
Xv6	File	System
Zhewen	Song
11/28/2017

File	System	Layout	in	xv6

Unused | Superblock | Inodes ... | Unused | Bitmap | Data ...

Inode of	a	regular	file	in	xv6

type = 2
major
minor
nlink
size
addr 1
...

addr 12
indirect addr 1

...
addr 128

data

data

data

data

...

64 Bytes
512 Bytes

512 Bytes

What’s	the	maximum	
possible	size	of	a	regular	file?

...

Inode of	a	directory	in	xv6

type = 1
major
minor
nlink
size
addr 1
...

addr 12
indirect addr 1

...
addr 128

dirent 1
...

dirent 32

dirent 1
...

dirent 32

dirent 1
...

dirent 32

dirent 1
...

dirent 32

...

...

64 Bytes
512 Bytes

512 Bytes

How	many	files/subdirectories	
can	a	directory	have	at	most?

Bitmap	in	xv6

• Each	bit	in	the	bitmap	is	associated	with	a	block,	NOT	an	inode.
• Although	the	very	first	block	is	unused,	it	is	always	marked	as	1	in	the	
first	bit	of	the	bitmap,	and	so	are	all	the	blocks	where	the	inodes and	
bitmap	itself	reside.
• Bitmap	is	grouped	in	byte.
• Intel	x86	processors	use	little-endian.
• Example:
• ff c2 => 1111 1111 1100 0010

7 6 5 4 3 2 1 0 | 15 14 13 12 11 10 9 8

Demos

• How	to	build	your	own	file	system	image	and	reflect	in	xv6
• Closer	look	at	mkfs.c

• How	xv6	files	change	the	image
• Closer	look	at	fs.img with xxd
• Some	tricks	editing	file	images	with	vim:

• :%!xxd to	open	the	image;	:%!xxd –r to	save	changes

• How	to	read	image?	– mmap()!

Demos
• Using	GDB,	go	through	the	entire	write	system	call.
• Key	methods	to	understand:	

• writei() in kernel/sysfile.c
• bmap() in		kernel/fs.c
• bread(), bwrite() in kernel/bio.c

• How	does	xv6	normally	handle	large	files?
• What	do	we	do	to	handle	small	files	here?

