CS 537: Intro to Operating Systems (Fall 2017)
Worksheet 2 - Scheduling Mechanisms

Due: Sep 20" 2017 (Wed) in-class OR email to Zhewen before 5:30 pm

1. Limited Direct Execution

The following are the list of events (in no particular order) that may happen when
a system call or a timer interrupt happens while a user process is executing.

RO T OPE m R PR mo R0 TP

Process A: trap into OS via int $64
Process A: calls read()

Process B: continues execution

OS:
OS:
OS:
OS:
OS:
OS:
OS:
OS:
Hardware: restore registers(B) from kernel-stack(B)
Hardware: jump to B’s PC

Hardware: save registers(A) to kernel-stack(A)
Hardware: timer interrupt

Hardware: move to user mode

Hardware: jump to trap handler

Hardware: move to kernel mode

return from trap (into B)

handle trap

call switch routine

send read to disk

restore registers(B) from PCB(B)
switch to kernel-stack (B)

save registers(A) to PCB(A)

put A to sleep (i.e. A’s state = blocked)

What are the events that may happen as per the limited direct execution protocol?
Choose and sort them in order for the following two scenarios. Just write the
lower-case letters for each event in order.

(a) Process A switches to B, because it calls read() and blocks.

(b) Process A switches to B, because a timer interrupt happens.

2. Context switch

a. When a context switch happens (e.g. from process A to process B), the hard-
ware saves the registers(A) to kernel-stack(A) (in a structure called trap frame)
and the OS stores the registers(A) to PCB(A). Similarly, to begin executing
process B, the OS restores registers(B) from the PCB(B) and the hardware
restores the registers(B) from the kernel-stack(B). Why do both the hardware
and the OS save/restore the registers of a process during a context switch?

b. The control flow during a context switch from process A to process B is shown
in the figure below.

i. How many times during this process does the value of stack pointer
(%esp register) change?

ii. What are the different stacks that the stack pointer points to? You may
assume that initially the stack pointer was pointing to process A’s user
stack.

User thread of User thread of
Process A Process B

.
/

User Space

Kernel Space > >

Kernel thread of Kernel thread of
Process A Scheduler Process B

3. Interrupts, System Calls and Traps
The following statements may contain some mistake(s). Can you find the mis-
take(s), underline them and correct them? If there are no mistakes, you may
simply write OK.

a. Traps, like system calls, and interrupts, such as from a programmable timer or
disk, are handled very similarly in OSes. For example, when each occurs, the
hardware saves some state (such as the program counter) and jumps into the
OS. At that point, the OS handles the trap or interrupt. When finished, the
OS returns, through a normal return instruction, and then retries the trapping
or interrupted instruction.

b. An interrupt is an asynchronous signal to the processor that some external
event has occurred that may require its attention. As the processor executes
instructions, it checks for whether an interrupt has arrived. If so, it completes
or stalls any instructions that are in progress. Instead of fetching the next
instruction, the processor hardware discards the current execution state and
starts executing at a specially designated interrupt handler in the kernel.

c. User processes can also transition into the operating system kernel voluntarily
to request that the kernel perform an operation on the user’s behalf. A system
call is any procedure provided by the kernel that can be called from user level.

4. Trap Handling, IDT, and Kernel Stack

a. When an interrupt or a system call trap occurs, the operating system must
take different actions depending on whether the event is a file read system call,
or a timer interrupt. How does the processor (hardware) know what code to
run to handle that system call or interrupt?

b. Why is the interrupt descriptor table stored in kernel memory rather than user
memory?

c¢. Why does each process has its own kernel stack? Wouldn'’t it be simple to have
a single kernel stack for all processes?

