
CS 537: Intro to Operating Systems (Fall 2017)

Worksheet 8 - Locks and CVs

Due: Nov 1st 2017 (Wed) in-class OR email Simmi before 11:59 pm

1. Locks

a. Assume we have a new instruction called the LoadAndStoreZero (LASZ), and
it does the following atomically (here is C pseudo-code):
int LoadAndStoreZero(int *addr) {

int old = *addr;

*addr = 0;
return old;

}

Build a working spin lock using the new instruction LoadAndStoreZero (LASZ).

NOTE: For full points, your code should adhere to the C syntax.

typedef struct __lock_t {

} lock_t;

void init(lock_t *lock) {

}

void acquire(lock_t *lock) {

}

void release(lock_t *lock) {

}



b. Consider the following implementation for a lock in Solaris using Queues, Test-
And-Set, Yield, and Wakeup.

typedef struct __lock_t {
int flag;
int guard;
queue_t *q;

} lock_t;

void lock_init(lock_t *lock) {
lock->flag = lock->guard = 0;
lock->q = queue_init();

}

void lock(lock_t *lock) {
while (xchg(&lock->guard, 1) == 1)

; // spin
if (lock->flag == 0) {

lock->flag = 1;
lock->guard = 0;

} else {
queue_push(lock->q, gettid());
setpark();
lock->guard = 0;
park();

}
}

void unlock(lock_t *lock) {
while (xchg(&lock->guard, 1) == 1)

; // spin
if (queue_empty(lock->q))

lock->flag = 0;
else

unpark(queue_pop(lock->q));
lock->guard = 0;

}

The following are the definitions of the key routines:

• park(): Puts the calling thread to sleep.

• unpark(threadID): Wake up the thread with the given threadID.

• setpark(): A thread indicates that it’s about to park.

2



i. What is the purpose of the guard lock? What may happen if we don’t have
the guard lock? Explain with a simple example.

ii. Assume thread 1 is currently holding the flag lock and is inside the critical
section. During this time, there are 9 more threads that are currently wait-
ing in the queue for the lock to be released. You may assume that there are no
more threads waiting for this lock. You may also assume that all these threads
will acquire the flag lock only once. Under this scenario, how many times will
the flag lock be released by these 10 threads? Explain the reasoning behind
your answer.

iii. What will happen if park() is called before releasing the guard lock?

iv. This lock still spins while trying to acquire the guard lock. So, is this better
in any way than simple spin locks with respect to performance? Explain your
answer.

3



2. Condition Variables

a. Assume the following implementation for the famous producer/consumer prob-
lem.

void put(int value) {
buffer[fillptr] = value;
fillptr = (fillptr + 1) % max;
count++;

}

int get() {
int tmp = buffer[useptr];
useptr = (useptr + 1) % max;
count--;
return tmp;

}

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

P_mutex_lock(&mutex); //p1
if (count == max) //p2

P_cond_wait(&empty,&mutex);//p3
put(i); //p4
P_cond_signal(&fill); //p5
P_mutex_unlock(&mutex); //p6

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {
P_mutex_lock(&mutex); //c1
if (count == 0) //c2
P_cond_wait(&fill,&mutex);//c3

int tmp = get(); //c4
P_cond_signal(&empty); //c5
P_mutex_unlock(&mutex); //c6
printf("%d\n", tmp);

}
}

Assume further that the only way a thread stops running is when it explicitly blocks
in either a condition variable or lock (in other words, no untimely interrupts switch
from one thread to the other).Also assume there are NO SPURIOUS WAKEUPs
from wait().

i. In the following, show which lines of code (from p1 - p6 and c1 - c6) run given
a particular scenario. Scenario 0 is completed for you as an example.
Scenario 1: 1 producer (P), 1 consumer (C), max = 1. Producer P runs first.
Stop when consumer C has consumed one entry.

P: p1, p2, p4, p5, p6, p1, p2, p3
C: c1, c2, c4

Scenario 2: 1 producer (P), 1 consumer (C), max = 1. Consumer C runs
first. Stop when consumer C has consumed one entry.

P:

C:

4



Scenario 3: 1 producer (P), 2 consumers (Ca, Cb), max = 1. Consumer Ca
runs first, then P, then Cb. Stop when each consumer has consumed one entry

P:

Ca:

Cb:

ii. Are there any bugs in this implementation? If so, how do you fix them?

b. Here is some code for the producer/consumer problem we were trying to solve in
class today. We’ll use a new primitive: Pthread_cond_broadcast(). Unlike
traditional signaling, this wakes up ALL threads waiting on a condition. Here is
some code using such a broadcast:
void *producer(void *arg) {

int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == MAX)

Pthread_cond_wait(&cv, &mutex);
put(i);
Pthread_cond_broadcast(&cv); // here!
Pthread_mutex_unlock(&mutex);

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

Pthread_mutex_lock(&mutex);
while (count == 0)

Pthread_cond_wait(&cv, &mutex);
int tmp = get();
Pthread_cond_broadcast(&cv); // here!
Pthread_mutex_unlock(&mutex);
printf("%d\n", tmp);

}
}

Does this code work? If yes, then explain why does this code work? If no, then
explain why not?

5


