CS 537: Intro to Operating Systems (Fall 2017)
Worksheet 1 - Intro & Processes
Due: Sep 13" 2017 (Wed) in-class OR email to Zhewen before 5:30 pm

1. Intro to Operating Systems

(a) Virtualization
Consider the two C code snippets shown below. You may assume that this
code compiles and executes without any errors.

Program 1

int main(int argc, char xargvl[]) {
int xptr = malloc(sizeof (int));
*ptr = 1;
printf ("pid:%d; addr: %p; value:%d\n", getpid(), ptr, =*ptr);
sleep(10);
printf ("pid:%d; addr: %p; value:%d\n", getpid(), ptr, =*ptr);

Program 2

int main(int argc, char =*argv([]) {
int xptr = malloc(sizeof (int));
printf ("pid:%d; addr: %p; value:%d\n", getpid(), ptr, =*ptr);
sleep(10);
*ptr = 2;
printf ("pid:%d; addr: %p; value:%d\n", getpid(), ptr, =*ptr);

Assuming that Address Space Layout Randomization (ASLR) is disabled, what
are the outputs of the following two scenarios? You may assume that the pids
for process 1 and process 2 are 1 and 2 respectively and the address of the
malloc’d memory in heap is 0xA0B0CO.

Scenario i. Run program 1, after 5 seconds, run program 2.

Scenario ii. Run program 2, after 5 seconds, run program 1.

If the above 2 code snippets are run on a machine with a single CPU, and
a main memory of size 1 GB, what are the hardware resources that are being
virtualized? Only CPU OR only memory OR both? Explain your answer.



(b) Concurrency
Assume that two threads are running the following assembly code (that incre-
ments a shared variable) concurrently on a uniprocessor computer.

mov 0x2000, %eax # get the value at the address
add $1, %eax # increment it
mov %eax, 0x2000 # store it back

Assume that the initial value in the memory address 0x2000 is zero (0). Now
the two threads get interleaved as follows.

Thread 0 Thread 1
mov 0x2000, %eax
add $1, $%eax

mov 0x2000, %eax

mov %$eax, 0x2000

add $1, %eax
mov %$eax, 0x2000

i. What is the value stored in address 0x2000 after all the above instructions
are executed?

ii. Assume there is a loop outside these three lines of assembly code and
each thread runs this loop for 100 times. What is the minimum and the
maximum possible final value in address 0x2000 after both these threads
execute this assembly code 100 times? The assembly instructions for the
two threads may get interleaved in any order during execution.

iii. What is the problem here and how can it be solved?



(c) Persistence
Consider the C code snippet shown below:

int main(int argc, char xargvl[]) {
int fd = open("/tmp/file", O_WRONLY | O_CREAT | O_TRUNC, S_IRWXU);
int buf[3] = {100, 200, 300};
write (fd, buf, 3xsizeof (int));

}

i. After executing this program, file /tmp/file was created and some bytes
were written. What type of file is it?

ii. What will we see if we open this file in a text editor like vim? Can you
explain why you see these contents?

iii. If we open this file with a program like xxd, the following contents are dis-
played. Can you explain what this content means and why is it formatted
in this way? Can you also comment on the endianness of the machine in
which this code was run? You may assume that 0x64 is stored at byte 0.

6400 0000 c800 0000 2c01 00O0O

iv. What is the size of the file (in bytes) /tmp/file at the end of the
write () system call? You may assume that the size of an integer is 4
bytes.

v. What does the option S_IRWXU in open () stand for?



2. Processes
Assume you have a system with three processes (A, B, and C) and a single CPU.
Processes can be in one of five states: (a) RUNNING, (b) READY, (¢) BLOCKED,
(d) NOT YET CREATED or (¢) TERMINATED
Given the following cumulative timeline of process behavior, indicate the state
the specified process is in AFTER that step, and all preceding steps, have taken
place.
Step 1: Process A is loaded into memory and begins; it is the only user-level
process in the system.

Process A is in which state?

Step 2: Process B is created and is scheduled to run.
Process A is in which state?

Process B is in which state?

Step 3: The running process issues an 1/O request to the disk.
Process A is in which state?

Process B is in which state?

Step 4: Process C is created but it is not yet scheduled.
Process A is in which state?

Process B is in which state?

Process C is in which state?

Step 5: The time-slice (i.e., time for which a process can use the CPU) of the
running process expires. Process C is scheduled.

Process A is in which state?

Process B is in which state?

Process C is in which state?

Step 6: The previously issued 1/O request completes; the process that issued that
I/O request is scheduled.

Process A is in which state?

Process B is in which state?

Process C is in which state?



