
CS 537: Intro to Operating Systems (Fall 2017)

Worksheet 6 - Memory Virtualization III

Due: Oct 18th 2017 (Wed) in-class OR email Simmi before 11:59 pm

1. Segmentation & Paging

In this question, we consider address translation in a system which uses a hybrid of
segmentation and paging for memory management. There are three segments
namely, code, heap, and stack. The two higher-order bits (MSBs) in the virtual
address are used to identify the segment. 00 for code, 01 for heap, and 11 for stack.

Parameters and Assumptions:

• Size of virtual address space = 1 KB

• Page size = 32 bytes

• Size of physical memory = 4 KB

• Size of one Page Table Entry (PTE) = 4 bytes

• The virtual pages with VPNs 6, 7, 8, 9, 10, and 31 are the ONLY valid pages.

Answer the following questions based on the parameters and assumptions described
above.

(a) Number of bits needed for the Virtual Page Number (VPN): —————–

(b) Number of valid virtual pages in the code segment: —————–

(c) Value of the bounds register for the heap segment: —————–

(d) Number of PTEs in the stack segment’s page table: —————–

(e) Total size of ALL the page tables used in this system: —————–



2. Swapping Mechanisms

In this question you will examine virtual memory reference traces. An access can be
a TLB Hit or a TLB Miss; if it is a TLB miss, the reference can be a page hit (page
present in physical memory) or a page fault (page not present in physical memory).

Assume a TLB with 2 entries and a memory that can hold 4 pages. Assume
the TLB and memory are initially empty. Finally, assume LRU replacement is
used for both TLB and memory.

Below each virtual memory reference, mark if the reference is a:

• TLB Hit (H), or

• TLB Miss followed by a page hit (M), or

• TLB Miss followed by a page fault (F)

Also, write the contents of the TLB and the Memory at the end of each virtual
memory trace.

Virtual Memory Reference TLB Memory

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3, 0, 1, 2, 3

0, 1, 2, 3, 4, 0, 1, 2

3, 7, 3, 7, 1, 3, 1, 7

2



3. Swapping Policies

(a) Consider the following request sequence of virtual pages

0, 1, 2, 3, 0, 1, 4, 0, 1, 2, 3, 4

For each replacement policy below, give the number of hits and the virtual page
numbers remaining in physical memory at the end of this request sequence.

The number of physical frames = 3

Policy # of Hits VPNs remaining at end

OPT

FIFO

LRU

(b) Write a sequence of 10 virtual page requests that has a hit rate of zero
with LRU page replacement policy.

Virtual Pages available: 0, 1, 2, 3, 4
The number of physical frames = 4

(c) Consider the following page requests:

3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4.

The page replacement policy used is FIFO.

i. What is the number of page faults with a cache size of three?

ii. What is the number of page faults with a cache size of four?

iii. What is the name of this anomaly?

3



4. Consider the clock algorithm for approximating LRU with the following assump-
tions:

• The number of physical frames in the cache is four.

• The physical frames are numbered 0, 1, 2, and 3 in the clockwise direction.

• The cache is initially empty.

• The reference/use bit for all the frames is initially 0.

• When a page is accessed, the hardware sets the use bit of the physical frame
corresponding to the page to 1.

• The clock hand initially points to the physical frame 0.

• The clock hand always moves in the clock-wise direction.

• When a page fault occurs, the operating system checks the physical frame
pointed to by the clock hand.

– If the use bit = 0, the OS uses this physical frame to place the page.
– If the use bit = 1, the OS clears the use bit to 0 for this physical frame

and advances the clock hand to point to the next frame.

• After a page is placed in a physical frame due to a page fault, the use bit of
the frame is set to 1 and the clock hand advances to the next physical frame.

• When the hardware references a page that is already found in the cache (i.e.,
page hit), the clock hand doesn’t move.

• On each page fault, the clock hand resumes from it’s previous position.

Consider the following sequence of page requests:

0, 1, 3, 6, 2, 4, 5, 2, 5, 0, 3, 1, 2, 5, 4, 1, 0

(a) What are the contents (page numbers and use bits) corresponding to the 4
physical frames at the end after processing all these page requests?

Physical frame # Page # Use bit
0
1
2
3

(b) What is the total number of page faults that occur while accessing these pages?

4


