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There are sixteen (16) total numbered pages with ten (10) questions.

PLEASE READ ALL QUESTIONS CAREFULLY!

There are many easy questions and a few hard questions in this exam. You may want
to use a easiest-question-first scheduling policy. This will help you to answer most
questions on this exam without getting stuck on a single hard question. The last 2
questions are worth 20 points each. All other questions are worth 10 points each.

Good luck with your exam!
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1. Page Replacement Policies

a. Consider the following request sequence of virtual pages
3,2,1,0,3,2,4,3,2,1,0, 4

For each replacement policy below, give the number of hits and the virtual page
numbers remaining in physical memory at the end of this request sequence.

The number of physical frames = 4

Policy | # of Hits | VPNs remaining at the end

OPT

FIFO

LRU

b. Write a sequence of 10 virtual page requests that has a hit rate of zero with
LRU page replacement policy.

Virtual Pages available: 0, 1, 2, 3, 4
The number of physical frames = 4

c. What are the disadvantages of using the following page replacement policies in
real-world systems?

i. OPT:

ii. FIFO:

iii. LRU:



2. Hardware Locks

Suppose we have a new instruction called CompareAndRestore (CAR), and it does
the following atomically (here is the C pseudo-code):

int CompareAndRestore (int *ptr, int expected, int new) {

int original = x*ptr;
if (original != expected)
*ptr = new;

return original;

a. Implement a working spin-lock using the CompareAndRestore (CAR) instruction.

typedef struct ___lock_t {
int isFree;

} lock_t;

void init (lock_t =*lock) {

lock—>isFree = 1;

void acquire(lock_t =xlock) {

void release (lock_t =*lock) {

b. How would you evaluate your lock based on the following 2 criteria?

1. Fairness:

ii. Performance:



3. Segmentation + Paging

In this question, we consider address translation in a system which uses a hybrid of seg-
mentation and paging for memory management. There are three segments namely,
code, heap, and stack. The two higher-order bits (MSBs) in the virtual address are
used to identify the segment. 00 for code, 01 for heap, and 11 for stack.

Parameters and Assumptions:
e Size of virtual address space = 1 KB

e Page size = 16 bytes

Size of physical memory = 4 KB

Size of one Page Table Entry (PTE) = 2 bytes

The virtual pages with VPNs 0, 1, 16, 17, 18, and 63 are the ONLY valid pages.

Answer the following questions based on the parameters and assumptions described above.

1. Number of bits needed for the Virtual Page Number (VPN):

2. Number of valid virtual pages in the code segment:

3. Value of the bounds register for the heap segment:

4. Number of PTEs in the stack segment’s page table:

5. Total size of ALL the page tables used in this system:



4. Locked Data Structures

Assume you have the following code for removing the head of a shared linked list.
Assume each line is performed atomically. Assume a list L originally contains nodes
with keys 1, 2, 3 and 4. Now there are two threads T and S that are popping the list
concurrently.

typedef struct _ node_t {
int key;
struct _ node_t *next;
} node_t;

typedef struct __ _list_t {
node_t <*head;
} o list_t;

int pop(list_t =L) {

if (!L->head) return -1; // line 1
int rkey = L->head->key; // line 2
L->head = L->head->next; // line 3
return rkey; // line 4

a. Given the following sequences, fill in the results. The sequence contains T and S,
designating that one line of C-code was scheduled for the corresponding thread.
For example, a sequence of TTTSS indicates that 3 lines were run from thread T
followed by 2 lines from thread S. You should assume that each sequence is executed
independently. In other words, the state of the linked list is the same (with 4 nodes)
at the start of each sequence. The right most column in the table below represents
the value of L—>head->key at the end of the sequence.

Sequence | rkey from T | rkey from S | L->head->key

TTSSSSTT

TTTSSSST

TTSSTTSS

TSSSTTTS

b. In the pop() method given above, which line(s) of code form the critical section?
Our goal here is to maximize the concurrency among threads that are trying to
pop from this shared linked list.



5. TLB, Memory, and Page Faults!

In this question you will examine virtual memory reference traces. An access can be
a TLB Hit or a TLB Miss; if it is a TLB miss, the reference can be a page hit (page
present in physical memory) or a page fault (page not present in physical memory).

Assume a TLB with 2 entries and a memory that can hold 4 pages. Assume
the TLB and memory are initially empty. Finally, assume LRU replacement is used
for both TLB and memory.

Below each virtual memory reference, mark if the reference is a:
e TLB Hit (H), or
e TLB Miss followed by a page hit (M), or
e TLB Miss followed by a page fault (F)

Also, write the contents of the TLB and the Memory at the end of each virtual memory
trace.

Virtual Memory Reference TLB Memory

0,1,2,3,45,6,7

0,1,2,30,1,2,3

0,1,2,3,4,0,1,2

3,7,3,7,1,3,1,7




6. Inverted Page Tables

Assume a system that uses an Inverted Page Table (IPT) for memory management.
Remember, that ALL processes in the system will share the same page table in this case.

Parameters:
e Size of virtual address space = 32 KB
e Page size = 4 KB
e Size of physical memory = 64 KB

Given below (on the left) are the contents of the physical memory (starting from phys-
ical frame 0 down to the max size). The entry in the physical frame 0 (i.e., P3 (VPN:1))
means that this physical frame contains the virtual page of process P3 with VPN = 1.

Draw a diagram of the Inverted Page Table (IPT) and write the contents of the
Page Table that reflects the state of the physical memory shown below. Label the fields
of the IPT properly. It is enough to show only the essential fields in your IPT that are
needed for this scheme to work.

Physical Memory Contents Inverted Page Table

P3 (VPN:1)
P1 (VPN:2)
FREE
P3 (VPN:0)
P1 (VPN:5)
FREE
PO (VPN:2)
P2 (VPN:6)
P1 (VPN:3)
FREE
P3 (VPN:7)
FREE
P1 (VPN:4)
FREE
FREE
PO (VPN:1)




7. Condition Variables

Assume the following implementation for the famous producer/consumer problem.
You may assume that the code compiles and executes successfully.

int t
void put (int value) f lningeté) i buffer[useptr];
buffer [fillptr] = value; cebtr - (useprr t 1) % max;
fillptr = (fillptr + 1) % max; usep usep ° !
count——;
count++;
) return tmp;
}
void xproducer (void *arg) { Vo%d *§onsumer(v01d xarg) |
int i; ot
’ £ i =0; i <1 ; i+t
for (i = 0; 1 < loops; i++) | or (1 * oops; 1t+) |
P_mutex_lock (&mutex) ; //cl
P_mutex_lock (&mutex) ; //pl
i if (count == 0) //c2
if (count == max) //p2 , .
, P_cond_wait (&fill, smutex);//c3
P_cond_wait (&empty, &mutex); //p3 .

. int tmp = get(); //cé
put (1) ; //p4 P_cond_signal (&empty) ; //c5h
P_cond_signal (§£i11); //p5 —cona_sig Pty)i
b mutex unlock (smutex) / /o6 P_mutex_unlock (&mutex) ; //c6

\ - - ! p printf ("$d\n", tmp);
) }
}

Assume further that the only way a thread stops running is when it explicitly blocks in
either a condition variable or lock (in other words, no untimely interrupts switch from

one thread to the other).Also assume there are NO SPURIOUS WAKEUPs from wait/().

a. In the following, show which lines of code (from pl - p6 and cl - ¢6) run given a
particular scenario. Scenario 0 is completed for you as an example.

Scenario 0: 1 producer (P), 1 consumer (C), max = 1. Producer P runs first. Stop
when consumer C has consumed one entry.

P: pl, p2, p4, p5, p6, pl, p2, p3

C: cl, c2, c4

Scenario 1: 1 producer (P), 1 consumer (C), max = 1. Consumer C runs first.
Stop when consumer C has consumed one entry.

P:

C:

Scenario 2: 1 producer (P), 2 consumers (Ca, Cb), max = 1. Consumer Ca runs
first, then P, then Cb. Stop when each consumer has consumed one entry.

P:

Ca:

Chb:

b. Are there any bugs in this implementation? If so, how do you fix them?



8. Advanced Locks!

Consider the following implementation for a lock in Solaris using Queues, Test-And-
Set, Yield, and Wakeup.

typedef struct __lock_t {

int flag;
int guard;
queue_t *dJ;

} lock_t;

void lock_init (lock_t =xlock) {
lock->flag = lock->guard = 0;
lock->qg = queue_init ();

}

void lock (lock_t =lock) {
while (xchg(&lock->guard, 1) == 1)
; // spin
if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;

} else {
queue_push (lock->qg, gettid());
setpark () ;
lock->guard = 0;
park () ;

}

void unlock (lock_t =*lock) {

while (xchg(&lock->guard, 1) == 1)
; // spin

if (gueue_empty (lock->q))
lock->flag = 0;

else
unpark (queue_pop (lock->q)) ;

lock->guard 0;

The following are the definitions of the key routines:

e park(): Puts the calling thread to sleep.

e unpark(threadID): Wake up the thread with the given threadID.
e setpark(): A thread indicates that it’s about to park.

e xchg(int *addr, int new): Atomically sets the new value in the memory location
pointed to by addr, and returns the old value at that memory location.

10



a. What is the purpose of the guard lock?” What may happen if we don’t have the
guard lock? Explain with a simple example.

b. Assume thread 1 is currently holding the flag lock and is inside the critical sec-
tion. During this time, there are 9 more threads that are currently waiting in the
queue for the lock to be released. You may assume that there are no more threads
waiting for this lock. You may also assume that all these threads will acquire the
flag lock only once. Under this scenario, how many times will the flag lock be re-
leased by these 10 threads? Explain the reasoning behind your answer.

c. What will happen if park() is called before releasing the guard lock?

d. This lock still spins while trying to acquire the guard lock. So, is this better in any
way than simple spin locks with respect to performance? Explain your answer.

11



9. Threads vs Processes!

Assume that the code snippet below compiles successfully, all the APIs like pthread create()
do not fail, and the values in the malloc’ed memory are all initialized to 0.

void worker (int xbalance) {
int *counter = malloc(sizeof (int));
for (int 1 = 0; 1 < 1000000; i++) {
( *balance )++;
( xcounter )++;

}

printf ("balance : val %d, addr %p\n", xbalance, balance);
printf ("counter : val %d, addr %p\n", xcounter, counter);
}
int main() {
int #*balance;
balance = malloc(sizeof (int));

pthread_t tf[2];
for (int i = 0; 1 < 2; i++) // Creating new threads
pthread create(&t[i], NULL, worker, balance);
for (int 1 = 0; 1 < 2; 1i++)
pthread_join(t[i], NULL);

a. What are the values of the 2 variables (balance and counter) after the 2
threads (t1 and t2) finish execution? Value here means the contents printed using
the following print statements. If the value of a variable may be different in different
runs of the program, you should write N/A.

printf ("%$d\n", =*balance); printf ("$d\n", =*counter);
Value £1 £2
balance
counter

b. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 threads (t1 and t2). PA stands for Physical Address.

)

printf ("$p\n", balance); printf ("$p\n", counter);

i. VA of balance in t1 == VA of balance in t27 (TRUE / FALSE)
ii. VA of counter in t1 == VA of counter in t27 (TRUE / FALSE)
iii. PA of balance in t1 == PA of balance in t27 (TRUE / FALSE)
iv. PA of counter in t1 == PA of counter in t27 (TRUE / FALSE)

12



Now assume that the code given below compiles successfully, all the APIs like fork()
do not fail, and the values in the malloc’ed memory are all initialized to 0.

void worker (int xbalance) {
int *counter = malloc(sizeof (int));
for (int i = 0; i < 1000000; i++) {
( xbalance ) ++;
( *counter )++;
}
printf ("balance : val %d, addr %p\n", xbalance, balance);
printf ("counter : val %d, addr %p\n", =*counter, counter);

}

int main() {
int *balance;
balance = malloc (sizeof (int));

for (int i = 0; 1 < 2; i++) { // Creating new processes
if (fork() == 0) {
worker (balance) ;
exit (0);
}
}
for (int i = 0; i < 2; i++)

wait (NULL) ;

c. What are the values of the 2 variables (balance and counter) after the 2 pro-
cesses (pl and p2) created using fork() finish execution? Value here means the
contents printed using the following print statements. If the value of a variable may
be different in different runs of the program, you should write N/A.

printf ("$d\n", xbalance); printf ("$d\n", =xcounter);
Value pl p2
balance
counter

d. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 processes (pl and p2). PA stands for Physical Address.

printf ("$p\n", balance); printf ("$p\n", counter);

i. VA of balance in pl == VA of balance in p2? (TRUE / FALSE)
ii. VA of counter in pl == VA of counter in p27? (TRUE / FALSE)
ili. PA of balance in pl == PA of balance in p2? (TRUE / FALSE)
iv. PA of counter in pl == PA of counter in p27? (TRUE / FALSE)

13



10. Multi-level Page Tables!
Assume a system with a 2-level page table.

Parameters:
e page size = 32 bytes
virtual address space size = 32 KB
physical memory size = 4 KB
Size of one Page Directory Entry (PDE) = 1 byte
Size of one Page Table Entry (PTE) = 1 byte
Value of Page Directory Base Register (PDBR) = 30 (decimal) [This means the
page directory is held in this page|

The format of the PDE and the PTE is simple. The high-order (left-most) bit is
the VALID bit. If the bit is 1, the rest of the entry is the PFN. If the bit is 0, the page
is not valid.

You are given two pieces of information to begin with. First, you are given the value
of the page directory base register (PDBR), which tells you which page the page di-
rectory is located upon. Second, you are given a complete dump of each page of
physical memory in the next 2 pages. A page dump looks like this:

page 0: 0d 0f 06 12 1d Oc 10 03 08 14 03
page 1: 0e 0d 1b 19 0a Oc 12 1b 06 0Oc 02
page 2: 00 00 00 00O 00O 00 00 00 00 0O 0O

which shows the 32 bytes found on pages 0, 1, 2, and so forth. The first byte (Oth byte)
on page 0 has the value 0x0d, the second is 0x0f, the third 0x06, and so forth.

For each virtual address:

e write down the physical address it translates to AND the data value at this
physical address, OR

e if it is a segmentation fault (an out-of-bounds address) write the reason for this
segmentation fault (Invalid PDE OR Invalid PTE).

Write all answers in hexadecimal.

Physical Address
Virtual Address OR Data Value | Reason for Seg fault
Seg Fault
Oxlebe
0x45b0
0x7bb9

14
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