
CS 537: Intro to Operating Systems (Fall 2017)

Worksheet 3 - Scheduling & Process API

Due: Sep 27th 2017 (Wed) in-class OR email Simmi before 5:30 pm

1. Basic Scheduling
Assume a workload with the following characteristics.

Process Arrival Time (in sec) Service Time (in sec)
A 0 8
B 2 4
C 5 7

For SJF, STCF, if there is a tie, schedule the process that arrived the earliest.
For RR, assume a time-slice of 1 sec. When a new process enters a particular
queue, it is placed at the end of the round robin queue.

(a) Can you write the schedule (e.g., AABBCABC) in which these three processes
may be scheduled for the following scheduling policies?

i. FIFO:

ii. SJF:

iii. STCF:

iv. RR:

(b) Fill in the average turnaround time (in sec) and average response time
(in sec) of the three processes for the different schedulers given below.

FIFO SJF STCF RR

Average Turnaround Time

Average Response Time



(c) Assume an STCF scheduler for the original workload with processes A, B, and
C. Assume a new process D requiring 5 seconds of CPU time arrives at some
time T . What is/are the value(s) of T (assuming integer) such that process D
preempts the process running at that time? Preemption means descheduling
a process that is currently running (and not yet complete) and scheduling a
different process.

(d) Assume an STCF scheduler for the original workload with processes A, B, and
C. Assume a new process E arrives at time 8 seconds. What could be the
maximum CPU burst time or service time (assuming integer) for process E
such that it preempts the process that was running at time 8?

(e) With the round robin (RR) scheduling policy, a question arises when a new
job arrives in the system: should we put the job at the front of the RR queue,
or the back? Does this decision make a difference, or does RR behave pretty
much the same way either way? (Explain)

(f) Why is STCF considered one of the best scheduling policies? What does it do?
If it is so great, why do we rarely see it implemented in real world schedulers?

2



2. Multi-Level Feedback Queue
Assuming processes A, B, and C are CPU-bound (no I/O). There is no overhead
for context switching. When a new process enters a particular queue, it is placed
at the end of the round robin queue.
Consider a Multi-Level Feedback Queue (MLFQ) Scheduler with 3 queues as
shown below. After a time interval of 10 seconds, all processes are boosted up
to the top-most queue with the highest priority.

queue # priority Round Robin time slice
2 2 (highest) 1
1 1 2
0 0 (lowest) 3

The table below gives the details of the workload.

Process Arrival Time Service Time
A 0 10
B 3 3
C 5 4

(a) Fill the table below with the details of which process will be scheduled for each
time unit and at which priority level. In this table, for each time unit n, write
which process will be scheduled from time n to n+ 1.

Time Unit
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Priority 2
Priority 1
Priority 0

(b) Fill the table below with the turnaround time and response time of each
process.

Process Turnaround Time Response Time

A

B

C

3



3. Process API
You may assume that the following two code snippets compile successfully and APIs
like fork(), exec(), and wait() never fails. Try NOT to run the code without think-
ing about it. You may run them to verify your answers, though. Remember, you
won’t have your best friend, the C compiler, with you during your exam! :)

Program 1 Program 2

int counter = 0;
int main() {

int i;
for (i = 0; i < 3; i++) {

if (fork() == 0) {
printf("Hello\n");
counter++;

}
}
printf("%d\n", counter);

}

int counter = 0;
int main() {

int i;
for (i = 0; i < 3; i++) {

if (fork() == 0) {
char *myargs[3];
myargs[0] = "echo";
myargs[1] = "Hello";
myargs[2] = NULL;
execvp(myargs[0], myargs);
counter++;

}
}
for (i = 0; i < 3; i++) {

wait(NULL);
}
printf("%d\n", counter);

}

(a) After program 1 is executed, how many processes are created?

(b) After program 2 is executed, how many processes are created?

4



(c) Draw a process tree diagram, with the counter value printed out by the pro-
cess in the parenthesis beside that process, after program 1 is executed. If a
process does NOT print the counter value, write NULL.

For example, the following diagram represents that process A creates pro-
cess B and process C, and that process C creates process D; the counter
value printed out by process A is 0, B is 1, D is 3 and C does NOT print the
counter value. In your process tree diagram, there is no specific requirement
for labeling a process as long as different processes are labeled with distinct
characters.

A(0)
/ \
B(1) C(NULL)

\
D(3)

(d) Can you draw a similar process tree diagram for program 2?

5


