Xv6 File System

Zhewen Song
11/28/2017

File System Layout in xv6

Unused | Superblock | Inodes ... | Unused | Bitmap | Data

I em super block 50 dirent {
superblock { 51 ushort inum;

uint size; 12 £ n ima Q S. 52 name[DIRSIZ];
uint nblocks; Nui : ' 53 };

uint ninodes;

5

25 n-disk inod

26 dinode {

27 type;

28 major;

29 minor;

30 nlink;

31 uint size;

32 uint addrs[NDIRECT+1];
33 };

Inode of a regular file in xv6

512 Bytes
64 Bytes What’s the maximum
type = 2 data possible size of a regular file?
major
minor
nlink
size
addr 1 ////////’ data data
addr 12 - /
indirect~-‘\\‘\‘* addr 1 1
addr 128 "-~\§\\§§$ data

512 Bytes

Inode of a directory in xv6

512 Bytes
64 Bytes dirent 1 How many files/subdirectories
type = 1 can a directory have at most?
major dirent 32
minor
nlink
size dirent 1 dirent 1
addr 1 e o
' 2
< e / dirent 3 dirent 32
addr 12 -
indirect~-\\§\\§§* addr 1 1
ce dirent 1
addr 128 1 ..
512 Bytes 5\““\“‘* dirent 32

Bitmap In xv6

* Each bit in the bitmap is associated with a block, NOT an inode.

* Although the very first block is unused, it is always marked as 1 in the
first bit of the bitmap, and so are all the blocks where the inodes and
bitmap itself reside.

* Bitmap is grouped in byte.
* Intel x86 processors use little-endian.

* Example:

« ff c2 = 1111 1111 1100 0010
765432101 1514131211109 8

Demos

* How to build your own file system image and reflect in xv6
* Closer look at mkfs. c

* How xv6 files change the image
* Closer look at fs.1mg with xxd
* Some tricks editing file images with vim:
o :%!xxd toopentheimage; :%!xxd —r to save changes

* How to read image? —mmap()!

Demos

* Using GDB, go through the entire write system call.

* Key methods to understand:
« writei() in kernel/sysfile.c
« bmap() in kernel/fs.c
 bread(), bwrite() in kernel/bio.c

* How does xv6 normally handle large files?
* What do we do to handle small files here?

Inode

N

Data Data Data Data

