
CS 537: Intro to Operating Systems (Fall 2017)

Worksheet 9 - Semaphore and Deadlocks

Due: Nov 8th 2017 (Wed) in-class OR email Simmi before 11:59 pm

1. Semaphore Implementations

Consider the following implementation of lock and condition variable (CV) with semaphore.

Lock Implementation CV Implementation

typedef struct {
sem_t s;

} lock;

void lock_init(lock* lk) {
sem_init(&lk->s, 1);

}

void lock_acquire(lock* lk) {
sem_wait(&lk->s);

}

void lock_release(lock* lk) {
sem_post(&lk->s);

}

typedef struct {
sem_t s;

} cond;

void cond_init(cond* cv) {
sem_init(&cv->s, 0);

}

void cond_wait(cond* cv, lock* lk) {
lock_release(lk);
sem_wait(&cv->s);
lock_acquire(lk);

}

void cond_signal(cond* cv) {
sem_post(&cv->s);

}

a. What is the difference between this lock implementation and a standard spinlock?

b. What is the difference between this CV implementation and a standard condition
variable?



2. Deadlocks

Assume Thread#1 tries to acquire(&v1->lock, &v2->lock) and Thread#2 tries
to acquire(&v2->lock, &v1->lock). Four conditions need to hold for a deadlock
to occur:

• Mutual exclusion
• Hold-and-wait
• No preemption
• Circular wait

a. The following implementations of acquire(lock* L1, lock* L2) try to pre-
vent deadlock by breaking one of the conditions above. Write the corresponding
condition (on the side of the three code snippets) that each solution is trying to
break.

if (L1 > L2) {
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

} else {
pthread_mutex_lock(L2);
pthread_mutex_lock(L1);

}

pthread_mutex_lock(prevention);
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);
pthread_mutex_unlock(prevention);

top:
pthread_mutex_lock(L1);
if (pthread_mutex_trylock(L2) != 0) {

pthread_mutex_unlock(L1);
goto top;

}

2



b. The three code snippets above prevent a deadlock by breaking one of the four
required conditions for a deadlock to happen. How can you break the deadlock
condition that is not attacked by the above three solutions?

c. For one of the solutions above, it is still possible that no thread can get both locks
and proceed. Which of the above solutions has this issue? What is the problem
here? How can you solve it?

3


