_ptrs cannot 
be stored inside of STL containers.  The Boost C++ libraries consequently provide a huge number 
of smart pointers, many of which employ considerably more complicated resource-management 
systems than auto_ptr.  Since many of these smart pointers are likely to be included in the next 
revision of the C++ standard, you should be sure to read into them.

Bjarne  Stroustrup (the  inventor  of  C++)  wrote  an excellent  introduction to  exception safety,  focusing 
mostly on implementations of the C++ Standard Library.  If you want to read into exception-safe code, you  
can  read  it  online  at  http://www.research.att.com/~bs/3rd_safe.pdf.   Additionally,  there  is  a  most 
excellent  reference  on  auto_ptr available  at 
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm that is a great resource on the subject.

Practice Problems

1. Explain why the auto_ptr constructor is marked explicit. (Hint: Give an example of an error you  
can make if the constructor is not marked explicit).

2. The SimpleFunction function from earlier in this chapter ran into difficulty with exception-safety 
because it relied on a manually-managed C string.  Explain why this would not be a problem if it  
instead used a C++ string.
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3. Consider the following C++ function:

     void ManipulateStack(stack<string>& myStack) {
        if (myStack.empty())
            throw invalid_argument("Empty stack!");

        string topElem = myStack.top();
        myStack.pop();

        /* This might throw an exception! */
        DoSomething(myStack);

        myStack.push(topElem);
    }

This  function  accepts  as  input  a  C++  stack<string>,  pops  off  the  top  element,  calls  the 
DoSomething function, then pushes the element back on top.  Provided that the  DoSomething 
function doesn't throw an exception, this code will guarantee that the top element of the  stack 
does not change before and after the function executes.   Suppose,  however,  that we wanted to  
absolutely guarantee that the top element of the stack never changes, even if the function throws 
an exception.  Using the catch-and-rethrow strategy, explain how to make this the case.

5. Write a class called AutomaticStackManager whose constructor accepts a stack<string> and 
pops off the top element (if one exists) and whose destructor pushes the element back onto the  
stack.  Using this class, rewrite the code in Problem 4 so that it's exception safe.  How does this 
version of the code compare to the approach using catch-and-rethrow?


