CS 537: Introduction to Operating Systems (Summer 2017)

University of Wisconsin-Madison
Department of Computer Sciences

Final Exam
Friday, August 11" 2017

3 pm - 5:30 pm

There are eighteen (18) total numbered pages with thirteen (13) questions.

PLEASE READ ALL QUESTIONS CAREFULLY!

There are many easy questions and a few hard questions in this exam. You may want
to use a easiest-question-first scheduling policy. This will help you to answer most
questions on this exam without getting stuck on a single hard question.

Good luck with your exam!

Please write your FULL NAME and UW ID below.

NAME:

UW ID:

Grading Page

Question | Points Scored | Maximum Points
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
9 10
10 10
11 10
12 10
13 10
Total 130

1. Remember Virtualization?

The Process Control Block (PCB) for a process in xv6 is shown below.

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)
pde_tx pgdir; // Page table

char *kstack; // Kernel stack for this process
enum procstate state; // Process state

volatile int pid; // Process ID

struct trapframe *tf; // Trap frame for current syscall
struct context xcontext; // swtch() here to run process

- // more fields...
}i

a. Can you name any TWO fields in the PCB that is used for virtualizing the CPU
among processes?

b. Can you name any TWO fields in the PCB that is used for virtualizing the
memory among processes?

2. Semaphores

Consider the following implementation of lock and condition variable (CV) with semaphore.

Lock Implementation CV Implementation

typedef struct {

typedef struct { sem_t s;
sem_t s; } cond;
} lock;
void cond_init (condx* cv) {
void lock_init (lock* 1lk) { sem_init (&cv—->s, 0);
sem_init (&lk->s, 1); }

void cond_wait (cond* cv, lockx* 1lk) {

void lock_acquire (lock* 1k) { lock_release (1k);
sem_wait (&1lk->s); sem_wait (&cv->s);
} lock_acquire (1k);

void lock_release(lock* 1k) {
sem_post (&1lk->s); void cond_signal (cond* cv) {
} sem_post (&cv->s) ;

a. What is the difference between this lock implementation and a standard spinlock?

b. What is the difference between this CV implementation and a standard CV?

3. Deadlocks

Assume Thread#1 tries to acquire (&v1->1lock,
to acquire (&v2->1lock,

&v2->1lock) and Thread#2 tries
&vl->lock). Four conditions need to hold for a deadlock

to occur:

Mutual exclusion
Hold-and-wait
No preemption
Circular wait

The following implementations of acquire (lock* L1, lockx L2) try to pre-
vent deadlock by breaking one of the conditions above. Write the corresponding
condition (on the side of the three code snippets) that each solution is trying to
break.

if

} else {

(L1 > L2) {
pthread_mutex_lock (L1);
pthread_mutex_lock (L2);

pthread_mutex_lock (L2);
pthread_mutex_lock (L1l);

pthread_mutex_lock (prevention) ;
pthread_mutex_lock (L1l);
pthread_mutex_lock (L2) ;
pthread_mutex_unlock (prevention);

top:
pthread_mutex_lock (L1l);
if (pthread_mutex_trylock (L2) !'= 0) {
pthread_mutex_unlock (L1);
goto top;
}

b. The three code snippets above prevent a deadlock by breaking one of the four
required conditions for a deadlock to happen. How can you break the deadlock
condition that is not attacked by the above three solutions?

c. For one of the solutions above, it is still possible that no thread can get both locks

and proceed. Which of the above solutions has this issue? What is the problem
here? How can you solve it?

4. Disks

We have a disk with the following parameters:
e Capacity = 1 TB (NOTE: 1TB = 1024 GB)
e RPM = 10000
e Average Seek = 9 ms
e Maximum Transfer Rate = 10® B/s

Assume there is no cache or buffer, and you will need to wait for a whole rotation if
you want to access the same sector twice. We are always reading or writing a whole sector
of size 512 bytes.

a. How many sectors do we have?

b. How long would it take to serve 10 random reads on average?

c. How long would it take to serve 10 random updates on average? An update
is a read followed by a write to the same sector, so the access pattern will be
ROWOR1IW1...ROW9 rather than ROR1...ROWOW1...W9.

d. How long would it take to serve 10 sequential reads? You may assume they are on
the same track.

e. How long would it take to serve 10 sequential updates? Note that the access pattern
is ROWOR1W1...R9W9, and all 10 sectors are on the same track.

5. Disk Scheduling

In this question, we will perform some calculations on a simplified disk. Assume the
maximum rotational delay on this disk is R, the time to seek between 2 adjacent
tracks is S, and the transfer time is so fast that we just consider it to be free. Also
assume S > R. All requests are already received. The disk head can start from any
position.

a.

Assume the disk has only a single track, and a FIFO (First In First Out) schedul-
ing policy. What is the (approximate) worst case execution time for 3 different

requests (i.e., the three requests are issued to three different sectors on the
disk)?

. Assume the disk has only a single track, and a SATF (Shortest Access Time

First) scheduling policy. What is the worst case execution time for 3 different
requests?

Assume the disk has 3 tracks, and a FIFO scheduling policy. What is the worst
case execution time for 3 different requests?

. Assume the disk has 3 tracks, and a SATF scheduling policy. What is the worst

case execution time for 3 different requests?

Assume the disk has 3 tracks, and a C-SCAN scheduling policy. What is the
worst case execution time for 3 different requests? Recall that in C-SCAN the
disk head is only allowed to scan in one direction.

6. RAID

This question is about the flow of I/Os in a RAID system. In RAIDs, some I/Os can
happen in parallel, whereas some happen in sequence. To indicate two I1/Os (to blocks 0
and 1, for example) in a flow can happen at the same time, we write "(0 1)"; to indicate
they must happen in sequence, we write "0, 1".

These flows can be built into larger chains; for example, consider the sequence 4(0 1),
(2 3)a, which would indicate I/Os to blocks 0 and 1 could be issued in parallel, followed
by I/Os to 2 and 3 in parallel.

We can also indicate the read and write operations in a flow with "r" and "w". Thus,
"(r0rl), (w2 w3)" is used to indicate we are reading blocks 0 and 1 in parallel, and, when

that is finished, writing blocks 2 and 3 in parallel.

Assume we have the following RAID-4, with a single parity disk. You may also
assume that we use the most efficient method for computing the parity.

DO D1 D2 D3 D4
0 1 2 3 PO
4 5 6 7 Pl
8 9 10 11 P2

12 13 14 15 P3
(and so forth)

What is the flow for the following requests?

a. Read blocks 0, 1, 2, and 3

b. Read blocks 0, 4, 8, and 12

c. Read blocks 0, 5, 10, and 15

d. Write block 0

e. Write blocks 0, 1, 2, and 3

f. Write blocks 0, 4, 8, and 12

g. Write blocks 0, 5, 10, and 15

7. File System: Files & Directories

Imagine the following commands are run on an FFS-like file system that supports both
soft and hard links. Note: the symbols 4>>4 are used to redirect stdout to append
to the specified file; if the file does not exist, it will create this file; echo will print a
newline after the string.

mkdir dirl;

In -s dirl dir2;

echo "hello" >> dir2/filel;

In dir2/filel dirl/file2;

echo "world" >> dirl/filel;

rm dirl/file2;

echo "hello world 1" >> dir2/filel;
echo "hello world 2" >> dirl/file2;

oJdoUuld WDN R

a. Draw the directory tree after executing line 8.

b. How many inodes are created after executing line 5?7 Which files or directories share
the same inode?

c. How many inodes are created after executing line 87 Which files or directories share
the same inode?

d. What will be printed if we run cat dirl/filel after executing line 87 If there
is no such file, write N/A.

e. What will be printed if we run cat dir2/file2 after executing line 87 If there
is no such file, write N/A.

8. File System Implementation

e Assuming a very simple file system that supports 7 operations: mkdir () : creates
a new directory; ereat () : creates a new (empty) file; open () and close() :
opens and closes a file, respectively; write () : appends a block to a file; 1ink () :
creates a hard link to a file; unlink () : unlinks a file (removing it if 1inkcnt==0).

e The state of the file system is indicated by the contents of two data structures, i.e.,
inodes and data.

e The inodes each have three fields: the first field indicates the type of file (£ for a
regular file, d for a directory); the second indicates which data block belongs to a
file (here, files can only be empty, which have the address of the data block set to
-1, or one block in size, which would have a non-negative address); the third shows
the reference count for the file or directory.

— For example, the following inode is a regular file, which is empty (address field
set to -1), and has just one link in the file system: [f a:-1 r:1]. If the
same file had a block allocated to it (say block 10), it would be shown as
follows: [f a:10 r:1]. If someone then created a hard link to this inode,
it would then become [f a:10 r:2].

— Note: the reference count of directory here is different from xv6. Here we need
to account for the parent “..” as well, e.g. for an empty root directory, the
reference count should be 2 because both “.” and “..” refer to it.

e Data blocks can either retain user data or directory data.

— An empty root directory looks like this, assuming the root inode is 0: [(., 0)
(..,0)]. If we add a single file named f to the root directory, which has
been allocated inode number 1, the root directory contents would then become:

(¢.,0) (..,0) (£,1)].

— If a data block contains user data, it is shown as just a single character within
the block, e.g., [D].

— If it is empty and unallocated, just a pair of empty brackets ([]) are shown.

e Assume when allocating a new inode or data block, the first empty inode or block
will be used.

10

Now the initial state of the file system is as follows:
inodes [d a:0 r:2] [] [] []; data [(.,0) (..,0)] [1 [] [I

Write down the file system states after each of the following operations. You should
assume that the following operations are performed sequentially. i.e., The state of the
file system builds on top of the previous operations.

a. int fdl = creat ("/a");

b. write (fd1l, "A", BLOCKSIZE);

c. mkdir ("/b");

d. close(fdl); unlink("/a");

e. int fd2 = creat ("/b/c"); write(fd2, "C", BLOCKSIZE);

11

9. Berkeley Fast File System (FFS)

a.

b.

Draw a diagram of the file system layout of FFS.

Assume that all leaf nodes of the directory trees represent regular files. For
instance the directory tree below has 3 leaf nodes (b, ¢, d), so it represents three
files /a/b, /a/c, /d:

/

|-—— a

\ |-— b

| +-— C

I

Assume that there are only 10 inodes in each group, use the table below to demon-
strate how the inodes are spread across the groups given a specific directory tree
as per the FFS policies. You should write the name of the file(s) in the space
provided for the inodes. You need not worry about the data blocks of the files.

-— a Groups Inodes
|-— e 1
I__ f 2
I— g
|—- h 3
+-- i 4
. 5
+—= 7 7
8
-— d
Groups Inodes
1
-—— a
+-—— b 2
i c 3
+-- d 4
|-— e 5
+—— f G
— g 7
8

12

c. Without the large-file exception, a single large file would be placed as follows in FFS.

Group Inodes Data

0 /a———————- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a————————-—
1 __
2 __

With the large-file exception, FFS spreads the file across groups, resulting in the
following diagram

Group Inodes Data
/a———————~ /aaaaa-———— —————————— ————

o O W NP O
|
|
|
|
|
|
|
|
|
|
Q
Q
Q
Q
QO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

a. What is the benefit of splitting a large file across different groups in FSS?

b. What is the issue with splitting a large file across different groups in FSS?

13

10. Log-structured File Systems (LFS)

The log-structured file system buffers updates in memory (in segments) and then writes
them out to disk sequentially. In this question, youall be able to watch the traffic stream
of writes to disk performed by LFS. Your task is to figure out what the inputs to the

system (i.e., the system call(s) that took place) that caused these writes to happen.

e The system calls include open (),

close (), read(), write(), lseek().

e Assume the file system was basically empty (except the root directory).

e Assume that a single inode takes up an entire block (for simplicity). The LFS inode

map is called the dimapé below and of course is also updated as needed.

e The following file system operations are performed sequentially. i.e., The state of

the file system builds on top of the previous operations.

a. Segment written starting at disk address 100, in a segment of size 4:

block
block
block
block

100:
101:
102:
103:

[
[
[
[

("

size=
imap:

0), (".."m 0), ("foo" 1)] // a data block
size=1,ptr=100, type=d] // an inode

0,ptr=—, type=r]
0->101,1->102]

// an inode
// a piece of the imap

What file system operation(s) led to this segment write?

b. Segment written to disk address 104, in a segment of size 4:

block
block
block
block

104:
105:
106:
107:

—/ /o

SOME DATA]
SOME DATA]
size=2,ptr=104,ptr=105, type=r]

imap:

0->101,1->106]

What file system operation(s) led to this segment write?

14

c. Segment written to disk address 108, in a segment of size 4:

block 108: [SOME DATA]

block 109: [SOME DATA]

block 110: [size=2,ptr=108,ptr=109, type=r]
block 111: [imap: 0->101,1->110]

What file system operation(s) led to this segment write?

d. Segment written to disk address 112, in a segment of size 4:

block 112: [SOME DATA]

block 113: [SOME DATA]

block 114: [size=4,ptr=108,ptr=109,ptr=112,ptr=113, type=r]
block 115: [imap: 0->101,1->114]

What file system operation(s) led to this segment write?

e. After all of those writes, starting from block 100, how much garbage was left on the
disk? (i.e., write down which blocks are filled with garbage, if any)

15

11. Journaling

Assume we have a basic implementation of data journaling in our Very Simple

File System (VSFS).

Assume we are creating a new empty file in an existing directory. This operation
must update 6 blocks: the directory inode, two data blocks (directory & file), the
file inode, the inode bitmap, and the data bitmap.

Assume the directory inode and the file inode are in different on-disk blocks.

Assume a transaction begin block and a transaction end block are written at
the beginning and the end of each transaction respectively.

Assume each block is written synchronously (i.e., a barrier is performed after
every write and blocks are pushed out of the disk cache).

If the system crashes after the following number of blocks have been synchronously written
to disk, what will happen when the system reboots? Fill True (T) or False (F) into
the table below. (Hint: the first disk write is the transaction begin block written to
the journal and the second disk write is one block (among the six blocks to be updated)
written to the journal.)

of disk writes | Transaction replayed during recovery? | File system in new state?

1

4

10

14

15

16

12. Flash-based SSDs

There following statements about flash-based SSDs may have a few mistakes. Can you
CIRCLE the mistake and CORRECT them? Some statements may NOT contain any
mistakes in which case you may just check it with a TICK MARK.

a. Before writing to a page within a flash, the nature of the device requires that you
first erase just that page.

b. Time(Read a page) < Time(Erase a block) < Time(Program a page)

c. The Flash Translation Layer (FTL) takes read and write requests on logical
blocks and turns them into low-level read, erase, and program commands on the
underlying physical blocks and physical pages (that comprise the actual flash de-
vice).

d. In a log-structured FTL, sometimes a block will be filled with long-lived data that

does not get over-written; in this case, garbage collection will never reclaim this
block.

e. Rate(Random Reads in SSD) < Rate(Random Writes in SSD) because writes just
happen to the page cache (in physical memory) and NOT to the flash.

f. Rate(Random Writes in SSD) > Rate(Random Writes in HDD) because SSD con-
verts all random writes to sequential writes to the log-structured flash storage.

17

13. Threads and Processes (again!)

Assume that the code snippet below compiles successfully, all the APIs like fork(),
pthread create() do not fail, and the values in the malloc’ed memory are all ini-
tialized to 0.

volid worker (int =foo) {
int *bar = malloc(sizeof (int));
for (int i1 = 0; i < 1000000; i++) {
(xfoo) ++;
(*bar)++;
}
printf ("pid
printf ("pid

%$d, foo : val = %d, addr = %p\n", getpid()
%$d, addr = %$p\n", getpid()

*foo, foo);

4
, *bar, bar);

%$d, bar : val

int main () {
int *foo;
pthread_t t;
foo = malloc (sizeof (int));
fork();
pthread create(&t, NULL, worker, foo);
pthread_join(t, NULL);

a. How many process are created when the code snippet shown above is executed?

b. How many threads (including main thread) are created when the code snippet shown
above is executed?

c. What is the output of the above code snippet? You may assume some values
for pid of each process (e.g., pid = 1) and the virtual addresses of foo (e.g.,
0x1000) and bar (e.g., 0xFFF0). Assume that the threads share the same pid
with their parent process. You may also assume that malloc behaves similarly
for all processes and threads. Remember, there may be multiple correct answers
and it’s enough to write just ONE correct answer.

Congratulations on finishing the CS 537 Final Exam! :)

18

