
Chapter 5: STL Sequence Containers

In October of 1976 I observed that a certain algorithm – parallel reduction – was associated with
monoids: collections of elements with an associative operation. That observation led me to believe
that it is possible to associate every useful algorithm with a mathematical theory and that such
association allows for both widest possible use and meaningful taxonomy. As mathematicians
learned to lift theorems into their most general settings, so I wanted to lift algorithms and data
structures. – Alex Stepanov, inventor of the STL. [Ste07]The Standard Template Library (STL) is a programmer's dream. It offers efficient ways to store, access, manipulate, and view data and is designed for maximum extensibility. Once you've gotten over the initial syntax hurdles, you will quickly learn to appreciate the STL's sheer power and flexibility.To give a sense of exactly where we're going, here are a few quick examples of code using the STL:

• We can create a list of random numbers, sort it, and print it to the console in four lines of code!

 vector<int> myVector(NUM_INTS);
 generate(myVector.begin(), myVector.end(), rand);
 sort(myVector.begin(), myVector.end());
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"));

• We can open a file and print its contents in two lines of code!

 ifstream input("my-file.txt");
 copy(istreambuf_iterator<char>(input), istreambuf_iterator<char>(),
 ostreambuf_iterator<char>(cout));

• We can convert a string to upper case in one line of code!

 transform(s.begin(), s.end(), s.begin(), ::toupper);If you aren't already impressed by the possibilities this library entails, keep reading. You will not be disap -pointed.
Overview of the STLThe STL is logically divided into six pieces, each consisting of generic components that interoperate with the rest of the library:

• Containers. At the heart of the STL are a collection of container classes, standard C++'s analog to the CS106B/X ADTs. For example, you can store an associative collection of key/value pairs in an STL map, or a growing list of elements in an STL vector.
• Iterators. Each STL container exports iterators, objects that view and modify ranges of stored data. Iterators have a common interface, allowing you to write code that operates on data stored in arbitrary containers.
• Algorithms. STL algorithms are functions that operate over ranges of data specified by iterators. The scope of the STL algorithms is staggering – there are algorithms for searching, sorting, re-ordering, permuting, creating, and destroying sets of data.

- 80 - Chapter 5: STL Sequence Containers

• Adapters. STL adapters are objects which transform an object from one form into another. For ex-ample, the stack adapter transforms a regular vector or list into a LIFO container, while the
istream_iterator transforms a standard C++ stream into an STL iterator.

• Functors. Because so much of the STL relies on user-defined callback functions, the STL provides facilities for creating and modifying functions at runtime. We will defer our discussion of functors to much later in this text, as they require a fairly nuanced understanding of C++.
• Allocators. The STL allows clients of the container classes to customize how memory is allocated and deallocated, either for diagnostic or performance reasons. While allocators are fascinating and certainly worthy of discussion, they are beyond the scope of this text and we will not cover them here.Diagrammatically, these pieces are related as follows:

Here, the containers rely on the allocators for memory and produce iterators. Iterators can then be used in conjunction with the algorithms. Functors provide special functions for the algorithms, and adapters can produce functors, iterators, and containers. If this seems a bit confusing now, don't worry, you'll un-derstand this relationship well by the time you've finished the next few chapters.
Why the STL is NecessaryUp until this point, all of the programs you've encountered have declared a fixed number of variables that correspond to a fixed number of values. If you declare an int, you get a single variable back. If you need to create multiple different ints for some reason, you have to declare each of the variables independently. This has its drawbacks. For starters, it means that you need to know how exactly how much data your program will be manipulating before the program begins running. Here's a quick programming challenge for you:Write a program that reads in three integers from the user, then prints them in sorted order.How could you go about writing a program to do this? There are two main technical hurdles to overcome. First, how would we store the numbers the user enters? Second, how do we sort them? Because we know that the user will be entering three distinct values, we could simply store each of them in their own int variable. Thus the first step of writing code for this program might look like this:

ITERATORS

ALGORITHMS FUNCTORS

CONTAINERSALLOCATORS

ADAPTERSITERATORS

ALGORITHMS FUNCTORS

CONTAINERSALLOCATORS

ADAPTERS

Chapter 5: STL Sequence Containers - 81 -
 #include <iostream>
 #include <sstream>
 #include <string>
 using namespace std;

 int GetInteger(); // From the streams chapter

 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();

 /* Sort, then print out. */
 }We now have our three values; how can we sort them? It turns out that sorting a list of integers is a classic algorithms question and there are many elegant solutions to the problem. Some algorithms like quicksort and heapsort run extremely quickly, but are rather difficult to implement. Instead, we'll use a variant al-gorithm called selection sort. The idea behind selection sort is as follows. If we want to sort a list of num-bers, we can find the smallest element in the list, then move it to the front of the list. We can then find the second-smallest value, then put it in the second position, find the third-smallest and put it in the third pos -ition, etc. Amazingly, with just the tools we've seen so far this simple algorithm is extremely hard to imple-ment. Here's some code for the operation:
 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();

 /* Three cases: Either val1 is the smallest, val2 is the smallest, or
 * val3 is the smallest. Whichever ends up being the case, we'll put
 * the smallest value into val1. This uses the swap() function, which is
 * defined in the <algorithm> header and simply swaps the values of
 * two variables.
 */
 if (val2 <= val1 && val2 <= val3) // val2 is smallest
 swap (val1, val2);
 else if (val3 <= val1 && val3 <= val2) // val3 is smallest
 swap (val1, val3);
 // Otherwise, val1 is smallest, and can remain at the front.

 /* Now, sort val2 and val3. Since there's just two elements, we can do a
 * simple comparison to determine which is the smaller of the two.
 */
 if (val3 <= val2) // val3 is smaller
 swap (val2, val3);
 // Otherwise, val2 is smallest and we don't need to do anything.

 cout << val1 << ' ' << val2 << ' ' << val3 << endl;
 }This code is incredibly dense. Don't panic if you don't understand it – part of the purpose of this example is to illustrate how difficult it can be to write good code for this problem without the STL!But of course, there's another major problem with this code. Let's modify the problem statement a bit by allowing the user to enter four numbers. If we make this change, using just the techniques we've covered so far we'll be forced to write code along the following lines:

- 82 - Chapter 5: STL Sequence Containers

 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();
 int val4 = GetInteger();

 /* Find the smallest. */
 if (val2 <= val1 && val2 <= val3 && val2 <= val4) // val2 is smallest
 swap (val1, val2);
 else if (val3 <= val1 && val3 <= val2 && val3 <= val4) // val3 is smallest
 swap (val1, val3);
 else if (val4 <= val1 && val4 <= val2 && val4 <= val3) // val4 is smallest
 swap (val1, val4);
 // Otherwise, val1 is smallest, and can remain at the front.

 /* Find the second-smallest. */
 if (val3 <= val2 && val3 <= val4) // val3 is smallest
 swap (val2, val3);
 else if (val4 <= val2 && val4 <= val3) // val4 is smallest
 swap (val2, val4);
 // Otherwise, val2 is smallest, and can remain at the front.

 /* Find the third-smallest. */
 if (val4 <= val3) // val4 is smaller
 swap (val3, val4);
 // Otherwise, val3 is smallest and we don't need to do anything.

 cout << val1 << ' ' << val2 << ' ' << val3 << ' ' << val4 << endl;
}This code is just downright awful! It's cryptic, difficult to read, and not the sort of code you'd like to bring home to mom and dad. Now imagine what the code would look like if we had five numbers instead of four. It will keep growing and growing, becoming progressively more impossible to read until eventually we'd give up in frustration. What's worse, though, is that each of these programs is a special case of a general problem – read in n integers from the user and print them in sorted order – but the code for each case bears little to no resemblance to the code for each other case.
Introducing the vectorWhat's missing from our programming repertoire right now is the ability to create and access a variable
number of objects. Right now, if we want to store a sequence of five integers, we must create five inde-pendent integer variables and have no way of accessing them uniformly. Fortunately, the STL provides us a versatile tool called the vector that allows us to store sequences of elements using a single variable. As you'll see, the vector is nothing short of extraordinary and will arise time and again throughout your pro-gramming career.At a high level, a vector is an object that represents a sequence of elements. This means that you can use a vector to store a grocery list, a list of Olympic figure skating scores, or a set of files to read. The elements in a vector are indexed, meaning that they have a well-defined position in the sequence. For example, giv-en the sequence

Chapter 5: STL Sequence Containers - 83 -
Value 137 42 2718 3141 410Index 0 1 2 3 4The first element (137) is at position zero, the second (42) at position one, etc. Notice that elements in the sequence appear in the order 0, 1, 2, etc. rather than the more intuitive 1, 2, 3, You have seen this already in your exploration of the string class, so hopefully this notation isn't too startling.The major difference between the vector and the string is that the vector can be configured to store ele-ments of any type. That is, you can have a vector of ints, a vector of strings, or even a vector of vec-

tors of strings. However, while the vector can store elements of any type, any single vector can only store elements of a single type. It is illegal to create a vector that stores a sequence of many different types of elements, meaning that you can't represent the list 0, Apple, 2.71828 because each of the list ele-ments has a different type. This may seem like a rather arbitrary restriction – theoretically speaking, there's no reason that you shouldn't be able to have lists of all sorts of elements – but fortunately in most cases this restriction does not pose too much of a problem.Because vectors can only store elements of a fixed type, when you create a vector in your programs you will need to explicitly indicate to the compiler what type of elements you aim to store in the vector. As an example, to create a vector of ints, you would write
 vector<int> myVector;Here, we declare a local variable called myVector that has type vector<int>. The type inside of the angle brackets is called a template argument and indicates to C++ what type of elements are stored in the
vector. Here, the type is int, but it's legal to put pretty much whatever type you would like in the brack-ets. For example, all of the following declarations are legal:
 vector<int> intVector; // Stores ints
 vector<string> strVector; // Stores strings
 vector<double> realVector; // Stores real numbersIt is also perfectly legal to store your own custom structs in a vector, as seen here:
 struct MyStruct {
 int myInt;
 double myDouble;
 string myString;
 };

 vector<MyStruct> myStructVector; // Stores MyStructsIn order to use the vector type, you will need to #include <vector> at the top of your program. As we explore some of the other STL containers, this pattern will also apply.We now know how to create vectors, but how do we use them? To give you a feel for how the vector works, let's return to our previous example of reading in numbers and printing them out in sorted order. Using a vector, this can be accomplished very elegantly. We'll begin by defining a constant, kNumValues, which will represent the number of elements to read in. This is shown here:

- 84 - Chapter 5: STL Sequence Containers

 #include <iostream>
 #include <vector> // Necessary to use vector
 #include <string>
 #include <sstream>
 using namespace std;

 string GetLine(); // As defined in the previous chapter
 int GetInteger(); // As defined in the previous chapter

 const int kNumValues = 10;

 int main() {
 /* ... still more work to come ... */
 }Now, we'll show to how to read in kNumValues values from the user and store them inside a vector. First, we'll have to create the vector, as shown here:
 int main() {
 vector<int> values;

 /* ... */
 }A freshly-constructed vector, like a freshly-constructed string, is initially empty. Consequently, we'll need to get some values from the user, then store them inside the vector. Reading the values is fairly easy; we simply sit in a for loop reading data from the user. But how do we store them in the vector? There are several ways to do this, of which the simplest is the push_back function. The push_back func-tion can be invoked on a vector to add a new element to the end of vector's sequence. For example, giv-en a vector managing the following sequence:

Value 1 2 6 10Index 0 1 2 3Then calling push_back on the vector to store the value fifteen would cause the vector to manage the new se-quence
Value 1 2 6 10 15Index 0 1 2 3 4Syntactically, push_back can be used as follows:

 int main() {
 vector<int> values;

 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter another value: ";
 int val = GetInteger();

 values.push_back(val);
 }
 }

Chapter 5: STL Sequence Containers - 85 -Notice that we write values.push_back(val) to append the number val to the sequence stored inside the vector.Now that we have read in our sequence of values, let's work on the next part of the program, sorting the elements in the vector and printing them to the user. For this we'll still use the selection sort algorithm, but it will be miraculously easier to follow when implemented on top of the vector. Recall that the general description of the selection sort algorithm is as follows:
• Find the smallest element of the list.
• Put that element at the front of the list.
• Repeat until all elements are in place.Let's see how to implement this function. We'll begin simply by writing out the function signature, which looks like this:

 void SelectionSort(vector<int>& v) {
 /* ... */
 }This function is named SelectionSort and takes as a parameter a vector<int> by reference. There are two key points to note here. First, we still have to explicitly indicate what type of elements are stored in the vector parameter. That is, it's illegal to write code of this sort:
 void SelectionSort(vector& v) { // Error: What kind of vector?
 /* ... */
 }As a general rule, you will never see vector unless it's immediately followed with a type in angle brackets. The reason is simple – every vector can only store one type of element, and unless you explicitly indicate what that type is the compiler will have no way of knowing.The other important detail about this function is that it takes its parameter by reference. We will be sort-ing the vector in-place, meaning that we will be reordering the elements of the vector rather than creat-ing a new vector containing a sorted copy of the input.We now have the function prototype set up, so let's get into the meat of the algorithm. To implement se -lection sort, we'll need to find the smallest element and put it in front, the the second-smallest element and put it in the second position, etc. The code for this is as follows:
 void SelectionSort(vector<int>& v) {
 for (size_t i = 0; i < v.size(); ++i) {
 size_t smallestIndex = GetSmallestIndex(v, i); // We'll write this
 // function momentarily
 swap (v[i], v[smallestIndex]);
 }
 }This code is fairly dense and introduces some syntax you have not yet seen before, so let's take a few mo -ments to walk through exactly how it works. The first detail that might have caught your eye is this one:
 for (size_t i = 0; i < v.size(); ++i)This for loop looks strange for two reasons. First, instead of creating an int variable for the iteration, we create a variable of type size_t. A size_t is a special type of variable that can hold values that represent

- 86 - Chapter 5: STL Sequence Containers

sizes of things (size_t stands for “size type”). In many aspects size_t is like a regular int – it holds an integer value, can be incremented with ++, compared using the relational operators, etc. However, unlike regular ints, size_ts cannot store negative values. The intuition behind this idea is that no collection of elements can have a negative size. You may have a list of no elements, or a list of billions of elements, but you'll never encounter a list with -1 elements in it. Consequently, when iterating over an STL container, it is customary to use the special type size_t to explicitly indicate that your iteration variable should al-ways be nonnegative. The other detail of this for loop is that the loop iterates from 0 to v.size(). The
size() member function on the STL vector returns the number of elements stored in the sequence, just like the size() and length() functions on the standard string class. In this particular case we could have iterated from 0 to kNumValues, since we're guaranteed that the main function will produce a vector of that many elements, but in general when iterating over a vector it's probably a wise idea to use the vec-
tor's size as an upper bound so that the code works for vectors of arbitrarily many elements.Let's continue onward through the code. The body of the loop is this code here:
 size_t smallestIndex = GetSmallestIndex(v, i);
 swap (v[i], v[smallestIndex]);This calls some function called GetSmallestIndex (which we have not yet defined) which takes in the vector and the current index. We will implement this function shortly, and its job will be to return the in -dex of the smallest element in the vector occurring no earlier than position i. We then use the swap func-tion to exchange the values stored in at positions i and smallestIndex of the vector. Notice that, as with the standard string class, the syntax v[i] means “the element in vector v at position i.” Let's take a minute to think about how this code works. The variable i counts up from 0 to v.size() - 1 and visits every element of the vector exactly once. On each iteration, the code finds the smallest element in the
vector occurring no earlier than position i, then exchanges it with the element at position i. This means that the code will

1. Find the smallest element of the vector and put it in position 0.
2. Find the smallest element of the remainder of the vector and put it in position 1.
3. Find the smallest element of the remainder of the vector and put it in position 2. ...This is precisely what we set out to do, and so the code will work marvelously. Of course, this assumes that we have a function called GetSmallestIndex which returns the index of the smallest element in the

vector occurring no earlier than position i. To finalize our implementation of SelectionSort, let's go implement this function. Again, we'll start with the prototype, which is shown here:
 size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
 /* ... */
 }This function accepts as input a vector<int> by reference and a size_t containing the start index, then returns a size_t containing the result. There's an important but subtle detail to note here. At a high level, the GetSmallestIndex function has no business modifying the vector it takes as input. Its task is to find the smallest element and return it, no more. So why exactly does this function take the
vector<int> parameter by reference? The answer is efficiency. In C++, if you pass a parameter to a func-tion by value, then whenever that function is called C++ will make a full copy of the argument. When working with the STL containers, which can contain thousands (if not millions or tens of millions) of ele -ments, the cost of copying the container can be staggering. Consequently, it is considered good program -

Chapter 5: STL Sequence Containers - 87 -ming practice to pass STL containers into functions by reference rather than by value, since this avoids an expensive copy.*The implementation of this function is rather straightforward:
 size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
 size_t bestIndex = startIndex;

 for (size_t i = startIndex; i < v.size(); ++i)
 if (v[i] < v[bestIndex])
 bestIndex = i;

 return bestIndex;
 }This function iterates over the elements of the vector starting with position i, checking whether the ele-ment at the current position is less than the smallest element we've seen so far. If so, the function updates where in the vector that element appears. At the end of the function, once we've looked at every element in range, the bestIndex variable will hold the index of the smallest element in vector v occurring no earlier than startIndex, and so we return the value. We've implemented the GetSmallestIndex func-tion, meaning that we have a working implementation of SelectionSort.To finalize our program, let's update the main function to print out the sorted vector. This is shown here:
 int main() {
 vector<int> values;

 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter another value: ";
 int val = GetInteger();
 values.push_back(val);
 }

 SelectionSort(values);

 for (size_t i = 0; i < kNumValues; ++i)
 cout << values[i] << endl;
 }Compare this implementation of the program to the previous version, which did not have the luxury of us-ing vector. As you can see, the code in this program is significantly clearer than before. Moreover, it's much more scalable. If we want to read in a different number of values from the user, we can do so simply by adjusting the value of the kNumValues constant, and the rest of the code will update automatically.
An Alternative ImplementationIn the previous section, we wrote a program which reads in some number of values from the user, sorts them, and then prints them out. Of course, the program we wrote was just one method for solving the problem. In particular, there is another implementation strategy we could have considered that lends it-self to a substantially shorter implementation. Notice that in the above program, we read in a list of values from the user and blindly added them to the end of the list we wanted to sort. These values weren't neces-sarily in sorted order, and so we had to run a postprocessing step to sort the vector before displaying it to * In practice you would almost certainly pass the parameter by reference-to-const, which indicates that the para-meter cannot be modified. We will take this issue up in a later chapter, but for now pass-by-reference should be good enough for our purposes.

- 88 - Chapter 5: STL Sequence Containersthe user. But what if we opt for a different approach? In particular, suppose that whenever we read a value from the user, instead of putting that value at the end of the sequence, we find where in the vector the element should go, then insert the value at that point? For example, suppose that the user has entered the following four values:
Value 100 200 300 400Index 0 1 2 3Now suppose that she enters the number 137. If we append 137 to the vector, then the numbers will not all be in sorted order. Instead, we'll find the location where 137 should go in the sorted vector, then in-sert it directly into that location. This is shown here:
Value 100 137 200 300 400Index 0 1 2 3 4This strategy ends up being a bit simpler to implement than our previous program, which relied on selec -tion sort. Of course, to implement the program using the above strategy, we need to answer two ques-tions. First, how do we find out where in the vector the user's element should go? Second, how do we in-sert an element into a vector directly at that position? This first question is algorithmic; the second is simply a question of what operations are legal on the vector. Consequently, we'll begin our discussion with how to find the insertion point, and will then see how to add an element to a vector at a particular point.Suppose that we are given a sorted list of integers and some value to insert into the list. We are curious to find at what index the new value should go. This is an interesting algorithmic challenge, since there are many valid solutions. However, there's one particular simple way to find where the element should go. In order for a list to be in sorted order, every element has to be smaller than the element that comes one pos -ition after it. Therefore, if we find the first element in the vector that is bigger than the element we want to insert, we know that the element we want to insert must come directly before that element. This sug -gests the following algorithm:

 /* Watch out! This code contains a bug! */
 size_t InsertionIndex(vector<int>& v, int toInsert) {
 for(size_t i = 0; i < v.size(); ++i)
 if (toInsert < v[i])
 return i;
 }This code is mostly correct, but contains a pretty significant flaw. In particular, what happens if the ele-ment we want to insert is bigger than every element in the vector? In that case, the if statement inside of the for loop will never evaluate to true, and so the function will not return a value. If a function finishes without returning a value, the program has undefined behavior. This means that the function might return zero, it might return garbage, or your program might immediately crash outright. This certainly isn't what we want to have happen, so how can we go about fixing it? Notice that the only way that the above func-tion never returns a value is if the element to be inserted is at least as big as every element in the vector. In that case, the correct behavior should be to put the element on the end of the vector. We'll signal this by having the function return v.size() if the element is bigger than every element in the sequence. This is shown here:

Chapter 5: STL Sequence Containers - 89 -
 size_t InsertionIndex(vector<int>& v, int toInsert) {
 for(size_t i = 0; i < v.size(); ++i)
 if (toInsert < v[i])
 return i;
 return v.size();
 }All that's left to do now is use this function to build a sleek implementation of the program. But before we can do that, we have to see how to insert an element into a vector at an arbitrary position. The good news is that the vector supports this operation naturally, and in fact you can insert an element into a
vector at any position. The bad news is that the syntax for doing so is nothing short of cryptic and without an understanding of STL iterators will look entirely alien. We'll talk about iterators more next chapter, but in the meantime you can just take it for granted that the following syntax is legal. Given a
vector v and an element e, to insert e into v at position n, we use the syntax
 v.insert(v.begin() + n, e);For example, to insert the element 137 at position zero in the vector, you would write
 v.insert(v.begin(), 137);Similarly, to insert the element 42 at position five, we could write
 v.insert(v.begin() + 5, 42);One of the trickier parts of the insert function is determining exactly where the element will be inserted. Recall that vectors are zero-indexed, the above statement will insert the number 42 as the sixth element of the sequence, not the fifth. When an element is inserted at a position, all of the elements after it are shuffled down one spot to make room, so calling insert will never overwrite a value.Given this syntax and the above implementation of InsertionIndex, we can write a program to read in a list of values and print them out in sorted order as follows:
 int main() {
 vector<int> values;

 /* Read the values. */
 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter an integer: ";
 int val = GetInteger();

 /* Insert the element at the correct position. */
 values.insert(values.begin() + InsertionIndex(values, val), val);
 }

 /* Print out the sorted list. */
 for (size_t i = 0; i < values.size(); ++i)
 cout << values[i] << endl;
 }This code is much shorter than before, even when you factor in the code for InsertionIndex.

- 90 - Chapter 5: STL Sequence Containers

Additional vector OperationsThe previous section on sorting numbers with the vector showcased many of operations that can be per-formed on a vector, but was by no means a complete survey of what the vector can do. While some
vector operations require a nuanced understanding of iterators, which we will cover next chapter, there are a few common operations on the vector that we will address in this section before moving on to other container classes.One of the key distinctions between the vector and other data types we've seen so far is that the vector has a variable size. It can contain no elements, dozens of elements, or even millions of elements. In the preceding examples, we explored two ways to change the number of elements in the vector: push_back, which appends new elements to the back of the vector, and insert, which adds an element to the vec-
tor at an arbitrary position. However, there are several more ways to add and remove elements from the
vector, some of which are discussed here.When creating a new vector to represent a list of values, by default C++ will make the vector store an empty list. That is, a newly-created vector is by default empty. However, at times you might want to ini-tialize the vector to a certain size. C++ allows you to do this by specifying the starting size of the vector at the point where the vector is created. For example, to create a vector of integers that initially holds fif-teen elements, you could write this as
 vector<int> myVector(15);That is, you declare the vector as normal, and put the default size in parentheses afterwards. Note that this only changes the starting size of the vector, and you are free to add additional elements to the vec-
tor later in your program.When creating a vector that holds primitive types, such as int or double, the elements in the vector will default to zero (or false in the case of bools). This means that the above line of code means “create a
vector of integers called myVector that initially holds fifteen entries, all zero.” Similarly, this line of code:
 vector<string> myStringVector(10);Will create a vector of strings that initially holds ten copies of the empty string.In some cases, you may want to initialize the vector to a certain size where each element holds a value other than zero. You may wish, for example, to construct a vector<string> holding five copies of the string “(none),” or a vector<double> holding twenty copies of the value 137. In these cases, C++ lets you specify both the number and default value for the elements in the vector using the following syntax:
 vector<double> myReals(20, 137.0);
 vector<string> myStrings(5, "(none)");Notice that we've enclosed in parentheses both the number of starting elements in the vector and the value of these starting elements. An important detail is that this syntax is only legal when initially creating a vector. If you have an exist-ing vector and try to use this syntax, you will get a compile-time error. That is, the following code is illeg-al:
 vector<double> myReals;
 myReals(20, 137.0); // Error: Only legal to do this when the object is created

Chapter 5: STL Sequence Containers - 91 -If you want to change the number of elements in a vector after it has already been created, you can al-ways use the push_back and insert member functions. However, if you'd like to make an abrupt change in the number of elements in the vector (perhaps by adding or deleting a large number of elements all at once), you can use the vector's resize member function. The resize function is very similar to the syn-tax we've just encountered: you can specify either a number of elements or a number of elements and a value, and the vector will be resized to hold that many elements. However, resize behaves somewhat differently from the previous construct because when using resize, the vector might already contain elements. Consequently, resize works by adding or removing elements from the end of the vector until the desired size is reached. To get a better feel for how resize works, let's suppose that we have a func-tion called PrintVector that looks like this:
 void PrintVector(vector<int>& elems) {
 for (size_t i = 0; i < elems.size(); ++i)
 cout << elems[i] << ' ';
 cout << endl;
 }This function takes in a vector<int>, then prints out the elements in the vector one at a time, followed by a newline. Given this function, consider the following code snippet:
 vector<int> myVector; // Defaults to empty vector
 PrintVector(myVector); // Output: [nothing]

 myVector.resize(10); // Grow the vector, setting new elements to 0
 PrintVector(myVector); // Output: 0 0 0 0 0 0 0 0 0 0

 myVector.resize(5); // Shrink the vector
 PrintVector(myVector); // Output: 0 0 0 0 0

 myVector.resize(7, 1); // Grow the vector, setting new elements to 1
 PrintVector(myVector); // Output: 0 0 0 0 0 1 1

 myVector.resize(1, 7); // The second parameter is effectively ignored.
 PrintVector(myVector); // Output: 0In the first line, we construct a new vector, which is by default empty. Consequently, the call to
PrintVector will produce no output. We then invoke resize to add ten elements to the vector. These elements are added to the end of the vector, and because we did not specify a default value are all initial-ized to zero. On our next call to resize, we shrink the vector down to five elements. Next, we use res-
ize to expand the vector to hold seven elements. Because we specified a default value, the newly-created elements default to 1, and so the sequence is now 0, 0, 0, 0, 0, 1, 1. Finally, we use resize to trim the se-quence. Because the second argument to resize is only considered if new elements are added, it is effect-ively ignored.We've seen several vector operations so far, but there is a wide class of operations we have not yet con-sidered – operations which remove elements from the vector. As you saw, the push_back and insert functions can be used to splice new elements into the vector's sequence. These two functions are bal-anced by the pop_back and erase functions. pop_back is the opposite of push_back, and removes the last element from the vector's sequence. erase is the deletion counterpart to insert, and removes an ele-ment at a particular position from the vector. As with insert, the syntax for erase is a bit tricky. To re-move a single element from a random point in a vector, use the erase method as follows:
 myVector.erase(myVector.begin() + n);

- 92 - Chapter 5: STL Sequence Containerswhere n represents the index of the element to erase.In some cases, you may feel compelled to completely erase the contents of the vector. In that case, you can use the clear function, which completely erases the vector contents. clear can be invoked as fol-lows:
 myVector.clear();

Summary of vectorThe following table lists some of the more common operations that you can perform on a vector. We have not talked about iterators or the const keyword yet, so don't worry if you're confused by those terms. This table is designed as a reference for any point in your programming career, so feel free to skip over entries that look too intimidating.
Constructor: vector<T> () vector<int> myVector;Constructs an empty vector.Constructor: vector<T> (size_type size) vector<int> myVector(10);Constructs a vector of the specified size where all elements use their default values (for integral types, this is zero).Constructor: vector<T> (size_type size,
 const T& default)

vector<string> myVector(5, "blank");Constructs a vector of the specified size where each ele-ment is equal to the specified default value.
size_type size() const; for(int i = 0; i < myVector.size(); ++i) { ... }Returns the number of elements in the vector.
bool empty() const; while(!myVector.empty()) { ... }Returns whether the vector is empty.
void clear(); myVector.clear();Erases all the elements in the vector and sets the size to zero.
 T& operator [] (size_type position);
const T& operator [] (size_type position) const;

 T& at(size_type position);
const T& at(size_type position) const;

myVector[0] = 100;
int x = myVector[0];
myVector.at(0) = 100;
int x = myVector.at(0);Returns a reference to the element at the specified position. The bracket notation [] does not do any bounds checking and has undefined behavior past the end of the data. The at member function will throw an exception if you try to ac-cess data beyond the end. We will cover exception hand-ling in a later chapter.

Chapter 5: STL Sequence Containers - 93 -
void resize(size_type newSize);
void resize(size_type newSize, T fill);

myVector.resize(10);
myVector.resize(10, "default");Resizes the vector so that it's guaranteed to be the specified size. In the second version, the vector elements are ini-tialized to the value specified by the second parameter. Elements are added to and removed from the end of the vector, so you can't use resize to add elements to or remove elements from the start of the vector.

void push_back(); myVector.push_back(100);Appends an element to the vector.
 T& back();
const T& back() const;

myVector.back() = 5;
int lastElem = myVector.back();Returns a reference to the last element in the vector.

 T& front();
const T& front() const;

myVector.front() = 0;
int firstElem = myVector.front();Returns a reference to the first element in the vector.

void pop_back(); myVector.pop_back();Removes the last element from the vector.
iterator begin();
const_iterator begin() const;

vector<int>::iterator itr = myVector.begin();Returns an iterator that points to the first element in the vector.
iterator end();
const_iterator end() const;

while(itr != myVector.end());Returns an iterator to the element after the last. The iterat-or returned by end does not point to an element in the vec-tor.
iterator insert(iterator position,
 const T& value);
void insert(iterator start,
 size_type numCopies,
 const T& value);

myVector.insert(myVector.begin() + 4, "Hello");
myVector.insert(myVector.begin(), 2, "Yo!");The first version inserts the specified value into the vector, and the second inserts numCopies copies of the value into the vector. Both calls invalidate all outstanding iterators for the vector.

iterator erase(iterator position);
iterator erase(iterator start,
 iterator end);

myVector.erase(myVector.begin());
myVector.erase(startItr, endItr);The first version erases the element at the position pointed to by position. The second version erases all elements in the range [startItr, endItr). Note that this does not erase the element pointed to by endItr. All iterators after the re-move point are invalidated. If using this member function on a deque (see below), all iterators are invalidated.

deque: A New Kind of SequenceFor most applications where you need to represent a sequence of elements, the vector is an ideal tool. It is fast, lightweight, and intuitive. However, there are several aspects of the vector that can be troublesome in certain applications. In particular, the vector is only designed to grow in one direction; calling
push_back inserts elements at the end of the vector, and resize always appends elements to the end.

- 94 - Chapter 5: STL Sequence ContainersWhile it's possible to insert elements into other positions of the vector using the insert function, doing so is fairly inefficient and relying on this functionality can cause a marked slowdown in your program's performance. For most applications, this is not a problem, but in some situations you will need to manage a list of elements that will grow and shrink on both ends. Doing this with a vector would be prohibitively costly, and we will need to introduce a new container class: the deque.
deque is a strange entity. It is pronounced “deck,” as in a deck of cards, and is named as a contraction of “double-ended queue.” It is similar to the vector in almost every way, but supports a few operations that the vector has trouble with. Because of its similarity to vector, many C++ programmers don't even know that the deque exists. In fact, of all of the standard STL containers, deque is probably the least-used. But this is not to say that it is not useful. The deque packs significant firepower, and in this next section we'll see some of the basic operations that you can perform on it.What's interesting about the deque is that all operations supported by vector are also provided by
deque. Thus we can resize a deque, use the bracket syntax to access individual elements, and erase ele-ments at arbitrary positions. In fact, we can rewrite the number-sorting program to use a deque simply by replacing all instances of vector with deque. For example:
 int main() {
 deque<int> values; // Use deque instead of vector

 /* Read the values. */
 for (int i = 0; i < kNumValues; ++i)
 {
 cout << "Enter an integer: ";
 int val = GetInteger();

 /* Insert the element at the correct position. */
 values.insert(values.begin() + InsertionIndex(values, val), val);
 }

 /* Print out the sorted list. */
 for (size_t i = 0; i < values.size(); ++i)
 cout << values[i] << endl;
 }However, deques also support two more functions, push_front and pop_front, which work like the
vector's push_back and pop_back except that they insert and remove elements at the front of the
deque. But this raises an interesting question: if deque has strictly more functionality than vector, why use vector? The main reason is speed. deques and vectors are implemented in two different ways. Typically, a vector stores its elements in contiguous memory addresses. deques, on the other hand, maintain a list of different “pages” that store information. This is shown here:

Chapter 5: STL Sequence Containers - 95 -

These different implementations impact the efficiency of the vector and deque operations. In a vector, because all elements are stored in consecutive locations, it is possible to locate elements through simple arithmetic: to look up the nth element of a vector, find the address of the first element in the vector, then jump forward n positions. In a deque this lookup is more complex: the deque has to figure out which page the element will be stored in, then has to search that page for the proper item. However, inserting ele-ments at the front of a vector requires the vector to shuffle all existing elements down to make room for the new element (slow), while doing the same in the deque only requires the deque to rearrange elements in a single page (fast).If you're debating about whether to use a vector or a deque in a particular application, you might appre-ciate this advice from the C++ ISO Standard (section 23.1.1.2):
vector is the type of sequence that should be used by default... deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the se-
quence.If you ever find yourself about to use a vector, check to see what you're doing with it. If you need to optim-ize for fast access, keep using a vector. If you're going to be inserting or deleting elements at the begin-ning or end of the container frequently, consider using a deque instead.

Extended Example: SnakeFew computer games can boast the longevity or addictive power of Snake. Regardless of your background, chances are that you have played Snake or one of its many variants. The rules are simple – you control a snake on a two-dimensional grid and try to eat food pellets scattered around the grid. You lose if you crash into the walls or into your own body. True to Newton's laws, the snake continues moving in a single direc -tion until you explicitly change its bearing by ninety degrees. Every time the snake eats food, a new piece of food is randomly placed on the grid and the snake's length increases. Over time, the snake's body grows so long that it becomes an obstacle, and if the snake collides with itself the player loses.Here's a screenshot from QBasic Nibbles, a Microsoft implementation of Snake released with MS-DOS ver-sion 5.0. The snake is the long yellow string, and the number 8 is the food:

vector deque

- 96 - Chapter 5: STL Sequence Containers

Because the rules of Snake are so simple, it's possible to implement the entire game in only a few hundred lines of C++ code. In this extended example, we'll write a Snake program in which the computer controls the snake according to a simple AI. In the process, we'll gain experience with the STL vector and deque, the streams library, and a sprinkling of C library functions. Once we've finished, we'll have a rather snazzy program that can serve as a launching point for further C++ exploration.
Our Version of SnakeThere are many variants of Snake, so to avoid confusion we'll explicitly spell out the rules of the game we're implementing:

1. The snake moves by extending its head in the direction it's moving and pulling its tail in one space.
2. The snake wins if it eats twenty pieces of food.
3. The snake loses if it crashes into itself or into a wall.
4. If the snake eats a piece of food, its length grows by one and a new piece of food is randomly placed.
5. There is only one level, the starting level.While traditionally Snake is played by a human, our Snake will be computer-controlled so that we can ex-plore some important pieces of the C runtime library. We'll discuss the AI we'll use when we begin imple -menting it.

Representing the WorldIn order to represent the Snake world, we need to keep track of the following information:

Chapter 5: STL Sequence Containers - 97 -
1. The size and layout of the world.
2. The location of the snake.
3. How many pieces of food we've consumed.Let's consider this information one piece at a time. First, how should we represent the world? The world is two-dimensional, but all of the STL containers we've seen so far only represent lists, which are inher-ently one-dimensional. Unfortunately, the STL doesn't have a container class that encapsulates a multidi -mensional array, but we can emulate this functionality with an STL vector of vectors. For example, if we represent each square with an object of type WorldTile, we could use a vector<vector<WorldTile> >. Note that there is a space between the two closing angle brackets – this is deliberate and is an unfortunate bug in the C++ specification. If we omit the space, C++ would interpret the closing braces on

vector<vector<WorldTile>> as the stream extraction operator >>, as in cin >> myValue. Although most compilers will accept code that uses two adjacent closing braces, it's bad practice to write it this way.While we could use a vector<vector<WorldTile> >, there's actually a simpler option. Since we need to be able to display the world to the user, we can instead store the world as a vector<string> where each string encodes one row of the board. This also simplifies displaying the world; given a vector<string> representing all the world information, we can draw the board by outputting each string on its own line. Moreover, since we can use the bracket operator [] on both vector and string, we can use the familiar syntax world[row][col] to select individual locations. The first brackets select the string out of the
vector and the second the character out of the string.We'll use the following characters to encode game information:

• A space character (' ') represents an empty tile.
• A pound sign ('#') represents a wall.
• A dollar sign ('$') represents food.
• An asterisk ('*') represents a tile occupied by a snake.For simplicity, we'll bundle all the game data into a single struct called gameT. This will allow us to pass all the game information to functions as a single parameter. Based on the above information, we can begin writing this struct as follows:

 struct gameT {
 vector<string> world;
 };We also will need quick access to the dimensions of the playing field, since we will need to be able to check whether the snake is out of bounds. While we could access this information by checking the dimensions of the vector and the strings stored in it, for simplicity we'll store this information explicitly in the gameT struct, as shown here:
 struct gameT {
 vector<string> world;
 int numRows, numCols;
 };For consistency, we'll access elements in the vector<string> treating the first index as the row and the second as the column. Thus world[3][5] is row three, column five (where indices are zero-indexed).

- 98 - Chapter 5: STL Sequence ContainersNow, we need to settle on a representation for the snake. The snake lives on a two-dimensional grid and moves at a certain velocity. Because the grid is discrete, we can represent the snake as a collection of its points along with its velocity vector. For example, we can represent the following snake:

As the points (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3) and the velocity vector (-1, 0).The points comprising the snake body are ordered to determine how the snake moves. When the snake moves, the first point (the head) moves one step in the direction of the velocity vector. The second piece then moves into the gap left by the first, the third moves into the gap left by the second piece, etc. This leaves a gap where the tail used to be. For example, after moving one step, the above snake looks like this:

To represent the snake in memory, we thus need to keep track of its velocity and an ordered list of the points comprising it. The former can be represented using two ints, one for the Δx component and one for the Δy component. But how should we represent the latter? We've just learned about the vector and
deque, each of which could represent the snake. To see what the best option is, let's think about how we might implement snake motion. We can think of snake motion in one of two ways – first, as the head mov-ing forward a step and the rest of the points shifting down one spot, and second as the snake getting a new point in front of its current head and losing its tail. The first approach requires us to update every element in the body and is not particularly efficient. The second approach can easily be implemented with a deque through an appropriate combination of push_front and pop_back. We will thus use a deque to encode the snake body.If we want to have a deque of points, we'll first need some way of encoding a point. This can be done with this struct:

0

1

2

3

2 3 4 50 1

0

1

2

3

0 1 2 3 4 5

Chapter 5: STL Sequence Containers - 99 -
 struct pointT {
 int row, col;
 };Taking these new considerations into account, our new gameT struct looks like this:
 struct gameT {
 vector<string> world;
 int numRows, numCols;

 deque<pointT> snake;
 int dx, dy;
 };Finally, we need to keep track of how many pieces of food we've munched so far. That can easily be stored in an int, yielding this final version of gameT:
 struct gameT {
 vector<string> world;
 int numRows, numCols;

 deque<pointT> snake;
 int dx, dy;

 int numEaten;
 };

The Skeleton ImplementationNow that we've settled on a representation for our game, we can start thinking about how to organize the program. There are two logical steps – setup and gameplay – leading to the following skeleton implement -ation:

- 100 - Chapter 5: STL Sequence Containers

 #include <iostream>
 #include <string>
 #include <deque>
 #include <vector>
 using namespace std;

 /* Number of food pellets that must be eaten to win. */
 const int kMaxFood = 20;

 /* Constants for the different tile types. */
 const char kEmptyTile = ' ';
 const char kWallTile = '#';
 const char kFoodTile = '$';
 const char kSnakeTile = '*';

 /* A struct encoding a point in a two-dimensional grid. */
 struct pointT {
 int row, col;
 };

 /* A struct containing relevant game information. */
 struct gameT {
 vector<string> world; // The playing field
 int numRows, numCols; // Size of the playing field

 deque<pointT> snake; // The snake body
 int dx, dy; // The snake direction

 int numEaten; // How much food we've eaten.
 };

 /* The main program. Initializes the world, then runs the simulation. */
 int main() {
 gameT game;
 InitializeGame(game);
 RunSimulation(game);
 return 0;
 }Atop this program are the necessary #includes for the functions and objects we're using, followed by a list of constants for the game. The pointT and gameT structs are identical to those described above. main creates a gameT object, passes it into InitializeGame for initialization, and finally hands it to
RunSimulation to play the game.We'll begin by writing InitializeGame so that we can get a valid gameT for RunSimulation. But how should we initialize the game board? Should we use the same board every time, or let the user specify a level of their choosing? Both of these are resaonable, but for the this extended example we'll choose the latter. In particular, we'll specify a level file format, then let the user specify which file to load at runtime.There are many possible file formats to choose from, but each must contain at least enough information to populate a gameT struct; that is, we need the world dimensions and layout, the starting position of the snake, and the direction of the snake. While I encourage you to experiment with different structures, we'll use a simple file format that encodes the world as a list of strings and the rest of the data as integers in a particular order. Here is one possible file:

Chapter 5: STL Sequence Containers - 101 -
File: level.txt
15 15
1 0
###############
#$ $#
#
#
$ #
#
#
*
#
#
$ #
#
#
#$ $#
###############The first two numbers encode the number of rows and columns in the file, respectively. The next line contains the initial snake velocity as Δx, Δy. The remaining lines encode the game board, using the same characters we settled on for the world vector. We'll assume that the snake is initially of length one and its position is given by a * character.There are two steps necessary to let the user choose the level layout. First, we need to prompt the user for the name of the file to open, reprompting until she chooses an actual file. Second, we need to parse the contents of the file into a gameT struct. In this example we won't check that the file is formatted correctly, though in professional code we would certainly need to check this. If you'd like some additional practice with the streams library, this would be an excellent exercise.Let's start writing the function responsible for loading the file from disk, InitializeGame. Since we need to prompt the user for a filename until she enters a valid file, we'll begin writing:
 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 /* ... */
 }
 /* ... */
 }The while(true) loop will continuously prompt the user until she enters a valid file. Here, we assume that GetLine() is the version defined in the chapter on streams. Also, since we're now using the
ifstream type, we'll need to #include <fstream> at the top of our program.Now that the user has given us the a filename, we'll try opening it using the .open() member function. If the file opens successfully, we'll break out of the loop and start reading level data:

- 102 - Chapter 5: STL Sequence Containers

 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 /* ... */
 }
 /* ... */
 }If the file did not open, however, we need to report this to the user. Additionally, we have to make sure to reset the stream's error state, since opening a nonexistent file causes the stream to fail. Code for this is shown here:
 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 /* ... */
 }Now we need to parse the file data into a gameT struct. Since this is rather involved, we'll decompose it into a helper function called LoadWorld, then finish InitializeGame as follows:
 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 LoadWorld(game, input);
 }Notice that except for the call to LoadWorld, nothing in the code for InitializeGame actually pertains to our Snake game. In fact, the code we've written is a generic routine for opening a file specified by the user. We'll thus break this function down into two functions – OpenUserFile, which prompts the user for a filename, and InitializeGame, which opens the specified file, then hands it off to LoadWorld. This is shown here:

Chapter 5: STL Sequence Containers - 103 -
 void OpenUserFile(ifstream& input) {
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for .c_str().
 if(input.is_open()) return;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 }

 void InitializeGame(gameT& game) {
 ifstream input;
 OpenUserFile(input);
 LoadWorld(game, input);
 }Let's begin working on LoadWorld. The first line of our file format encodes the number of rows and columns in the world, and we can read this data directly into the gameT struct, as seen here:
 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 /* ... */
 }We've also resized the vector to hold game.numRows strings, guaranteeing that we have enough strings to store the entire world. This simplifies the implementation, as you'll see momentarily.Next, we'll read the starting velocity for the snake, as shown here:
 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 /* ... */
 }At this point, we've read in the parameters of the world, and need to start reading in the actual world data. Since each line of the file contains one row of the grid, we'll use getline for the remaining read operations. There's a catch, however. Recall that getline does not mix well with the stream extraction operator (>>), which we've used exclusively so far. In particular, the first call to getline after using the stream extraction operator will return the empty string because the newline character delimiting the data is still waiting to be read. To prevent this from gumming up the rest of our input operations, we'll call
getline here on a dummy string to flush out the remaining newline:

- 104 - Chapter 5: STL Sequence Containers

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 /* ... */
 }Now we're ready to start reading in world data. We'll read in game.numRows lines from the file directly into the game.world vector. Since earlier we resized the vector, there already are enough strings to hold all the data we'll read. The reading code is shown below:
 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 /* ... */
 }

 /* ... */
 }Recall that somewhere in the level file is a single * character indicating where the snake begins. To make sure that we set up the snake correctly, after reading in a line of the world data we'll check to see if it contains a star and, if so, we'll populate the game.snake deque appropriately. Using the .find() member function on the string simplifies this task, as shown here:

Chapter 5: STL Sequence Containers - 105 -
 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos) {
 pointT head;
 head.row = row;
 head.col = col;
 game.snake.push_back(head);
 }
 }

 /* ... */
 }The syntax for creating and filling in the pointT data is a bit bulky here. When we cover classes in the second half of this course you'll see a much better way of creating this pointT. In the meantime, we can write a helper function to clean this code up, as shown here: pointT MakePoint(int row, int col) { pointT result; result.row = row; result.col = col; return result; }
 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos)
 game.snake.push_back(MakePoint(row, col));
 }

 /* ... */
 }There's one last step to take care of, and that's to ensure that we set the numEaten field to zero. This edit completes LoadWorld and the final version of the code is shown here:

- 106 - Chapter 5: STL Sequence Containers

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos)
 game.snake.push_back(MakePoint(row, col));
 }

 game.numEaten = 0;
 }Great! We've just finished setup and it's now time to code up the actual game. We'll begin by coding a skeleton of RunSimulation which displays the current state of the game, runs the AI, and moves the snake:
 void RunSimulation(gameT& game) {
 /* Keep looping while we haven't eaten too much. */
 while(game.numEaten < kMaxFood) {
 PrintWorld(game); // Display the board
 PerformAI(game); // Have the AI choose an action

 if(!MoveSnake(game)) // Move the snake and stop if we crashed.
 break;

 Pause(); // Pause so we can see what's going on.
 }
 DisplayResult(game); // Tell the user what happened
 }We'll implement the functions referenced here out of order, starting with the simplest and moving to the most difficult. First, we'll begin by writing Pause, which stops for a short period of time to make the game seem more fluid. The particular implementation of Pause we'll use is a busy loop, a while loop that does nothing until enough time has elapsed. Busy loops are frowned upon in professional code because they waste CPU power, but for our purposes are perfectly acceptable.The <ctime> header exports a function called clock() that returns the number of “clock ticks” that have elapsed since the program began. The duration of a clock tick varies from system to system, so C++ provides the constant CLOCKS_PER_SEC to convert clock ticks to seconds. We can use clock to implement a busy loop as follows:

1. Call clock() to get the current time in clock ticks and store the result.
2. Continuously call clock() and compare the result against the cached value. If enough time has passed, stop looping.This can be coded as follows:

Chapter 5: STL Sequence Containers - 107 -
 const double kWaitTime = 0.1; // Pause 0.1 seconds between frames
 void Pause() {
 clock_t startTime = clock(); // clock_t is a type which holds clock ticks.

 /* This loop does nothing except loop and check how much time is left.
 * Note that we have to typecast startTime from clock_t to double so
 * that the division is correct. The static_cast<double>(...) syntax
 * is the preferred C++ way of performing a typecast of this sort;
 * see the chapter on
 * inheritance for more information.
 */
 while(static_cast<double>(clock() - startTime) / CLOCKS_PER_SEC <
 kWaitTime);
 }Next, let's implement the PrintWorld function, which displays the current state of the world. We chose to represent the world as a vector<string> to simplify this code, and as you can see this design decision pays off well:
 void PrintWorld(gameT& game) {
 for(int row = 0; row < game.numRows; ++row)
 cout << game.world[row] << endl;
 cout << "Food eaten: " << game.numEaten << endl;
 }This implementation of PrintWorld is fine, but every time it executes it adds more text to the console instead of clearing what's already there. This makes it tricky to see what's happening. Unfortunately, standard C++ does not export a set of routines for manipulating the console. However, every major operating system exports its own console manipulation routines, primarily for developers working on a command line. For example, on a Linux system, typing clear into the console will clear its contents, while on Windows the command is CLS.C++ absorbed C's standard library, including the system function (header file <cstdlib>). system executes an operating system-specific instruction as if you had typed it into your system's command line. This function can be very dangerous if used incorrectly,* but also greatly expands the power of C++. We will not cover how to use system in detail since it is platform-specific, but one particular application of system is to call the appropriate operating system function to clear the console. We can thus upgrade our implementation of PrintWorld as follows:
 /* The string used to clear the display before printing the game board.
 * Windows systems should use "CLS"; Mac OS X or Linux users should use
 * "clear" instead.
 */
 const string kClearCommand = "CLS";

 void PrintWorld(gameT& game) {
 system(kClearCommand.c_str());
 for(int row = 0; row < game.numRows; ++row)
 cout << game.world[row] << endl;
 cout << "Food eaten: " << game.numEaten << endl;
 }Because system is from the days of pure C, we have to use .c_str() to convert the string parameter into a C-style string before we can pass it into the function.* In particular, calling system without checking that the parameters have been sanitized can let malicious users completely compromise your system. Take CS155 for more information on what sorts of attacks are possible.

- 108 - Chapter 5: STL Sequence ContainersThe final quick function we'll write is DisplayResult, which is called after the game has ended to report whether the computer won or lost. This function is shown here:
 void DisplayResult(gameT& game) {
 PrintWorld(game);
 if(game.numEaten == kMaxFood)
 cout << "The snake ate enough food and wins!" << endl;
 else
 cout << "Oh no! The snake crashed!" << endl;
 }Now, on to the two tricky functions – PerformAI, which determines the snake's next move, and
MoveSnake, which moves the snake and processes collisions. We'll begin with PerformAI.Designing an AI that plays Snake intelligently is far beyond the scope of this class. However, it is feasible to build a rudimentary AI that plays reasonably well. Our particular AI works as follows: if the snake is about to collide with an object, the AI will turn the snake out of danger. Otherwise, the snake will continue on its current path, but has a percent chance to randomly change direction.Let's begin by writing the code to check whether the snake will turn; that is, whether we're about to hit a wall or if the snake randomly decides to veer in a direction. We'll write a skeletal implementation of this code, then will implement the requisite functions. Our initial code is
 const double kTurnRate = 0.2; // 20% chance to turn each step.
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game);

 /* If that hits a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }Here we're calling three functions we haven't written yet – GetNextPosition, which computes the position of the head on the next iteration; Crashed, which returns whether the snake would crash if its head was in the given position; and RandomChance; which returns true with probability equal to the parameter. Before implementing the rest of PerformAI, let's knock these functions out so we can focus on the rest of the task at hand. We begin by implementing GetNextPosition. This function accepts as input the game state and returns the point that we will occupy on the next frame if we continue moving in our current direction. This function isn't particularly complex and is shown here:
 pointT GetNextPosition(gameT& game) {
 /* Get the head position. */
 pointT result = game.snake.front();

 /* Increment the head position by the current direction. */
 result.row += game.dy;
 result.col += game.dx;
 return result;
 }The implementation of Crashed is similarly straightforward. The snake has crashed if it has gone out of bounds or if its head is on top of a wall or another part of the snake:

Chapter 5: STL Sequence Containers - 109 -
 bool Crashed(pointT headPos, gameT& game) {
 return !InWorld(headPos, game) ||
 game.world[headPos.row][headPos.col] == kSnakeTile ||
 game.world[headPos.row][headPos.col] == kWallTile;
 }Here, InWorld returns whether the point is in bounds and is defined as
 bool InWorld(pointT& pt, gameT& game) {
 return pt.col >= 0 &&
 pt.row >= 0 &&
 pt.col < game.numCols &&
 pt.row < game.numRows;
 }Next, we need to implement RandomChance. In CS106B/X we provide you a header file, random.h, that exports this function. However, random.h is not a standard C++ header file and thus we will not use it here. Instead, we will use C++'s rand and srand functions, also exported by <cstdlib>, to implement
RandomChance. rand() returns a pseudorandom number in the range [0, RAND_MAX], where RAND_MAX is usually 215 – 1. srand seeds the random number generator with a value that determines which values are returned by rand. One common technique is to use the time function, which returns the current system time, as the seed for srand since different runs of the program will yield different random seeds. Traditionally, you will only call srand once per program, preferably during initialization. We'll thus modify InitializeGame so that it calls srand in addition to its other functionality:
 void InitializeGame(gameT& game) {
 /* Seed the randomizer. The static_cast converts the result of time(NULL)
 * from time_t to the unsigned int required by srand. This line is
 * idiomatic C++.
 */
 srand(static_cast<unsigned int>(time(NULL)));

 ifstream input;
 OpenUserFile(input);
 LoadWorld(game, input);
 }Now, let's implement RandomChance. To write this function, we'll call rand to obtain a value in the range [0, RAND_MAX], then divide it by RAND_MAX + 1.0 to get a value in the range [0, 1). We can then return whether this value is less than the input probability. This yields true with the specified probability; try convincing yourself that this works if it doesn't immediately seem obvious. This is a common technique and in fact is how the CS106B/X RandomChance function is implemented.
RandomChance is shown here:
 bool RandomChance(double probability) {
 return (rand() / (RAND_MAX + 1.0)) < probability;
 }Notice that we added 1.0 to RAND_MAX. This both adds the +1 necessary from the above discussion and implicitly converts the denominator into a double, which is necessary to avoid integer truncation.Phew! Apologies for the lengthy detour – let's get back to writing the AI! Recall that we've written this code so far:

- 110 - Chapter 5: STL Sequence Containers

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }We now need to implement the logic for turning the snake left or right. First, we'll figure out in what positions the snake's head would be if we turned left or right. Then, based on which of these positions are safe, we'll pick a direction to turn. To avoid code duplication, we'll modify our implementation of
GetNextPosition so that the caller can specify the direction of motion, rather than relying on the
gameT's stored direction. The modified version of GetNextPosition is shown here:
 pointT GetNextPosition(gameT& game, int dx, int dy) {
 /* Get the head position. */
 gameT result = game.snake.front();

 /* Increment the head position by the specified direction. */
 result.row += dy;
 result.col += dx;
 return result;
 }We'll need to modify PerformAI to pass in the proper parameters to GetNextPosition, as shown here:
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }Now, let's write the rest of this code. Given that the snake's velocity is (game.dx, game.dy), what velocities would we move at if we were heading ninety degrees to the left or right? Using some basic linear algebra,* if our current heading is along dx and dy, then the headings after turning left and right from our current heading are be given bydxleft = -dydyleft = dxdxright = dydyright = -dxUsing these equalities, we can write the following code, which determines what bearings are available and whether it's safe to turn left or right:
* This is the result of multiplying the vector (dx, dy)T by a rotation matrix for either +π/2 or -π/2 radians.

Chapter 5: STL Sequence Containers - 111 -
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 /* ... */
 }
 }Now, we'll decide which direction to turn. If we can only turn one direction, we will choose that direction. If we can't turn at all, we will do nothing. Finally, if we can turn either direction, we'll pick a direction randomly. We will store which direction to turn in a boolean variable called willTurnLeft which is true if we will turn left and false if we will turn right. This is shown here:
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 bool willTurnLeft = false;
 if(!canLeft && !canRight)
 return; // If we can't turn, don't turn.
 else if(canLeft && !canRight)
 willTurnLeft = true; // If we must turn left, do so.
 else if(!canLeft && canRight)
 willTurnLeft = false; // If we must turn right, do so.
 else
 willTurnLeft = RandomChance(0.5); // Else pick randomly

 /* ... */
 }
 }

- 112 - Chapter 5: STL Sequence ContainersFinally, we'll update our direction vector based on our choice:
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 bool willTurnLeft = false;
 if(!canLeft && !canRight)
 return; // If we can't turn, don't turn.
 else if(canLeft && !canRight)
 willTurnLeft = true; // If we must turn left, do so.
 else if(!canLeft && canRight)
 willTurnLeft = false; // If we must turn right, do so.
 else
 willTurnLeft = RandomChance(0.5); // Else pick randomly

 game.dx = willTurnLeft? leftDx : rightDx;
 game.dy = willTurnLeft? leftDy : rightDy;
 }
 }If you're not familiar with the ?: operator, the syntax is as follows:
 expression ? result-if-true : result-if-falseHere, this means that we'll set game.dx to leftDx if willTurnLeft is true and to rightDx otherwise.We now have a working version of PerformAI. Our resulting implementation is not particularly dense, and most of the work is factored out into the helper functions.There is one task left – implementing MoveSnake. Recall that MoveSnake moves the snake one step forward on its path. If the snake crashes, the function returns false to indicate that the game is over. Otherwise, the function returns true.The first thing to do in MoveSnake is to figure out where the snake's head will be after taking a step. Thanks to GetNextPosition, this has already been taken care of for us:
 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 /* ... */
 }

Chapter 5: STL Sequence Containers - 113 -Now, if we crashed into something (either by falling off the map or by hitting an object), we'll return false so that the main loop can terminate:
 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 /* ... */
 }Next, we need to check to see if we ate some food. We'll store this in a bool variable for now, since the logic for processing food will come a bit later:
 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 /* ... */
 }Now, let's update the snake's head. We need to update the world vector so that the user can see that the snake's head is in a new square, and also need to update the snake deque so that the snake's head is now given by the new position. This is shown here:
 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 game.world[nextHead.row][nextHead.col] = kSnakeTile;
 game.snake.push_front(nextHead);

 /* ... */
 }Finally, it's time to move the snake's tail forward one step. However, if we've eaten any food, we will leave the tail as-is so that the snake grows by one tile. We'll also put food someplace else on the map so the snake has a new objective. The code for this is shown here:

- 114 - Chapter 5: STL Sequence Containers

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 game.world[nextHead.row][nextHead.col] = kSnakeTile;
 game.snake.push_front(nextHead);

 if(!isFood) {
 game.world[game.snake.back().row][game.snake.back().col] = kEmptyTile;
 game.snake.pop_back();
 } else {
 ++game.numEaten;
 PlaceFood(game);
 }
 return true;
 }We're nearing the home stretch – all that's left to do is to implement PlaceFood and we're done! This function is simple – we'll just sit in a loop picking random locations on the board until we find an empty spot, then will put a piece of food there. To generate a random location on the board, we'll scale rand() down to the proper range using the modulus (%) operator. For example, on a world with four rows and ten columns, we'd pick as a row rand() % 4 and as a column col() % 10. The code for this function is shown here:
 void PlaceFood(gameT& game) {
 while(true) {
 int row = rand() % game.numRows;
 int col = rand() % game.numCols;

 /* If the specified position is empty, place the food there. */
 if(game.world[row][col] == kEmptyTile) {
 game.world[row][col] = kFoodTile;
 return;
 }
 }
 }

Chapter 5: STL Sequence Containers - 115 -
More To ExploreThere's so much to explore with the STL that we could easily fill the rest of the course reader with STL content. If you're interested in some more advanced topics relating to this material and the STL in general, consider reading on these topics:

1. stack and queue: The vector and deque pack a lot of firepower and can solve a wide array of problems. However, in some cases, you may want to use a container with a more restricted set of operations. For these purposes, the STL exports two container adapters, containers that export functionality similar to a vector or deque but with a slight reduction in power. The first of these is the stack, which only lets you view the final element of a sequence; the second is the queue, which is similar to line at a ticket counter. If you plan on pursuing C++ more seriously, you should take the time to look over what these container adapters have to offer.
2. valarray: The valarray class is similar to a vector in that it's a managed array that can hold elements of any type. However, unlike vector, valarray is designed for numerical computations.

valarrays are fixed-size and have intrinsic support for mathematical operators. For example, you can use the syntax myValArray *= 2 to multiply all of the entries in a valarray by two. If you're interested in numeric or computational programming, consider looking into the valarray.
3. There's an excellent article online comparing the performances of the vector and deque contain-ers. If you're interested, you can see it athttp://www.codeproject.com/vcpp/stl/vector_vs_deque.asp.

Practice Problems

1. List two differences between the vector's push_back and resize member functions.
2. What header files do you need to #include to use vector? deque?
3. How do you tell how many elements are in a vector? In a deque?
4. How do you remove the first element from a vector? From a deque?
5. Write a function called LinesFromFile which takes in a string containing a filename and returns a

vector<string> containing all of the lines of text in the file in the order in which they appear. If the file does not exist, you can return an empty vector. (Hint: look at the code for reading the
world file in the Snake example and see if you can modify it appropriately)

6. Update the code for the sorting program so that it sorts elements in descending order instead of as-
cending order.

7. One use for the deque container is to create a ring buffer. Unlike the linear vector and deque con-tainers you saw in this chapter, a ring buffer is circular. Here's an illustration of a ring buffer:

http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp

- 116 - Chapter 5: STL Sequence Containers

0 1
2
3
4

567
8

0

9
10

11

Cursor

A ring buffer consists of a circular ring of elements with a cursor which selects some particular ele-ment out of the buffer. The four main operations on a ring buffer are as follows:
◦ Rotate the ring clockwise
◦ Rotate the ring counterclockwise
◦ Read the value at the cursor.
◦ Write the value at the cursor. For example, given the above ring buffer, the result of rotating the ring clockwise would be

0
1
2
3

456
7

11

8
9

10

Cursor

 If we then wrote the value 5 to the location specified by the cursor, the buffer would look like this:
0

1
5
3

456
7

11

8
9

10

Cursor

Chapter 5: STL Sequence Containers - 117 -There is a particularly elegant construction which enables us to build a ring buffer out of a deque. The basic idea is to “unroll” the ring buffer into a linear sequence, then use a combination of
push_front, pop_front, push_back, and pop_back to simulate moving the cursor to the left or to the right. This technique of simulating one data structure using another is ubiquitous in com-puter science, and many important results in computability theory use constructions of this form. To see exactly how the construction works, suppose that we have the following ring buffer:

0 1
2
3
4

567
8

0

9
10

11

Cursor

 We can then represent this using a deque as follows:

0 1
2
3
4

567
8

0

9
10

11

Cursor

3 4 5 6 7 8 9 10 11 0 1 2That is, the first element of the deque is the element under the cursor, and the rest of the elements in the deque are the elements in the ring buffer formed by walking clockwise around the ring buf -fer. Given this construction, we can simulate rotating the ring one position clockwise by moving the last element of the deque onto the front, as shown here:

- 118 - Chapter 5: STL Sequence Containers

0
1
2
3

456
7

11

8
9

10

Cursor

3 4 5 6 7 8 9 10 11 0 12Similarly, to move the cursor one step counterclockwise, we move the element at the end of the
deque onto the front, as shown here:

0 1
2
3
4

567
8

0

9
10

11

Cursor

3 4 5 6 7 8 9 10 11 0 1 2Write a pair of functions CursorClockwise and CursorCounterClockwise which take in a
deque representing a ring buffer and update the deque by simulating a cursor move in either dir-ection. Then write functions CursorRead and CursorWrite which read and write the element stored at the cursor. You've just shown how to represent one data structure using another!

Chapter 5: STL Sequence Containers - 119 -
8. As mentioned earlier, the deque outperforms the vector when inserting and removing elements at the end of the container. However, the vector has a useful member function called reserve that can be used to increase its performance against the deque in certain circumstances. The reserve function accepts an integer as a parameter and acts as a sort of “size hint” to the vector. Behind the scenes, reserve works by allocating additional storage space for the vector elements, redu-cing the number of times that the vector has to ask for more storage space. Once you have called

reserve, as long as the size of the vector is less than the number of elements you have reserved, calls to push_back and insert on the vector will execute more quickly than normal. Once the
vector hits the size you reserved, these operations revert to their original speed.* Write a program that uses push_back to insert a large number of strings into two different vec-
tors – one which has had reserve called on it and one which hasn't – as well as a deque. The ex-act number and content of strings is up to you, but large numbers of long strings will give the most impressive results. Use the clock() function exported by <ctime> to compute how long it takes to finish inserting the strings. Now repeat this trial, but insert the elements at the beginning of the container rather than the end. Did calling reserve help to make the vector more competitive against the deque?

9. In this next problem we'll explore a simple encryption algorithm called the Vigenère cipher and how to implement it using the STL containers. One of the oldest known ciphers is the Caesar cipher, named for Julius Caesar, who allegedly em-ployed it. The idea is simple. We pick a secret number between 1 and 26, inclusive, then encrypt the input string by replacing each letter with the letter that comes that many spaces after it. If this pushes us off the end of the alphabet, we wrap around to the start of the alphabet. For example, if we were given the string “The cookies are in the fridge” and picked the number 1, we would end up with the resulting string “Uif dppljft bsf jo uif gsjehf.” To decrypt the string, we simply need to push each letter backwards by one spot. The Caesar cipher is an extremely weak form of encryption; it was broken in the ninth century by the Arab polymath al-Kindi. The problem is that the cipher preserves the relative frequencies of each of the letters in the source text. Not all letters appear in English with equal frequency – e and t are far more common than q or w, for example – and by looking at the relative letter frequencies in the encrypted text it is possible to determine which letter in the encrypted text corresponds to a letter in the source text and to recover the key.The problem with the Caesar cipher is that it preserves letter frequencies because each letter is transformed using the same key. But what if we were to use multiple keys while encrypting the message? That is, we might encrypt the first letter with one key, the second with another, the third with yet another, etc. One way of doing this is to pick a sequence of numbers, then cycle through them while encrypting the text. For example, let's suppose that we want to encrypt the above mes-sage using the key string 1, 3, 7. Then we would do the following: T H E C O O K I E S A R E I N T H E F R I D G E1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7
U K L D R V L L L T D Y F L U U K L G U P E J L Notice that the letters KIE from COOKIES are all mapped to the letter L, making cryptanalysis much more difficult. This particular encryption system is the Vigenère cipher. * Calling push_back n times always takes O(n) time, whether or not you call reserve. However, calling reserve re-duces the constant term in the big-O to a smaller value, meaning that the overall execution time is lower.

- 120 - Chapter 5: STL Sequence ContainersNow, let's consider what would happen if we wanted to implement this algorithm in C++ to work on arbitrary strings. Strings in C++ are composed of individual chars, which can take on (typically) one of 256 different values. If we had a list of integer keys, we could encrypt a string using the Vi -genère cipher by simply cycling through those keys and incrementing the appropriate letters of the string. In fact, the algorithm is quite simple. We iterate over the characters of the string, at each point incrementing the character by the current key and then rotating the keys one cycle.
a. Suppose that we want to represent a list of integer keys that can easily be cycled; that is, we want to efficiently support moving the first element of the list to the back. Of the containers covered in this chapter (vector and deque), which have the best support for this operation? ♦
b. Based on your decision, implement a function VigenereEncrypt that accepts a string and a list of int keys stored in the container of your choice, then encrypts the string using the Vi-genère cipher. ♦

	Chapter 5: STL Sequence Containers

