CS 537: Intro to Operating Systems (Fall 2017)
Worksheet 11 - File System
Due: Nov 29°4 2017 (Wed) email Simmi before 11:59 pm

1. Files & Directories

Files and directories provide a basic abstraction of persistent data to users. Here we
explore (abstractly) how basic file systems work, focusing on links. Sometimes links lead
to pretty odd performance problems.

a. Assume we have a regular file referred by the path name /a/b/file.txt. Enu-
merate the directories sequentially accessed when opening this file.

b. Now we create a soft link to this file using 1n -s /a/b/file.txt /a/soft.txt.
Enumerate the directories sequentially accessed when opening /a/soft.txt.

c. What happens to soft.txt if we rename file.txt? (Explain)

d. Let’s say we create a symbolic link to a parent directory using 1n -s /a/b
/a/b/loop. List the different pathnames we can use to refer to file.txt in
the directory /a/b.

e. Now we create a hard link to this file using 1n /a/b/file.txt /a/hard.txt.
Enumerate the directories sequentially accessed when opening /a/hard.txt.

f. What happens to hard.txt if we rename file.txt? (Explain)

2. File System Implementation

e Assuming a very simple file system that supports 7 operations: mkdir () : creates
a new directory; creat () : creates a new (empty) file; open () and close ()
opens and closes a file, respectively; write () : appends a block to a file;
link () : creates a hard link to a file; unlink () : unlinks a file (removing
it if 1inkcnt==0).

e The state of the file system is indicated by the contents of two data structures, i.e.,
inodes and data.

e The inodes each have three fields: the first field indicates the type of file (£ for a
regular file, d for a directory); the second indicates which data block belongs to a
file (here, files can only be empty, which have the address of the data block set to
-1, or one block in size, which would have a non-negative address); the third shows
the reference count for the file or directory.

— For example, the following inode is a regular file, which is empty (address field
set to -1), and has just one link in the file system: [f a:-1 r:1]. If the
same file had a block allocated to it (say block 10), it would be shown as
follows: [f a:10 r:1]. If someone then created a hard link to this inode,
it would then become [f a:10 r:2].

— Note: the reference count of directory here is different from xv6. Here we need
to account for the parent “..” as well, e.g. for an empty root directory, the
reference count should be 2 because both “.” and “..” refer to it.

e Data blocks can either retain user data or directory data.

— An empty root directory looks like this, assuming the root inode is 0: [(., 0)
(..,0)]1. If we add a single file named f to the root directory, which has
been allocated inode number 1, the root directory contents would then become:
[(.,0) (..,0) (f£,1)1.

— If a data block contains user data, it is shown as just a single character within
the block, e.g., [D].

— If it is empty and unallocated, just a pair of empty brackets ([]) are shown.

e Assume when allocating a new inode or data block, the first empty inode or block
will be used.

Now the initial state of the file system is as follows:
inodes [d a:0 r:2] [] [] []; data [(.,0) (..,0)] [1 [] [I

Write down the file system states after the following operations are performed se-
quentially:

a. mkdir ("/p");

b. creat ("/p/q");

c. link ("/p/qg", "/xr");

d. write (open("/r"), "M", BLOCKSIZE);

e. unlink ("/p/gq");

