CS 537: Introduction to Operating Systems (Summer 2017)

University of Wisconsin-Madison
Department of Computer Sciences

Midterm Exam 2
July 215, 2017

3 pm -5 pm

There are sixteen (16) total numbered pages with ten (10) questions.

PLEASE READ ALL QUESTIONS CAREFULLY!

There are many easy questions and a few hard questions in this exam. You may want
to use a easiest-question-first scheduling policy. This will help you to answer most
questions on this exam without getting stuck on a single hard question. The last 2
questions are worth 20 points each. All other questions are worth 10 points each.

Good luck with your exam!

Please write your FULL NAME and UW ID below.

NAME:

UW ID:

Grading Page

Question | Points Scored | Maximum Points
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
9 20
10 20
Total 120

1. Page Replacement Policies

a. Consider the following request sequence of virtual pages
3,2,1,0,3,2,4,3,2,1,0, 4

For each replacement policy below, give the number of hits and the virtual page
numbers remaining in physical memory at the end of this request sequence.

The number of physical frames = 4

Policy | # of Hits | VPNs remaining at the end

OPT

FIFO

LRU

b. Write a sequence of 10 virtual page requests that has a hit rate of zero with
LRU page replacement policy.

Virtual Pages available: 0, 1, 2, 3, 4
The number of physical frames = 4

c. What are the disadvantages of using the following page replacement policies in
real-world systems?

i. OPT:

ii. FIFO:

iii. LRU:

2. Hardware Locks

Suppose we have a new instruction called CompareAndRestore (CAR), and it does
the following atomically (here is the C pseudo-code):

int CompareAndRestore (int *ptr, int expected, int new) {

int original = x*ptr;
if (original != expected)
*ptr = new;

return original;

a. Implement a working spin-lock using the CompareAndRestore (CAR) instruction.

typedef struct ___lock_t {
int isFree;

} lock_t;

void init (lock_t =*lock) {

lock—>isFree = 1;

void acquire(lock_t =xlock) {

void release (lock_t =*lock) {

b. How would you evaluate your lock based on the following 2 criteria?

1. Fairness:

ii. Performance:

3. Segmentation + Paging

In this question, we consider address translation in a system which uses a hybrid of seg-
mentation and paging for memory management. There are three segments namely,
code, heap, and stack. The two higher-order bits (MSBs) in the virtual address are
used to identify the segment. 00 for code, 01 for heap, and 11 for stack.

Parameters and Assumptions:
e Size of virtual address space = 1 KB

e Page size = 16 bytes

Size of physical memory = 4 KB

Size of one Page Table Entry (PTE) = 2 bytes

The virtual pages with VPNs 0, 1, 16, 17, 18, and 63 are the ONLY valid pages.

Answer the following questions based on the parameters and assumptions described above.

1. Number of bits needed for the Virtual Page Number (VPN):

2. Number of valid virtual pages in the code segment:

3. Value of the bounds register for the heap segment:

4. Number of PTEs in the stack segment’s page table:

5. Total size of ALL the page tables used in this system:

4. Locked Data Structures

Assume you have the following code for removing the head of a shared linked list.
Assume each line is performed atomically. Assume a list L originally contains nodes
with keys 1, 2, 3 and 4. Now there are two threads T and S that are popping the list
concurrently.

typedef struct _ node_t {
int key;
struct _ node_t *next;
} node_t;

typedef struct __ _list_t {
node_t <*head;
} o list_t;

int pop(list_t =L) {

if (!L->head) return -1; // line 1
int rkey = L->head->key; // line 2
L->head = L->head->next; // line 3
return rkey; // line 4

a. Given the following sequences, fill in the results. The sequence contains T and S,
designating that one line of C-code was scheduled for the corresponding thread.
For example, a sequence of TTTSS indicates that 3 lines were run from thread T
followed by 2 lines from thread S. You should assume that each sequence is executed
independently. In other words, the state of the linked list is the same (with 4 nodes)
at the start of each sequence. The right most column in the table below represents
the value of L—>head->key at the end of the sequence.

Sequence | rkey from T | rkey from S | L->head->key

TTSSSSTT

TTTSSSST

TTSSTTSS

TSSSTTTS

b. In the pop() method given above, which line(s) of code form the critical section?
Our goal here is to maximize the concurrency among threads that are trying to
pop from this shared linked list.

5. TLB, Memory, and Page Faults!

In this question you will examine virtual memory reference traces. An access can be
a TLB Hit or a TLB Miss; if it is a TLB miss, the reference can be a page hit (page
present in physical memory) or a page fault (page not present in physical memory).

Assume a TLB with 2 entries and a memory that can hold 4 pages. Assume
the TLB and memory are initially empty. Finally, assume LRU replacement is used
for both TLB and memory.

Below each virtual memory reference, mark if the reference is a:
e TLB Hit (H), or
e TLB Miss followed by a page hit (M), or
e TLB Miss followed by a page fault (F)

Also, write the contents of the TLB and the Memory at the end of each virtual memory
trace.

Virtual Memory Reference TLB Memory

0,1,2,3,45,6,7

0,1,2,30,1,2,3

0,1,2,3,4,0,1,2

3,7,3,7,1,3,1,7

6. Inverted Page Tables

Assume a system that uses an Inverted Page Table (IPT) for memory management.
Remember, that ALL processes in the system will share the same page table in this case.

Parameters:
e Size of virtual address space = 32 KB
e Page size = 4 KB
e Size of physical memory = 64 KB

Given below (on the left) are the contents of the physical memory (starting from phys-
ical frame 0 down to the max size). The entry in the physical frame 0 (i.e., P3 (VPN:1))
means that this physical frame contains the virtual page of process P3 with VPN = 1.

Draw a diagram of the Inverted Page Table (IPT) and write the contents of the
Page Table that reflects the state of the physical memory shown below. Label the fields
of the IPT properly. It is enough to show only the essential fields in your IPT that are
needed for this scheme to work.

Physical Memory Contents Inverted Page Table

P3 (VPN:1)
P1 (VPN:2)
FREE
P3 (VPN:0)
P1 (VPN:5)
FREE
PO (VPN:2)
P2 (VPN:6)
P1 (VPN:3)
FREE
P3 (VPN:7)
FREE
P1 (VPN:4)
FREE
FREE
PO (VPN:1)

7. Condition Variables

Assume the following implementation for the famous producer/consumer problem.
You may assume that the code compiles and executes successfully.

int t
void put (int value) f lningeté) i buffer[useptr];
buffer [fillptr] = value; cebtr - (useprr t 1) % max;
fillptr = (fillptr + 1) % max; usep usep ° !
count——;
count++;
) return tmp;
}
void xproducer (void *arg) { Vo%d *§onsumer(v01d xarg) |
int i; ot
’ £ i =0; i <1 ; i+t
for (i = 0; 1 < loops; i++) | or (1 * oops; 1t+) |
P_mutex_lock (&mutex) ; //cl
P_mutex_lock (&mutex) ; //pl
i if (count == 0) //c2
if (count == max) //p2 , .
, P_cond_wait (&fill, smutex);//c3
P_cond_wait (&empty, &mutex); //p3 .

. int tmp = get(); //cé
put (1) ; //p4 P_cond_signal (&empty) ; //c5h
P_cond_signal (§£i11); //p5 —cona_sig Pty)i
b mutex unlock (smutex) / /o6 P_mutex_unlock (&mutex) ; //c6

\ - - ! p printf ("$d\n", tmp);
) }
}

Assume further that the only way a thread stops running is when it explicitly blocks in
either a condition variable or lock (in other words, no untimely interrupts switch from

one thread to the other).Also assume there are NO SPURIOUS WAKEUPs from wait/().

a. In the following, show which lines of code (from pl - p6 and cl - ¢6) run given a
particular scenario. Scenario 0 is completed for you as an example.

Scenario 0: 1 producer (P), 1 consumer (C), max = 1. Producer P runs first. Stop
when consumer C has consumed one entry.

P: pl, p2, p4, p5, p6, pl, p2, p3

C: cl, c2, c4

Scenario 1: 1 producer (P), 1 consumer (C), max = 1. Consumer C runs first.
Stop when consumer C has consumed one entry.

P:

C:

Scenario 2: 1 producer (P), 2 consumers (Ca, Cb), max = 1. Consumer Ca runs
first, then P, then Cb. Stop when each consumer has consumed one entry.

P:

Ca:

Chb:

b. Are there any bugs in this implementation? If so, how do you fix them?

8. Advanced Locks!

Consider the following implementation for a lock in Solaris using Queues, Test-And-
Set, Yield, and Wakeup.

typedef struct __lock_t {

int flag;
int guard;
queue_t *dJ;

} lock_t;

void lock_init (lock_t =xlock) {
lock->flag = lock->guard = 0;
lock->qg = queue_init ();

}

void lock (lock_t =lock) {
while (xchg(&lock->guard, 1) == 1)
; // spin
if (lock->flag == 0) {
lock->flag = 1;
lock->guard = 0;

} else {
queue_push (lock->qg, gettid());
setpark () ;
lock->guard = 0;
park () ;

}

void unlock (lock_t =*lock) {

while (xchg(&lock->guard, 1) == 1)
; // spin

if (gueue_empty (lock->q))
lock->flag = 0;

else
unpark (queue_pop (lock->q)) ;

lock->guard 0;

The following are the definitions of the key routines:

e park(): Puts the calling thread to sleep.

e unpark(threadID): Wake up the thread with the given threadID.
e setpark(): A thread indicates that it’s about to park.

e xchg(int *addr, int new): Atomically sets the new value in the memory location
pointed to by addr, and returns the old value at that memory location.

10

a. What is the purpose of the guard lock?” What may happen if we don’t have the
guard lock? Explain with a simple example.

b. Assume thread 1 is currently holding the flag lock and is inside the critical sec-
tion. During this time, there are 9 more threads that are currently waiting in the
queue for the lock to be released. You may assume that there are no more threads
waiting for this lock. You may also assume that all these threads will acquire the
flag lock only once. Under this scenario, how many times will the flag lock be re-
leased by these 10 threads? Explain the reasoning behind your answer.

c. What will happen if park() is called before releasing the guard lock?

d. This lock still spins while trying to acquire the guard lock. So, is this better in any
way than simple spin locks with respect to performance? Explain your answer.

11

9. Threads vs Processes!

Assume that the code snippet below compiles successfully, all the APIs like pthread create()
do not fail, and the values in the malloc’ed memory are all initialized to 0.

void worker (int xbalance) {
int *counter = malloc(sizeof (int));
for (int 1 = 0; 1 < 1000000; i++) {
(*balance)++;
(xcounter)++;

}

printf ("balance : val %d, addr %p\n", xbalance, balance);
printf ("counter : val %d, addr %p\n", xcounter, counter);
}
int main() {
int #*balance;
balance = malloc(sizeof (int));

pthread_t tf[2];
for (int i = 0; 1 < 2; i++) // Creating new threads
pthread create(&t[i], NULL, worker, balance);
for (int 1 = 0; 1 < 2; 1i++)
pthread_join(t[i], NULL);

a. What are the values of the 2 variables (balance and counter) after the 2
threads (t1 and t2) finish execution? Value here means the contents printed using
the following print statements. If the value of a variable may be different in different
runs of the program, you should write N/A.

printf ("%$d\n", =*balance); printf ("$d\n", =*counter);
Value £1 £2
balance
counter

b. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 threads (t1 and t2). PA stands for Physical Address.

)

printf ("$p\n", balance); printf ("$p\n", counter);

i. VA of balance in t1 == VA of balance in t27 (TRUE / FALSE)
ii. VA of counter in t1 == VA of counter in t27 (TRUE / FALSE)
iii. PA of balance in t1 == PA of balance in t27 (TRUE / FALSE)
iv. PA of counter in t1 == PA of counter in t27 (TRUE / FALSE)

12

Now assume that the code given below compiles successfully, all the APIs like fork()
do not fail, and the values in the malloc’ed memory are all initialized to 0.

void worker (int xbalance) {
int *counter = malloc(sizeof (int));
for (int i = 0; i < 1000000; i++) {
(xbalance) ++;
(*counter)++;
}
printf ("balance : val %d, addr %p\n", xbalance, balance);
printf ("counter : val %d, addr %p\n", =*counter, counter);

}

int main() {
int *balance;
balance = malloc (sizeof (int));

for (int i = 0; 1 < 2; i++) { // Creating new processes
if (fork() == 0) {
worker (balance) ;
exit (0);
}
}
for (int i = 0; i < 2; i++)

wait (NULL) ;

c. What are the values of the 2 variables (balance and counter) after the 2 pro-
cesses (pl and p2) created using fork() finish execution? Value here means the
contents printed using the following print statements. If the value of a variable may
be different in different runs of the program, you should write N/A.

printf ("$d\n", xbalance); printf ("$d\n", =xcounter);
Value pl p2
balance
counter

d. Consider the Virtual Addresses (VA) printed using the following print state-
ments in the 2 processes (pl and p2). PA stands for Physical Address.

printf ("$p\n", balance); printf ("$p\n", counter);

i. VA of balance in pl == VA of balance in p2? (TRUE / FALSE)
ii. VA of counter in pl == VA of counter in p27? (TRUE / FALSE)
ili. PA of balance in pl == PA of balance in p2? (TRUE / FALSE)
iv. PA of counter in pl == PA of counter in p27? (TRUE / FALSE)

13

10. Multi-level Page Tables!
Assume a system with a 2-level page table.

Parameters:
e page size = 32 bytes
virtual address space size = 32 KB
physical memory size = 4 KB
Size of one Page Directory Entry (PDE) = 1 byte
Size of one Page Table Entry (PTE) = 1 byte
Value of Page Directory Base Register (PDBR) = 30 (decimal) [This means the
page directory is held in this page|

The format of the PDE and the PTE is simple. The high-order (left-most) bit is
the VALID bit. If the bit is 1, the rest of the entry is the PFN. If the bit is 0, the page
is not valid.

You are given two pieces of information to begin with. First, you are given the value
of the page directory base register (PDBR), which tells you which page the page di-
rectory is located upon. Second, you are given a complete dump of each page of
physical memory in the next 2 pages. A page dump looks like this:

page 0: 0d 0f 06 12 1d Oc 10 03 08 14 03
page 1: 0e 0d 1b 19 0a Oc 12 1b 06 0Oc 02
page 2: 00 00 00 00O 00O 00 00 00 00 0O 0O

which shows the 32 bytes found on pages 0, 1, 2, and so forth. The first byte (Oth byte)
on page 0 has the value 0x0d, the second is 0x0f, the third 0x06, and so forth.

For each virtual address:

e write down the physical address it translates to AND the data value at this
physical address, OR

e if it is a segmentation fault (an out-of-bounds address) write the reason for this
segmentation fault (Invalid PDE OR Invalid PTE).

Write all answers in hexadecimal.

Physical Address
Virtual Address OR Data Value | Reason for Seg fault
Seg Fault
Oxlebe
0x45b0
0x7bb9

14

page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

O ~J oy U b W NP O

0d
Oe
00
00
00
18
02
00
05
07
19
7f
06
00
00
00
00
7f
00
7f
04
7f
le
14
06
02
7f
00
18
00

00
00
00
13
00
00
1b
7t
7t
00
11
7t
b7
0d
la
16
13
03
19
0d
03
18
7f
1b
04
04
00
7f
00
00
7t
7f
00
03
O0b

0f
0d
00
00
00
09
09
00
13
06
00
7f
1d
00
00
00
00
7f
00
7f
13
7f
14
13
05
17
ae
00
06
14
7f
00
00
00
O0a
00
00
01
7f
7f
O0a
10
7f
7f
Oc
03
08
02
17
09
11
11
0d
7f
1d
06
12
00
7f
00
00
7f
7f
00
10
la

06
1b
00
00
00
09
07
00
00
04
11
7f
0d
00
00
00
00
b0
00
7f
1b
7f
14
05
Oc
11
7f
00
05
0f
fa
00
00
00
02
00
00
13
7f
7f
17
13
7f
7f
1lc
08
06
00
0d
08
le
03
17
7f
Ob
19
Oa
00
7f
00
00
7f
7f
00
1lc
17

12
19
00
00
00
13
18
00
03
le
0f
7f
13
00
00
00
00
8c
00
7f
04
7f
04
1b
05
09
7f
00
17
06
be
00
00
00
15
00
00
01
7f
97
18
04
7f
7f
04
03
07
19
17
1d
10
02
Oe
7f
1b
0d
0f
00
7f
00
00
7f
7f
00
la
0f

1d
Oa
00
00
00
12
Oc
00
18
lc
01
7f
09
00
00
00
00
7f
00
7f
00
7f
01
14
00
1b
7f
00
05
11
e2
00
00
00
le
00
00
16
7f
7f
11
07
7f
7f
00
03
06
08
18
1d
18
14
03
7f
18
09
Ob
00
7f
00
00
el
7f
00
0f
15

Oc
Oc
00
00
00
0f
08
00
1b
lc
0d
7f
0f
00
00
00
00
7f
00
7f
02
7f
17
03
03
1b
8a
00
le
Oe
c3
00
00
00
12
00
00
O0a
7f
7f
Oe
15
7t
7f
1d
18
12
07
le
09
09
07
05
7f
08
0d
09
00
7f
00
00
7f
7f
00
Oc
0d

10
12
00
00
00
la
01
00
la
11
1b
ed
Ob
00
00
00
00
7f
00
7f
18
7f
05
1lc
05
10
7£
00
Oe
1d
el
00
00
00
00
00
00
1b
7f
de
10
06
7f
7f
1b
16
13
le
14
Oc
16
01
la
7f
Oe
1lc
O0b
00
7f
00
00
7f
7f
00
02
18

Physical Memory Dump

03
1b
00
00
00
10
0d
00
19
03
13
7f
Oa
00
00
00
00
7f
00
7f
Oc
7f
05
04
0f
le
7f
00
1b
1b
e8
00
00
00
00
00
00
le
7f
7f
0d
14
7f
7f
le
05
16
Oe
1b
08
12
04
Oe
7f
03
07
12
00
7f
00
00
7f
ef
00
08
07

08
06
00
00
00
Oa
13
00
11
0d
09
7f
12
00
00
00
00
7f
00
7f
Oe
7f
19
Oa
01
19
7f
00
19
12
b5
00
00
00
02
00
00
0f
7f
7f
10
1d
7f
7f
0d
05
03
19
11
04
17
13
Ob
7f
19
00
le
00
7f
00
00
7f
7f
00
09
10

14
Oc
00
00
00
01
14
00
1b
01
19
7f
12
00
00
00
00
7t
00
7f
le
7f
1b
16
00
17
7t
00
06
1b
bd
00
00
00
05
00
00
le
7t
7f
19
Oc
7t
7f
1d
Oc
17
Oe
02
07
1b
12
0f
7f
14
1d
1d
00
7f
00
00
7f
7f
00
1d
12

03
02
00
00
00
11
lc
00
15
1lc
Ob
7f
lc
00
00
00
00
7f
00
7f
12
7f
01
12
0d
09
7f
00
18
1b
c5
00
00
00
01
00
00
09
7£
7f
06
1d
7f
7f
1lc
17
Oe
13
1b
le
02
00
la
7f
1b
09
la
00
eb
00
00
7£
7f
00
03
Oc

1b
13
00
00
00
Ob
19
00
11
08
1b
7f
15
00
00
00
00
7f
00
7f
08
7f
1d
11
Oc
00
7f
00
Oc
05
f1
00
00
00
01
00
00
02
7f
7f
12
13
7f
7f
06
19
Ob
04
02
02
1d
07
Ob
7f
18
Ob
19
00
7f
00
00
7f
7f
00
1d
01

1lc
00
00
00
00
10
07
00
0d
08
Oc
7f
1lc
00
00
00
00
7f
00
7f
15
7f
10
14
15
15
cl
00
06
19
7f
00
00
00
14
00
00
12
7f
7f
lc
1d
94
7f
17
17
of
13
02
07
12
1d
Ob
7f
14
le
08
00
7f
00
00
7f
7f
00
Oe
05

15

03
lc
00
00
00
Oa
04
00
00
1d
02
7f
la
00
00
00
00
7t
00
7t
00
cO
O0b
Oe
01
16
7t
00
01
19
a6
00
00
00
1b
00
00
00
7f
7f
la
10
7t
7f
19
12
0d
la
19
06
08
06
O0b
7f
16
08
le
00
7f
00
00
7f
7f
00
0d
13

1d
10
00
00
00
00
17
00
02
06
le
7f
le
00
00
00
00
7f
00
7f
08
7f
03
09
Oc
Oa
7f
00
15
le
e9
00
00
00
06
00
00
06
7f
7f
05
17
7f
7f
14
04
06
10
08
02
Oe
11
00
7f
11
02
08
00
7f
00
00
7f
7f
00
08
06

Ob
11
00
00
00
01
18
00
07
1lc
02
7f
14
00
00
00
00
7f
00
7f
15
7f
Oc
05
Oc
Oe
7f
00
11
17
95
00
00
00
le
00
00
Oc
7f
7f
1d
15
7f
7f
10
Oc
Oc
16
14
10
03
0d
10
7f
03
1b
03
00
7f
00
00
7f
7f
00
1d
17

17
02
00
00
00
04
0f
00
Oe
09
07
7f
05
00
00
00
00
7f
00
7f
05
7f
le
02
00
11
7f
00
09
Oc
7f
00
00
00
Oe
00
00
12
7f
eb
la
06
7f
7f
08
06
14
14
00
17
07
18
Oe
7f
12
07
0f
00
7t
00
00
7f
7f
00
05
0f

17
07
00
00
00
02
19
00
03
14
17
7f
la
00
00
00
00
7f
00
7f
01
7f
08
16
1d
07
7f
00
19
06
cd
00
00
00
18
00
00
04
7f
do
05
10
7t
7f
Oa
10
16
01
06
19
19
12
0f
7f
00
06
16
00
7f
00
00
7f
7f
00
11
1d

09
Oe
00
00
00
la
11
00
le
03
03
7f
1d
00
00
00
00
7f
00
£2
10
7f
04
17
06
15
7f
00
06
14
a7
00
00
00
lc
00
00
01
7f
7f
08
12
7f
7f
07
11
1lc
17
16
13
16
18
0d
7f
04
1d
O0a
00
7f
00
00
ee
7f
00
0f
la

14
la
00
00
00
12
08
00
11
1b
10
7f
lc
00
00
00
00
7f
00
7f
0a
7f
04
10
02
11
f4
00
0d
06
d3
00
00
00
1d
00
00
la
b6
7f
06
Oe
80
7f
02
06
06
12
01
19
la
10
Oe
7f
18
07
14
00
7f
00
00
7f
7f
00
06
16

14
10
00
00
00
07
05
00
16
Oc
la
7f
11
00
00
00
00
7f
00
7f
le
7f
03
16
Oe
Ob
7f
00
02
17
93
00
00
00
01
00
00
09
7f
99
01
14
c7
7f
12
07
1b
09
of
00
05
05
16
7f
01
1b
08
00
7f
00
00
7f
b4
00
06
Ob

18
08
00
00
00
16
00
00
1b
Oa
12
7f
16
00
00
00
00
7f
00
7f
03
7f
Oa
Ob
05
03
7f
00
Oa
11
aa
00
00
00
09
00
00
1d
7f
7f
le
lc
7f
db
08
18
18
00
1d
08
03
05
05
ac
02
Oa
1d
00
7f
00
00
7f
7f
00
le
01

08
le
00
00
00
13
13
00
07
14
Oa
7f
06
00
00
00
00
7t
00
7t
18
7f
1lc
08
13
11
7t
00
1b
19
fd
00
00
00
12
00
00
1b
7f
7f
Oc
18
7t
7f
19
00
16
la
06
1d
O0b
02
le
7f
03
09
Oe
00
7f
00
00
7f
7f
00
18
11

17
14
00
00
00
01
1b
00
1b
12
17
7f
19
00
00
00
00
7f
00
7f
Oc
7f
02
Ob
O0a
09
7f
00
0f
O0b
7f
00
00
00
1d
00
00
Ob
7f
7f
1b
19
7f
7f
01
18
le
Oe
15
02
0f
19
03
7f
1b
06
Oe
00
7f
00
00
7f
7f
00
16
17

1d
10
00
00
00
17
lc
00
1d
07
19
7f
11
00
00
00
00
7f
00
7f
18
7f
05
1b
03
16
7£
00
04
09
9a
00
00
00
02
00
00
Oe
7f
7f
03
04
7f
7f
lc
1b
04
16
17
08
16
03
la
7f
05
10
10
00
7f
00
00
7£
7f
00
1b
lc

14
06
00
00
00
07
Oe
00
08
03
11
7f
08
00
00
00
00
7f
00
7f
0d
7f
1d
01
01
05
7f
00
07
lc
7f
00
00
00
09
00
00
10
dc
7f
00
15
7f
7f
15
1d
18
1b
13
Oe
09
00
05
7f
00
11
1b
00
7f
00
00
7f
7f
00
03
06

10
09
00
00
00
le
14
00
03
11
13
7f
01
00
00
00
00
7f
00
7t
14
7f
le
of
16
Oc
7f
00
13
14
d2
00
00
00
la
00
00
13
7f
7f
la
13
7f
7f
lc
Ob
1b
16
17
08
16
1d
18
7f
la
Oc
le
00
7f
00
00
7f
7f
00
15
04

03
1b
00
00
00
04
lc
00
18
00
09
7f
la
00
00
00
00
7f
00
7f
Oa
7f
le
07
08
06
7f
00
08
O0b
£7
00
00
00
03
00
00
12
7f
7f
18
1d
7f
7f
1b
11
03
lc
15
10
12
06
08
7f
03
0f
10
00
7f
00
00
7f
7f
00
17
le

0f
04
00
00
00
08
19
00
1b
1b
Oc
7f
le
00
00
00
00
7f
00
7f
06
7f
07
17
18
Oc
7f
00
1b
11
91
00
00
00
Oc
00
00
11
7f
7f
le
00
7f
7f
1b
12
12
Oc
00
01
08
1b
02
7f
la
09
0d
00
7f
00
00
7f
7f
00
06
16

Oa
10
00
00
00
07
12
00
18
Oa
le
7f
02
00
00
00
00
7f
00
7f
Oe
7f
Oa
Oa
Oe
11
7f
00
01
od
ab
00
00
00
Oa
00
00
13
7f
7f
15
05
7f
7f
11
13
1d
18
05
07
18
02
10
7f
14
19
13
00
7f
00
00
7f
7f
00
Oe
0f

16
13
00
00
00
la
Oc
00
Oc
05
le
7f
18
00
00
00
00
7f
00
7f
18
7f
1d
Oa
lc
03
7f
00
la
13
7f
00
00
00
15
00
00
1d
7f
7f
10
le
7f
7f
00
le
09
0d
10
1d
02
Oe
la
7f
19
1lc
02
00
7f
00
00
7f
7f
00
le
16

15
O0b
00
00
00
19
10
00
12
Oa
00
7f
Oc
00
00
00
00
96
00
7t
Oa
7f
0f
Oc
09
01
7t
00
13
10
8b
00
00
00
lc
00
00
0f
7f
7f
17
Ob
7t
7f
17
15
la
1d
le
04
12
06
la
7f
1d
17
0d
00
7f
00
00
7f
7f
00
O0a
04

page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

66:
67:
68:
69:
70:
71:
72
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:

12
7f
06
7t
00
Oc
00
10
02
03
00
7f
17
00
00
00
7f
7t
Oc
Oc
00
le
00
01
00
19
le
19
06
02
c2
08
7f
01
00
1b
01
00
7f
7f
11
1lc
00
0f
12
0d
00
7f
02
00
01
00
Oc
7f
00
Oe
7t
00
1b
7f
10
00

Ob
T£
09
7f
00
Oe
00
12
13
la
00
7f
1b
00
00
00
7f
7£
1d
10
00
10
00
1lc
00
1lc
10
11
18
lc
7f
06
7f
la
00
O0a
17
00
Tf
7f
Oe
0d
00
09
16
0a
00
7f
17
00
0d
00
00
7f
00
14
7f
00
Ob
7f
Oc
00

1lc
7f
09
7f
00
12
00
08
00
0d
00
7f
Oa
00
00
00
7f
7f
12
12
00
Oc
00
la
00
la
11
lc
07
00
7f
16
7f
Ob
00
09
of
00
7f
85
16
15
00
09
00
05
00
7f
1lc
00
09
00
Oe
7f
00
12
7f
00
05
7f
1d
00

18
7f
1b
7f
00
00
00
00
la
10
00
7f
12
00
00
00
7f
7f
Oa
13
00
Oa
00
1lc
00
0d
00
Ob
05
le
7f
19
c4
le
00
18
16
00
7f
7f
la
03
00
Oa
17
07
00
7f
10
00
06
00
00
e3
00
13
81
00
09
7f

00

04
7t
02
7t
00
09
00
00
09
14
00
7f
0d
00
00
00
7f
7t
07
0d
00
Oe
00
15
00
17
Oc
Oc
0d
07
7f
14
7f
O0b
00
0d
03
00
7f
7f
Oc
1b
00
14
14
1b
00
7t
0d
00
1b
00
15
7f
00
0f
7f
00
Oe
7t
1d
00

00
7f
Oc
7f
00
16
00
O0a
lc
04
00
7f
03
00
00
00
7f
7f
la
01
00
18
00
13
00
0f
11
07
15
19
7f
06
7f
06
00
le
17
00
7f
7f
16
Ob
00
12
0f
04
00
7f
16
00
06
00
la
7f
00
10
7f
00
10
7f
0f
00

1d
7f
la
7f
00
08
00
06
1b
16
00
7f
19
00
00
00
7f
7f
Oe
18
00
Oe
00
le
00
03
00
18
03
19
7f
16
7f
11
00
la
lc
00
7f
7f
1d
Oe
00
0b
10
11
00
7f
05
00
19
00
lc
7f
00
0f
7f
00
10
7f
17
00

Oc
7f
11
7f
00
Oe
00
11
04
18
00
7f
12
00
00
00
89
f9
18
la
00
1d
00
08
00
01
13
Oe
09
1d
7f
10
7f
1b
00
la
01
00
7f
7f
Oe
1b
00
05
Oe
13
00
7f
08
00
1d
00
01
7f
00
19
7f
00
Ob
7f
Oc
00

03
7f
07
7t
00
07
00
08
Oc
la
00
7f
19
00
00
00
7f
7t
Oa
0f
00
04
00
09
00
02
13
08
Oa
Oe
9c
Ob
7f
0d
00
15
Oa
00
7f
7f
07
08
00
Oa
05
10
00
7f
06
00
03
00
14
7f
00
05
7f
00
la
7f
le
00

05
7f
le
7f
00
Ob
00
17
04
08
00
7f
06
00
00
00
88
7f
06
11
00
09
00
03
00
06
01
05
19
15
7f
12
7f
la
00
06
11
00
7f
7f
07
05
00
03
10
0f
00
7f
12
00
lc
00
09
7f
00
18
b3
00
08
7f
lc
00

15
7f
03
7f
00
14
00
12
17
07
00
ad
10
00
00
00
7f
7f
10
08
00
10
00
05
00
04
13
16
0d
09
7f
0d
7f
16
00
15
19
00
7f
7f
16
19
00
11
01
Oc
00
7f
09
00
Oc
00
Oe
7f
00
09
7f
00
Oe
7f
09
00

05
7f
04
7f
00
17
00
14
02
05
00
7f
Oe
00
00
00
7f
7f
19
1b
00
Oc
00
18
00
of
Oe
12
la
19
7f
14
7f
Ob
00
11
07
00
c9
7f
14
12
00
16
0f
05
00
7f
07
00
06
00
09
7f
00
la
7f
00
1b
7f
1lc
00

Ob
7f
00
7f
00
1d
00
16
02
1b
00
7f
16
00
00
00
7f
7f
05
15
00
la
00
02
00
15
15
16
05
03
7f
17
7f
09
00
Oe
05
00
7f
7f
1d
02
00
Ob
14
19
00
7f
15
00
05
00
09
7f
00
02
7f
00
19
7f
05
00

16

14
7f
0d
7t
00
Oe
00
10
03
0d
00
af
02
00
00
00
7f
7f
18
06
00
19
00
17
00
10
O0a
O0b
Oa
1b
7f
le
7f
0f
00
11
07
00
7f
7f
la
00
00
02
0d
1b
00
7f
1d
00
01
00
04
7f
00
0f
7f
00
09
fc
02
00

O0a
d7
la
7f
00
06
00
0d
la
Oc
00
7f
O0a
00
00
00
7f
7f
1lc
19
00
lc
00
Oc
00
0d
15
0f
14
12
7f
03
7f
Oc
00
09
13
00
7f
7f
07
O0a
00
05
11
11
00
7f
09
00
0f
00
13
7f
00
0d
7f
00
07
7f
16
00

14
d4
08
7f
00
O0a
00
09
07
10
00
7f
0f
00
00
00
7f
7f
18
le
00
12
00
1b
00
14
16
04
1b
01
7f
11
7f
0b
00
06
17
00
7f
7f
05
00
00
0b
1d
07
00
7f
15
00
0b
00
02
7f
00
16
7f
00
19
7f
09
00

1d
7f
08
7f
00
01
00
01
Oa
15
00
7f
02
00
00
00
eb
7f
19
Oa
00
00
00
17
00
09
00
16
od
1d
7f
1d
7f
14
00
lc
Oc
00
df
7f
08
19
00
12

lc
00
7f
Oc
00
la
00
1d
7f
00
06
7f
00
00
a8
10
00

18
7f
18
7f
00
07
00
18
0d
09
00
7f
11
00
00
00
ce
7f
00
le
00
11
00
15
00
Oe
01
00
06
09
a9
14
7f
1b
00
Ob
Ob
00
7f
7f
05
05
00
18
04
06
00
7f
la
00
19
00
01
7f
00
08
7f
00
04
7f
13
00

13
dd
02
7t
00
12
00
0f
11
O0a
00
7f
16
00
00
00
7f
T7f
13
Oe
00
11
00
la
00
17
14
Oe
03
02
7f
11
7f
12
00
03
Oc
00
7f
7f
15
08
00
O0b
18
05
00
7f
12
00
01
00
1d
7f
00
04
T7f
00
10
b2
01
00

13
7f
00
7f
00
12
00
03
Oc
17
00
7f
0d
00
00
00
7f
7£
la
05
00
0f
00
01
00
Oc
1d
17
10
08
7f
la
7f
04
00
le
Oa
00
Tf
7f
la
Oc
00
18
13
13
00
7f
08
00
Oc
00
05
7f
00
11
7f
00
10
7f
17
00

09
T7f
14
7f
00
07
00
1lc
1d
18
00
7f
14
00
00
00
7f
T7f
01
16
00
08
00
08
00
05
07
14
05
00
7f
00
7f
06
00
0f
Oc
00
T7f
7f
1b
0f
00
13
01
19
00
T7f
06
00
Oc
00
02
7f
00
11
ca
00
05
T7f
08
00

13
7f
02
7f
00
05
00
12
Oa
09
00
Tf
12
00
00
00
7f
7f
08
Oa
00
15
00
Ob
00
1b
Oe
03
19
08
7f
18
7f
Ob
00
14
02
00
7f
7f
07
0d
00
0d
Ob
11
00
7f
00
00
05
00
17
7f
00
00
7f
00
01
7f
0d
00

14
7t
10
7t
00
03
00
13
Oe
02
00
7f
06
00
00
00
7f
7t
08
16
00
lc
00
0d
00
16
12
07
19
16
7f
13
7f
13
00
Oa
0f
00
7t
7f
la
13
00

07
03
00
7t
Oe
00
07
00
10
7f
00
05
7f
00
06
7f
O0a
00

12
7f
04
7f
00
05
00
0d
la
1lc
00
7f
Oa
00
00
00
7f
7f
10
12
00
03
00
14
00
Ob
09
la
05
le
7f
12
7f
04
00
04
le
00
7f
98
09
14
00
0f
02
le
00
7f
Ob
00
08
00
17
7f
00
06
7f
00
17
7f
17
00

0f
7f
12
7f
00
0f
00
03
07
16
00
7f
le
00
00
00
7f
7f
0d
03
00
14
00
1b
00
0b
0b
13
08
13
7f
09
7f
02
00
O0a
Oc
00
7f
7f
0d
0d
00
15
10
04
00
7f
05
00
15
00
0f
7f
00
1d
7f
00
Oe
7f
17
00

17
bl
la
7f
00
07
00
le
05
12
00
7f
Oa
00
00
00
7f
7f
Oe
10
00
Ob
00
16
00
10
09
1b
19
la
7f
13
7f
09
00
19
17
00
7f
7f
16
03
00
0d
lc
Oa
00
7f
Ob
00
Oa
00
13
7f
00
Oe
7f
00
le
7f
08
00

06
7f
Oe
86
00
1b
00
05
19
Oc
00
7f
0d
00
00
00
7f
7f
18
la
00
0f
00
lc
00
12
Ob
1b
13
19
7f
03
ab
08
00
08
04
00
7f
7f
02
le
00
15
Oa
le
00
9d
09
00
03
00
02
7f
00
11
7f
00
18
7f
03
00

16
7f
08
7t
00
11
00
O0b
09
1d
00
7t
02
00
00
00
7f
7f
00
Oe
00
1b
00
15
00
06
12
0d
18
16
7f
10
7f
00
00
lc
15
00
7f
7f
02
15
00
Oe
la
18
00
7t
18
00
06
00
14
7f
00
08
7f
00
le
7t
09
00

le
7f
13
7f
00
Oa
00
le
1b
0d
00
7f
06
00
00
00
7f
7£
01
10
00
1d
00
Ob
00
00
09

O0a
0b
ds
07
7f
10
00
09
17
00
7f
7f
19
02
00
07
15
17
00
7f
04
00
0d
00
0f
7f
00
14
7f
00
01
7f
Oc
00

01
7f
15
7f
00
0d
00
03
19
06
00
7f
05
00
00
00
7f
7f
03
la
00
13
00
0f
00
06
Ob
16
04
07
7f
lc
7f
lc
00
1b
14
00
f6
7f
09
0d
00
10
04
02
00
7f
le
00
11
00
1d
7f
00
19
7f
00
05
7f
02
00

07
7f
01
7f
00
01
00
of
Ob
03
00
7f
lc
00
00
00
7f
7f
03
0od
00
06
00
17
00
18
17
Oa
09
04
cb
18
7f
10
00
05
10
00
7f
7f
O0b
17
00
15
la
la
00
7f
Oe
00
07
00
00
7t
00
14
b8
00
00
7f
04
00

le
7f
07
7t
00
16
00
Oe
O0a
Oa
00
7f
16
00
00
00
7f
7f
02
0f
00
lc
00
19
00
04
00
O0b
18
10
7f
Oe
7f
16
00
0d
Oe
00
a2
ea
11
le
00
02
12
Oc
00
7f
12
00
15
00
02
fe
00
00
7f
00
0d
7f
17
00

